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ABSTRACT: Neuropeptide identification in mass spectrometry experiments using
database search programs developed for proteins is challenging. Unlike proteins, the
detection of the complete sequence using a single spectrum is required to identify
neuropeptides or prohormone peptides. This study compared the performance of
three open-source programs used to identify proteins, OMSSA, X!Tandem and
Crux, to identify prohormone peptides. From a target database of 7850 prohormone
peptides, 23550 query spectra were simulated across different scenarios. Crux was
the only program that correctly matched all peptides regardless of p-value and at p-
value < 1 × 10−2, 33%, 64%, and >75%, of the 5, 6, and ≥7 amino acid-peptides
were detected. Crux also had the best performance in the identification of peptides
from chimera spectra and in a variety of missing ion scenarios. OMSSA, X!Tandem
and Crux correctly detected 98.9% (99.9%), 93.9% (97.4%) and 88.7% (98.3%) of
the peptides at E- or p-value < 1 × 10−6 (< 1 × 10−2), respectively. OMSSA and X!
Tandem outperformed the other programs in significance level and computational
speed, respectively. A consensus approach is not recommended because some prohormone peptides were only identified by one
program.
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■ INTRODUCTION
Neuropeptides are a subclass of peptides that can function as
neuromodulators, neurotransmitters and hormones and have a
critical role in many biological processes such as growth,
learning, memory, metabolism and neuronal differentiation and
disorders such as depression, Parkinson’s disease, and eating
and sleeping disorders.1−5 Most neuropeptides range in length
from 3 to 40 amino acids and are produced by a complex post-
translational processing. This processing includes removal of a
signaling peptide, cleavage of precursor prohormones at basic
amino acids (K and R), removal of C-terminal basic amino
acids by carboxypeptidases, and post-translational modifications
(PTMs).6−9

Mass spectrometry (MS) is a well-established technology to
identify proteins and peptides. The shotgun proteomics
implementation of the bottom-up approach relies on the direct
protease digestion (typically with trypsin) with subsequent
separation of the peptides in the first LC separation step for
tandem mass spectrometry (MS/MS). In a subsequent step, the
resulting digested peptides are subjected to tandem mass
spectrometry (MS/MS) to generate MS/MS spectra. Database
searching is a common approach to identify peptides and,

consequently, proteins from MS/MS spectra. Multiple database
search programs are available including SEQUEST,10 X!
Tandem,11 and Crux.12 The overall strategy of database
searches is to pair observed and theoretical or predicted
spectra. The observed spectra arise from MS/MS experiments
and the theoretical spectra are the result of in silico prediction
based on the known sequence of potential peptides in a
database. Most databases include proteins that have been
empirically confirmed or predicted from genome sequence
assemblies and/or EST libraries.
Database search programs use different algorithms and, thus,

differ in the capability to identify peptides.13−15 Comparing the
performance of Mascot, SEQUEST, Sonar, X!Tandem and
Spectrum Mill, 15% of human serum and plasma MS/MS
spectra was identified by at least one program.14 Similarly, on
average 34% of the proteins from normal human ovarian
epithelium was identified by Mascot, OMSSA, SEQUEST and
X!Tandem.16 Out of 1837 human histone MS/MS spectra, 5%
was identified by MassMatrix, Mascot, OMSSA and X!
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Tandem.17 Inconsistencies among programs in peptide
identification have been attributed to differences in the
matching algorithms although simulated spectra have not
been used to assess the performance of the programs.
The same MS/MS database search programs used to identify

proteins and peptides in general are also used to identify
neuropeptides.2,9,18,19 However, the extrapolation of the
performance of these programs to identify neuropeptides is
not straightforward. First, the goals are different when
characterizing proteins via shotgun proteomics and for a typical
neuropeptide measurement. In a proteomics experiment, the
proteins are digested into peptides via an enzyme and then the
goal is to identify unique peptides from the protein with high
enough confidence that the existence of the protein can be
inferred. Higher numbers or more unique peptides identified
translate to higher evidence supporting the presence of the
protein in the sample. On the other hand, neuropeptides
already exist in the sample as endogenous peptides prior to
sample preparation or enzymatic degradation. Consequently,
each individual neuropeptide requires the precise identification
of the exact form of the peptide. The second distinctive feature
is that the length of neuropeptides tends to be small and, thus,
precise short sequence matches tend to be less statistically
significant than the matches of potentially many or longer
peptide products from shotgun proteomics. Short lengths limit
the statistical significance of the match of the peptide to a
database and thus the capability to detect peptide matches
beyond a user-defined statistical threshold. A third distinctive
feature is that neuropeptides may result from cleavages by
multiple proteases. Thus, the standard MS digestion model to
generate peptides from proteins is not exactly applicable to
neuropeptides because many of these may lack additional basic
amino acids or result in smaller peptides. Consequently, the
digestion model may not identify the correct peptide and fail to
distinguish between shorter and longer forms of the same
peptide. The fourth distinctive feature is that the proteins and
peptides under consideration are synthesized as inactive
precursors, that are converted to their mature forms by protein
convertases (PCs) resulting in bioactive proteins and
peptides.20 Generally, these endoproteases cleave the precursor
substrates at the C-terminal side of single, paired, or tetra basic
amino acid residues including arginine or lysine.21 Subsequently
the C-terminal basic residues of protein/peptide intermediates
are eliminated by specialized carboxypeptidases leading to the
mature peptides.22 These peptides may undergo additional
post-translational modifications including C-terminal amida-
tion, N-terminal acetylation, glycosylation, sulfation, and
phosphorylation prior to the formation of the final bioactive
peptides.20 This specialized processing is not modeled by
protein identification programs used in shotgun proteomics.
In summary, the goal in prohormone peptide MS studies is

to identify individual and typically small peptides, and not to
use the presence of unique peptides to infer the presence of a
larger protein. After all, the presence of the protein
Angiotensinogen is not as important as detecting the forms
of Angiotensin present as each form (whether Angiotensin I, II
or III) implies something different. Because of these differences
in goals, the need to characterize the exogenous peptides in a
sample creates a different set of factors that has a unique and
still uncharacterized impact on the performance of the different
protein search algorithms to identify neuropeptides.
Sample preparation, instrumental and algorithmic settings

need to be tailored to minimize the influence of sample

complexity and dynamic range, typically observed in neuro-
peptide studies. These settings can result in peaks selected for
MS/MS representing chimeras that contain more than one
peptide with similar mass-to-charge (m/z) values. This
situation has been observed in neuropeptides. For example,
from a single 875.79 m/z precursor peak, both the ProSAAS big
LEN peptide (1744.964 Da with charge state +2) and
Rhombex-40 peptide (2623.345 Da with charge state +3)
have been identified.23 A least one peptide is expected to be
identified in these chimera spectra due to the difference in
charge states. A more challenging situation occurs when the
peptides in a chimera have similar theoretical mass and identical
charge state. Prevalence of chimera events that can lead to
inaccurate identification has been estimated to range between
11 and 50% of the MS/MS trypsin-digested spectra.24,25

No large-scale, systematic study of the strengths and
weaknesses of database search programs to identify neuro-
peptides and other potential peptides resulting from
prohormone processing have been reported. The unique
characteristics of these peptides, compared to peptides resulting
from a tryptic digest justify the evaluation and recommendation
of database programs and algorithms that best support the
identification of neuropeptides. The aims of this study were:
(1) to compare the relative advantages of three complementary
open-source search methods: OMSSA, X!Tandem and Crux to
accurately identify prohormone peptides including neuro-
peptides; (2) to evaluate the impact of MS factors such as
charge on neuropeptide identification; and (3) to offer
guidelines to obtain the most comprehensive and accurate
survey of the peptides in a sample.

■ MATERIALS AND METHODS
A comprehensive set of prohormone and peptide sequences
were compiled from our two public repositories, NeuroPred26

(http://neuroproteomics.scs.illinois.edu/neuropred.html) and
SwePep27 (http://www.swepep.org), and complemented with
information from UniProt28 (http://www.uniprot.org; release
2011_01). NeuroPred was also used to predict the most likely
and potentially cleaved peptides from 92 mouse prohor-
mones.21,29−31 The final database consisted of 7850 peptides
that ranged in length from 5 to 255 amino acids including
experimentally confirmed neuropeptides and predicted peptides
(Table 1).

Peptides from mouse prohormones were used to simulate
the observed or query spectra and generate the corresponding
search or target database. The rationale for matching the
observed data to the same counterpart in the database without
the addition of a decoy database is 3-fold. First, a decoy
database does not assist in determining if the algorithms can
correctly match the spectra to the correct target. Rather a decoy
database provides a general measure of confidence among the

Table 1. Summary of the Peptides Used to Simulate the
Query Spectra and Populate the Target Database

Number of prohormones 92
Number of peptides 7850
Average (minimum, maximum) number of peptides/
prohormones

74.06 (1, 1139)

Average (min, max) peptide size (amino acids) 75.23 (5, 255)
Percentage of peptides from UniProt 3.35%
Percentage of peptides not from UniProt 96.65%
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matches. Second, the simulated data share the same quality and
thus the addition of decoy mass spectra does not aid in
addressing quality differentials in the present study. Third,
neuropeptides tend to be short. A reverse decoy spectra of a
short peptide has higher likelihood to be present in nature than
that of a longer peptide, thus biasing the objective of these
spectra to help assess the probability of a random match. The
lack of known spectra with no target database entry prevented
the comparison of performance across programs using receiver
operating characteristics curves.
Among the database search programs available, three public

programs were considered: Crux, X!Tandem, OMSSA.11,12,32

These programs were selected because they are open source
and this allows the investigation of the code, computation of
matching scores and the algorithmic specifications. These three
programs were compiled using the default settings and run on
the same computer (a 3.00 GHz Intel X9650 processor).
These three programs compute a score indicator of the

similarity (e.g., correlation) between the query and database
spectra.14 The score is then used to compute an E-value
(Expected value or expected number of database matches by
chance with scores equal or higher than the one observed) or p-
value (the probability that the match between the query and
target sequences is due to chance). The programs differ on the
algorithm used to identify and score the matches and statistical
significance indicator of each match.
Crux (Version 1.37 released on December 22, 2011) is an

alternative implementation of the SEQUEST algorithm.12

Peptide identification relies on searching a collection of spectra
against an indexed sequence database, and returning a
collection of peptide-spectrum matches (PSMs). Crux option
to calculate p-values from a Weibull distribution of the cross-
correlation scores was used in this study.13 Although this
approach is computationally intensive, this strategy maximizes
sensitivity or true positive rate through the ability to identify
peptides regardless of the quality of the spectra at the expense
of higher rates of false positives or mismatches.
X!Tandem (http://www.thegpm.org/tandem; Version

2010.12.01.1 released on December 01, 2010) was developed
to optimize speed and to minimize the computational
requirements.11 The algorithm preprocesses the observed
spectra to remove noise and technical artifacts, processes
database peptide sequences with cleavage reagents, post-
translational and chemical modifications and scores the peptide
matches between the observed and predicted spectra.13 The
scores are converted to hyperscores and the distribution of
hyperscores of all matches is used to translate the hyperscore of
each match into an E-value.
The Open Mass Spectrometry Search Algorithm (OMSSA;

Version 2.1.7 released on June 15, 2010; http://pubchem.ncbi.
nlm.nih.gov/omssa) centers on optimizing the speed of
database searching approach.32 The scoring of each match
assumes that the number of matches between observed and
predicted peaks for a peptide sequence follows a Poisson
distribution. The lambda (or average) parameter of the Poisson
distribution is calculated as a function of the fragment ion
tolerance, the number of predicted and observed peaks and the
neutral mass of the precursor ion. OMSSA provides E- and p-
values based on the dimensions of the target database.
Simulated spectra were used to compare the performance of

the three database search programs. There are three advantages
of simulating the observed peptides to be queried against a
database. First, the use of simulated mass spectra overcomes the

limited number of neuropeptides with mass spectra information
of comparable quality obtained using the same or similar
technologies. Second, the analysis of simulated mass spectra
that share the same quality level allows benchmarking the
database search programs irrespectively of sample or data
quality issues including low mass accuracy, noise and low
signal-to-noise ratio. Third, simulated mass spectra offers an
absolute control of the peptides that should be detected and
accurate evaluation of the number of true positives (detected
and correctly identified peptides), false positives (detected but
incorrectly identified peptides) and false negatives (missed
peptides).
Ideal uniform spectra that have either +1, +2, and +3 peptide

charge states were simulated for each peptide precursor ion in
the target database. For each peptide charge status, only +1
charged b- and y-product ions (b- and y-ion series) were
simulated with equal intensity. Neutral losses of a water (−18
Da) and/or ammonia (−17 Da) were simulated when the ion
contained either one of four water losing amino acids (Ser, Thr,
Glu, Asp) or ammonia losing amino acids (Arg, Lys, Gln, Asn).
Neutral losses from b- and y-ion series occurred regardless of
position of these amino acids in the ions.
Complementary scenarios of neutral mass loss and ion

availability conditions were simulated across the three peptide
charge states and searched against the database to investigate
the impact of these situations on the identification of
neuropeptides. The simulated query scenarios included:

1) All b- and y-ion series including all neutral mass losses
due to water and ammonia. This scenario constitutes the
baseline for comparison.

2) Only the possible b- and y-ion series excluding neutral
mass losses.

3) Only the possible b-ion series including all neutral mass
losses.

4) Only the possible y-ion series including all neutral mass
losses.

5) Random 50% of b- and y-ion series including all neutral
mass losses.

6) Random 25% of b- and y-ion series including all neutral
mass losses.

7) Only scoring the b-ion series from b- and y-ion spectra
including all neutral mass losses.

8) Only scoring the y-ion series from b- and y-ion spectra
including all neutral mass losses.

The performance of the database search programs to identify
peptides from chimera spectra was investigated. Chimera
representation was achieved by combining the simulated
spectra from peptides that have similar theoretical mass values
and have the same charge state. Only peptides that were
correctly identified by the three algorithms at E- or p-value <
0.01 with a single peptide simulated with all neutral losses and
ions were used. The resulting peptides were grouped such that
the maximum difference in the theoretical mass of each group
was within ±0.4 Da. Individual spectrum was simulated for each
peptide including all the b- and y-ion series, neutral losses and
+1 peptide charge state. Chimera spectra were generated for
each mass group by merging these individual simulated peptide
spectra into a single spectrum using the average theoretical
precursor mass for the precursor ion m/z value.
The peptide identification search programs OMSSA, X!

Tandem and Crux were evaluated using comparable
algorithmic specifications and excluding PTMs. The default

Journal of Proteome Research Article

dx.doi.org/10.1021/pr3007123 | J. Proteome Res. 2012, 11, 6044−60556046

http://www.thegpm.org/tandem
http://pubchem.ncbi.nlm.nih.gov/omssa
http://pubchem.ncbi.nlm.nih.gov/omssa


values of the programs were used in addition to the following
specifications: (1) precursor ion tolerance: 1.5 Da; (2) product
or fragment ion tolerance: 0.3 Da; (3) no fixed or variable
modifications; (4) “whole protein” (OMSSA) or “enzyme:
custom cleavage site” (X!Tandem and Crux) to prevent
cleavage since the detection of neuropeptides does not involve
protease digestion; (5) peptide length: 5−255 residues; (6)
peptide ion charge: +1, +2, +3; (7) product ion charge: default
values; (8) no complete or partial modifications; and (9)
peptide mass: monoisotopic.
For comparison purposes, Crux probability scores (ranging

from 0 to 1), X!Tandem E-values (ranging from 1 × 10−45 to 1
× 10+3) and OMSSA E-values (ranging from 1 × 10−15 to 1 ×
10+4) were transformed using a base 10 logarithm. The match
or hit with lowest E- or p-value among all hits per input
spectrum was analyzed. The 1 × 10−6 threshold based on a 1%
Bonferroni correction (0.01/7850 = 1.27 × 10−6 ≈ 1 × 10−6)
was used to determine if the match was significant while
accounting for multiple testing.

■ RESULTS AND DISCUSSION

The overall significance and the correctness of the matched
sequence of the simulated query-to-target matches were used to

assess the capability of each search algorithm to detect
neuropeptides and other prohormone peptides. This evaluation
step allowed discrimination between obvious and dubious, yet
correct, peptide identifications. A peptide match was deemed to
be significant if the detection signal (e.g., E- or p-value) was
lower (more significant) than a 1 × 10−6 threshold. This
stringent threshold aimed to minimize the number of false
peptide identifications because the percentage of matches that
could be considered by chance (false positives) is less than a 1%
Bonferroni corrected significance threshold. There were three
outcomes for each simulated spectra: the neuropeptide
correctly matched the simulated peptide (true positive),
incorrectly matched (false positive) or failed to match (false
negative). A lower threshold E- or p-value < 1 × 10−2 was also
investigated because neuropeptides tend to be short and thus
true positives from the database matching process are unlikely
to generate extreme E- or p-values.
Impact of Program on Peptide Identification in Baseline
Conditions

Table 2 summarizes the results from the three search methods
across three peptide charge states. Most peptides (approx-
imately 7764 out of 7850 peptides across charges when all ions
are available) were identified by these three programs regardless

Table 2. Number of Peptides Correctly Matched by X!Tandem, OMSSA and Crux for Precursor Charge States +1, +2, and +3
Across Various Scenarios

correctly matcheda

OMSSA+X!Tandem+Crux OMSSA+Crux X!Tandem+Crux Crux

significantb

scenarioc charge All OC OX O C N OC O C N XC C N N

b + y ions +1 7028 8 378 327 0 23 0 0 1 84 1 0 0 0
+ neutral +2 7012 7 397 313 0 35 0 0 0 85 1 0 0 0
mass loss +3 7027 5 379 265 0 87 0 0 3 82 2 0 0 0

b + y ions +1 6874 5 503 339 0 3 41 0 1 84 0 0 0 0
− neutral +2 6888 5 485 340 0 3 44 0 0 85 0 0 0 0
mass loss +3 6978 3 389 337 0 8 50 0 1 84 0 0 0 0

b ions +1 6837 109 105 184 46 484 0 0 1 84 0 0 0 0
+ neutral +2 6831 99 109 175 60 491 0 0 0 85 0 0 0 0
mass loss +3 6887 99 57 105 57 560 0 0 1 84 0 0 0 0

y ions +1 6911 126 118 221 17 370 2 0 1 84 0 0 0 0
+ neutral +2 6905 116 133 202 11 397 1 0 1 84 0 0 0 0
mass loss +3 6897 99 133 157 24 454 1 0 2 83 0 0 0 0

50% ions +1 6646 230 69 394 14 410 1 0 0 85 1 0 0 0
+ neutral +2 6638 244 69 382 10 421 1 0 2 83 0 0 0 0
mass loss +3 6668 254 36 278 27 502 0 0 1 84 0 0 0 0

25% ions +1 5370 661 21 156 318 989 198 4 8 52 0 1 29 43
+ neutral +2 5358 673 25 160 295 987 200 4 6 82 0 0 30 30
mass loss +3 5378 675 4 170 267 1010 210 5 5 63 0 0 22 41

aCorrectly matched peptide regardless of E- or p-value level on all three, two or one of the database search programs. Missing columns (OMSSA
+Crux, X!Tandem, OMSSA) are columns with “0” in all rows. bDetection at E- or p-value < 1 × 10−6. All: OMSSA, X!Tandem and Crux; OC: only
OMSSA and Crux E- or p-value < 1 × 10−6; OX: only OMSSA and X!Tandem E-value < 1 × 10−6; XC: only X!Tandem and Crux E- or p-value < 1
× 10−6; O: only OMSSA E-value < 1 × 10−6; C: only Crux p-value < 1 × 10−6; N: No program E- or p-value < 1 × 10−6. Missing columns (XC and
X within OMSSA+X!Tandem+Crux, X in X!Tandem+Crux) are columns with “0” in all rows. cSimulated query scenarios: b + y ions + neutral mass
loss: Match using all b- and y-ion series including neutral mass losses; b + y ions - neutral mass loss: Match using all b- and y-ion series excluding
neutral mass losses; b ions + neutral mass loss: Match only using the b-ion series including neutral mass losses; y ions + neutral mass loss: Match only
using the y-ion series including neutral mass losses; 50% ions + neutral mass loss: Match only using random 50% of all ions including neutral mass
losses; 25% ions + neutral mass loss: Match only using random 25% of all ions including neutral mass losses.
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of E- or p-value level. Among the 7764 peptides correctly
matched by all three programs, 7022 were detected by all three
programs followed by OMSSA and X!Tandem (385 peptides),
OMSSA alone (302 peptides), OMSSA and Crux (7 peptides)
at E- or p-value < 1 × 10−6 meanwhile 48 peptides were
detected at E- or p-value > 1 × 10−6 by all three programs.
Thus, among the peptides detected by all programs regardless
of statistical significance, OMSSA detected these peptides with
higher statistical significance, followed by X!Tandem and last
Crux (Table 2).
Crux was the only program that detected all peptides

regardless of significance level (Table 2). Across charges,
approximately one peptide was detected by Crux and X!
Tandem reaching E- or p-value < 1 × 10−6. Approximately 85
peptides were detected by OMSSA and Crux only but, of these,
only approximately two peptides reached E- or p-value < 1 ×
10−6 and this was in Crux.
From 23550 simulated spectra (7850 peptides × 3 peptide

charge states), OMSSA, X!Tandem and Crux had 23548
(99.9%), 22932 (97.4%) and 23139 (98.3%) correct identi-
fications (true positives) at E- or p-value < 1 × 10−2. At E- or p-
value < 1 × 10−6, OMSSA, X!Tandem and Crux had 23281
(98.9%), 22117 (93.9%) and 20890 (88.7%) true positive

results, respectively. The similar performance of the programs
at the less significant threshold reiterates the findings
summarized in Table 2 that the Crux algorithm provides
lower significance results. Our results are consistent with
previous reports of a higher number of spectra matched by
OMSSA than by X!Tandem.17,33 Figure 1 includes a Venn
diagram depicting the peptides correctly identified by the three
database search programs for charge state 3 using information
from all ions. Insights into the features that are differentially
accommodated by the assumptions and models used by each
database search algorithm were drawn from the investigation of
the peptides that were not identified by all three programs.

Impact of Peptide Length on Peptide Identification

The length of the peptide had an impact on the statistical
significance of the match in all the programs. The majority of
the 109 (1%) charge +1 peptides that were identified (using b
and y ions and including neutral mass loss) by all three
programs and reached E-value < 1 × 10−6 in at least one
program were five amino acids long peptides. Figure 2 depicts
the relationship between the log10 transformed E- or p-values
on peptides across peptide length. Overall the correlation
between the length of the query sequence and log10

Figure 1. Venn diagram depicting the common and distinct true positive peptides identified from the three database search programs, X!Tandem,
OMSSA, and Crux with peptide charge state +3 using (A) all ion information; (B) only y-ion series information; (C) only b-ion series information.
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transformation of the E- or p-values for OMSSA, Crux and X!
Tandem was 0.1%, 86.8% and 46.7%, respectively although the
relationship was nonlinear.
There was a gradual increase in the number of peptide

matches that have p-value < 1 × 10−6 with increased peptide
length in Crux although only peptides 46 amino acids long and
higher surpassed this threshold. Examination of the relation
between query length and log-transformed E-values showed
rapid increases up to 11 and 15 amino acids long peptides in
OMSSA and X!Tandem, respectively, before the log-trans-
formed E-values stabilized. In contrast, the Crux log-trans-
formed p-values showed a gradual increase up to approximately
50 amino acids before the log-transformed p-values started to
stabilize. Consistent with our findings, small peptides between
600 and 700 Da tend to be missed.14 A similar effect of peptide
length on the distribution of the MaxQuant program p-scores
between target and decoy database was observed.34 In that
study, peptides with less than 15 amino acids had a higher
likelihood of being incorrectly matched than peptides with 15
or more amino acids.
The increase in E-values with decreasing peptide length is

due to the corresponding increase in the number of expected
matches by chance. The mean of the underlying Poisson
distribution used by OMSSA decreases with smaller peptides
resulting in larger E-values due to the increased probability of a
random match. In particular, the detection of short peptides by
OMSSA is negatively influenced by the tendency of small
peptides to exhibit neutral mass losses. For peptides less than
12 amino acids, the correlations of log-transformed E- or p-
values between OMSSA and X!Tandem, OMSSA and Crux,
and X!Tandem and Crux were 78%, 63% and 52%, respectively.

This result also indicates that the selected threshold was more
stringent in Crux and X!Tandem than for OMSSA.
No program correctly detected five amino acids long

peptides at E- or p-value < 1 × 10−6. OMSSA and X!Tandem
correctly detected all peptides longer than 7 and 11 amino
acids, respectively at E-value < 1 × 10−6, when all ions were
available excluding neutral mass loss. Crux was the only
program able to correctly match all peptides although only 12
peptides with less than ten amino acids had p-values < 1 × 10−6.
At p-value < 1 × 10−2, 33%, 64%, 75%, 87%, 98%, 99% and
100% of the 5, 6, 7, 8, 9, 10, and 11 amino acids long peptides
were detected with Crux. This result suggests that the
significance calculation in Crux is more stringent than in the
other two programs. The positive association between the
fraction of peptides detected and peptide size is partly due to
the number of Weibull samples because with 100 permutations
only 61 of the peptides with charge state +1 had p-value < 1 ×
10−5 threshold (results not shown). Consequently, adding
further Weibull samples especially for small peptides may
increase the significance levels by providing more accurate
density estimation.
X!Tandem was not able to correctly detect the 85 peptides

that were five amino acids long which accounted for 1% of all
peptides. Across the different scenarios evaluated (ion
availability, etc.), most of these peptides were not detected
(80%) and the rest were incorrectly identified (mismatched).
X!Tandem was able to correctly match at E-value < 1 × 10−6

peptides at least ten amino acids long, and 94% of the peptides
that were seven amino acids long and all peptides that were at
least eight amino acids long were detected at E-value < 1 ×
10−2 threshold, when all ions were available including neutral

Figure 2. Comparison of OMSSA, Crux, and X!Tandem log10 (E- or p-values) averaged across peptide length and precursor charge states for all
peptides and (inset) magnified for peptides up to 60 amino acids in length.
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mass loss. Similarly, the performance of OMSSA was also
influenced by peptide size because most peptides at least ten
amino acids long were detected at E-value < 1 × 10−6.
However, 100%, 27%, 6%, and 1% of the peptides five, six,
seven and eight amino acids long, respectively, did not reach
significance in OMSSA.
The statistical significance of the X!Tandem matches was

inferred using the lowest scores from the matches. Con-
sequently, the significance values assigned by X!Tandem is
negatively influenced when there are insufficient matches to
provide an accurate estimate of the X!Tandem score. At the
other computational extreme, Crux uses resampling to provide
a statistical significance value for each peptide identified.
Resampling consists of random permutations of the peptide
sequence that are subsequently matched to the database and
scored. The implementation of resampling in Crux is with
replacement, which potentially allows the same sequence to be
repeatedly sampled. This event is more likely with shorter
peptides and high resampling specifications. Unlike Crux and
X!Tandem, the OMSSA E-value is derived from the assumption
that the number of matches can be represented by Poisson
distribution and does not depend on the matches or generated
sequences although it relies on the database size. The OMSSA
formulation is also dependent on peptide size so that small
peptides tend to be on the lower bound of significance due to
the smaller proportion of ion matches than larger peptides. For
example, if the Poisson mean is equal to one, then the
probability of zero ion matches is 0.37%.

Understanding Neuropeptide Misidentification

The few detection failures in this study were investigated using
OMSSA because the E-value calculation offers more sensitivity.
Five neuropeptide sequences were not first ranked peptides in
OMSSA across all simulated conditions. Four of the peptides
are processed from the highly homologous Oxytocin-neuro-
physin 1 and Vasopressin-neurophysin 2-copeptin prohor-
mones. These peptides were further reduced to two sets of
peptides after consideration of ambiguous cleavage sites that
lead to two possible peptides within the homologue. The
simulated spectra of the b- and y-ions without neutral mass loss

were similar between these peptides with the maximum
difference being 19.9 m/z and occurring at the b6 ion. Another
mismatch occurred with a PENK (UniProt id P22005) peptide
due to the multiple occurrences of the Met-enkephalin in a
longer peptide. For simulated charge states +1 and +2 including
neutral mass loss, a mismatch occurred between the two Met-
enkephalin peptides located at the C- and N-terminal. Due to
the similarity in sequence and E-values, these peptides were
treated as “homeometric peptides”35,36 and were considered as
correct matches.
Unlike X!Tandem and Crux, OMSSA failed to detect the

peptide for all three charge states and a neutral mass loss for
one peptide, a chromogranin B peptide (positions 592 to 652)
predicted by the NeuroPred mouse model. Also, OMSSA had
one mismatch; a secretogranin II peptide (positions 475 to
547) from a NeuroPred nonmammalian model matched to
neurotensin (positions 87 to 156) with charge state +3 and
neutral mass loss at an E-value >60. This peptide was detected
by OMSSA in the other two charge states. Both peptides were
correctly detected when the simulation excluded neutral mass
losses. This suggests a weakness (or lower sensitivity) of the
OMSSA algorithm to accommodate neutral mass losses.
Examination of both peptides indicated that 54% of the
amino acids in each sequence were prone to lose water (28% of
the amino acids) and ammonia (25% of the amino acids). As a
result approximately 2/3 of the ions can include neutral mass
losses and OMSSA was not able to distinguish the series with
and without neutral losses.
Combining identifications that were significant in at least two

programs improves the average identification rate across all
three charge states from 89% to 94% when all ions were
available for scoring and including neutral mass loss. Using a
consensus approach, as has been advocated in the identification
of proteins,13 can improve peptide identification because the
probability of all programs incorrectly identifying a peptide is
equal to or less than probability of the least accurate program
being incorrect. While this consensus approach assists in the
correct identification of peptides, it is less suitable to the goals
of the present study because the individual programs helps us
to understand the particular distributional features of the

Table 3. Number of Peptides Unmatched, Mismatched and Correctly Matched at Various Significance Levels by X!Tandem,
OMSSA and Crux Including or Excluding Neutral Mass Losses When for All Ions from Both Series in the Query Are Available
and for Precursor Charge State +1

OMSSA X!Tandem Crux

significancea includingb excluding including excluding including excluding

Unmatchedc 1 0 69 115 0 0
Mismatchd 0 0 16 11 0 0
0 0 0 4 2 1 1
1 1 0 73 73 118 129
2 11 1 91 93 214 236
3 48 2 82 80 171 226
4 24 10 33 30 160 178
5 24 75 75 69 151 170
6 49 4 91 95 172 172
7 73 5 83 74 171 213
8 28 63 47 13 194 200
≥9 7591 7690 7186 7195 6498 6325
Prop > 6e 98.6% 98.9% 94.4% 94.0% 89.6% 88.0%

aSignificance threshold (t) for matched to be considered significant at E- or p-value < 1 × 10−t. bIncluding or excluding neutral mass losses.
cUnmatched: the program does not provide a match with the program setting. dMismatched: the program provided an incorrect match. ePercentage
of the matches that have E- or p-value < 1 × 10−6.
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prohormone peptide population of mass spectra relative to
protein database searches and recommends the best tools for
particular neuropeptides. For example, a closer inspection of
the few peptides (5%) that were not consistently identified
across programs revealed that these peptides were correctly
matched by at least Crux and OMSSA although exhibited low
scores, irrespectively of the programs, due to the small size of
these peptides (ranging between 5 and 11 amino acids long).
This result suggests that for these few neuropeptides all three
programs have comparable disadvantages but have comple-
mentary strengths and weaknesses to detect neuropeptides.

Impact of Neutral Mass Losses on Peptide Identification

The performance of the three programs in the identification of
peptides when all ions from both series are available including
and excluding neutral mass losses in the simulated spectra is
summarized in Table 3 for charge state +1 and in Supporting
Information Tables 1 and 2 for all charge states. The inclusion
of neutral mass losses in the simulated query spectra had minor
influence on the overall detection of peptides across the
programs. The average percentage of peptides that were
detected at E- or p-value < 1 × 10−6 including neutral mass loss
over all charge states was 98.3%, 94.4% and 89.5% in OMSSA,
X!Tandem, and Crux, respectively. The average percentage of
peptides that were detected at E- or p-value < 1 × 10−6

excluding neutral mass loss over all charge states was 98.9%,
93.9% and 88.6% in OMSSA, X!Tandem, and Crux,
respectively. The opposite trend observed in OMSSA relative
to the other two programs may be due to the extremely high
percentage of peptides already identified including or excluding
neutral mass loss. The percentage of peptides detected at low
or nonsignificant values was five- and 10-fold higher in X!
Tandem and Crux relative to OMSSA, respectively. For these
peptides, inclusion of neutral mass loss improved the detection
of peptides at low or nonsignificant levels in OMSSA and X!
Tandem by 1% and have the opposite effect in Crux. Peptide
detection by Crux or OMSSA was not largely affected by
neutral mass loss. The inclusion of neutral mass loss noticeably
influenced the significance levels of X!Tandem matches that
were already highly significant (E-value < 1 × 10−10).

The impact of neutral mass loss on peptide detection
depended on the charge state. At the stringent threshold E-
value < 1 × 10−10, peptides that have precursor charge state +1
had more significant matches (93%) than precursor charge state
+3 (81%) in OMSSA. This difference decreased with less
stringent thresholds and at the E-value < 1 × 10−6 threshold the
difference in detection was only 1% between charge states +1
and +3. This may be partially explained by the assumption that
+2 product ions are present in precursor charge state +3 and
higher spectra but not present in charge state +1 spectra.32 This
assumption results in a higher number of possible ions and a
consequently a lower significant E-value even if the spectra
lacks these highly charged product ions.

Impact of Missing Ions on Peptide Identification

A summary of the performance of the three programs in the
identification of peptides when only b-ion series, y-ion series,
random 50% of all ions, and random 25% of all ions are
available including neutral mass losses, respectively for charge
state +1 is presented in Table 4. Likewise, Supporting
Information Tables 3, 4, 5, and 6 report the performance of
the three programs for all three charge states. The percentage
of correct identifications across all programs was 87%, 88%,
85% and 68% when b-ion series, y-ion series, random 50% and
random 25% of the ions were available, respectively. The
proportion of unidentified peptides in all programs was 8%, 6%,
7% and 14%, when b-ion series, y-ion series, random 50% and
random 25% of the ions were available, respectively.
The lower percentage of peptides identified in scenarios that

had 50% and 25% of the ions available was mainly due to a
poorer performance of X!Tandem regardless of the charge
state. The minimum length for a peptide to be detected at
significance E-value < 1 × 10−6 were 13, 15, 14, and 81 amino
acids for the y-ion series, b-ion series, 50% ions and 25% ions
available, respectively, compared to ten amino acids when all
ions were available. These trends are likely to be related to the
number of ions that can potentially be available rather than the
percentage of ions available.
Missing ions also impacted the detection of peptides by

OMSSA. On average, 65 peptides across all three charge states

Table 4. Number of Peptides Unmatched, Mismatched and Correctly Matched at Various Significance Levels by X!Tandem,
OMSSA and Crux when Either the b-, y-Ion Series, 50%, or 25% of the Ions in the Query Available for Precursor Charge State
+1 and Including Neutral Mass Losses

OMSSA X!Tandem Crux

significancea bb y 50 25 b y 50 25 b y 50 25

Unmtchc 0 0 1 73 79 72 73 295 0 0 0 0
Mismtchd 0 0 0 4 6 15 13 10 0 0 0 0
0 160 48 71 492 237 138 316 1133 0 2 9 60
1 84 62 72 182 109 113 170 284 93 131 151 322
2 87 86 85 184 149 156 133 228 229 196 243 302
3 100 99 87 178 122 113 166 229 215 155 188 218
4 94 88 106 160 96 98 104 140 154 169 180 183
5 90 89 88 167 105 109 157 136 167 140 188 209
6 64 77 81 133 137 139 109 120 188 173 190 273
7 94 73 86 113 104 105 122 146 167 196 209 326
8 93 90 74 106 89 103 127 131 168 226 244 365
≥9 6984 7138 7099 6058 6617 6689 6360 4998 6469 6462 6248 5592
Prop >6e 92.2 94.0 93.5 81.7 88.5 89.6 85.6 68.7 89.1 89.9 87.8 83.5

aSignificance threshold (t) for matched to be considered significant at E- or p-value < 1 × 10−t. bb-, y-ion series, 50%, or 25% of the ions in the query
are available. cUnmatched: the program does not provide a match with the program setting. dMismatched: the program provided an incorrect match.
ePercentage of the matches that have E- or p-value < 1 × 10−6.
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were undetected when only 25% of all ions were available.
These peptides were between five and eight amino acids long
and only peptides with more than 25 amino acids had E-value <
1 × 10−6.
The impact of missing ions on peptide identification

depended on charge state. There was a tendency for the
number of undetected peptides by OMSSA to increase with
increasing charge state when only 50% of ions were available.
This result is consistent with the observed trend in the presence
of neutral loss simulation and suggests that the presence of
neutral loss, rather than the absence of 50% of ions, was the
factor driving the lower detection rate. However, when only
25% of the ions were available, charge state +1 peptides were
four times more likely to be undetected relative to higher
charge states. These results indicate that the absolute number
of ions present is potentially more critical to the OMSSA
algorithm than the relative percentage of ions available. Overall,
these findings highlight a diminishing return on accurate
identification for additional ions used by OMSSA, with the
detection E-value threshold dependent on the precursor charge
state. Longer peptides are expected to generate more ions,
suggesting that the OMSSA scoring system based on the actual
number of mass spectra peak matches needs to account for the
overall peptide length. This adjustment is important for
neuropeptides because the goal is identifying each form of
these oftentimes short peptides.
Missing ions on the query had minor influence on the

identification and significance level of the peptides in Crux,
unlike in OMSSA and X!Tandem (Table 4). Venn diagrams
depicting the peptides correctly identified at E- or p-value < 1 ×
10−6 by all three database search programs, X!Tandem,
OMSSA, and Crux using information from all ions or only y-
or b-ion series for peptide charge state +3 is depicted in the top,
bottom left and bottom right corners of Figure 2, respectively.
Figure 2 highlights that overlap among all three programs
(particularly between OMSSA and X!Tandem), and the ability
of OMSSA to identify peptides scored at E-value < 1 × 10−6.
The lesser overlap between programs when either one of the
ion series is considered, stresses the relative advantage of Crux
when only b-ion series were available, and of OMSSA and X!
Tandem when only y-ion series were available for peptide
identification. Figure 3 presents the Venn diagrams depicting
the peptides identified at E- or p-value < 1 × 10−6 by all three

database search programs using only 50% (left Venn diagram)
or 25% (right Venn diagram) of all ion information for peptides
with charge state +3. The previous Venn diagrams center on
peptides detected at high significance levels and ignore the
strength of Crux to detect small peptides that have low p-
values.
The Venn diagrams highlight the increasing detrimental

impact of missing ions on the performance of X!Tandem. The
simulation of the random proportion of ions represents one
type of incomplete fragmentation that is an important
component of the differences between programs in peptide
identification.13 Peptides can be identified by the programs
when incomplete fragmentation provided sufficient ions are
present especially for large peptides. The challenge for these
programs centers in assigning an appropriate significance
threshold since most of the peptides were correctly matched
regardless of program used. The low impact of relative ion
availability on Crux is possibly due to the lack of resampled
peptides that share similar ion patterns. The OMSSA E-values
even increased with fewer ions available because the E-value
computation assumes that all possible ions are present. At E-
value < 1 × 10−6 threshold, 17.3% and 6.9% of all correct
peptide identifications did not reach significance threshold in
random 25% and 50% proportion of ions, respectively, relative
to 1.7% when all ions were available including neutral mass loss.
X!Tandem is clearly negatively influenced by decreased lower
number of ions available. A possible explanation is that with
fewer ions present, the score of the correct match is
insufficiently different from the score of incorrect matches
with all ions, both leading to a low score and potentially
mismatches.

Impact of Algorithm on the Speed of Search

The search time of the three database search programs was a
function of the number of neuropeptides in the search database.
This computational comparison is empirical and that the
database search can be easily computed in parallel because the
experimental spectra can be independently analyzed. The
computational time to evaluate all 7850 peptides was measured
for all programs separately. X!Tandem returned results the
fastest (averaged 23 CPU seconds), followed by Crux with no
p-value calculation (3.8× more time than X!Tandem; averaged
89 CPU seconds) followed by OMSSA (5.3× more than X!
Tandem; averaged 123 CPU seconds). The Crux p-value

Figure 3. Venn diagram depicting the common and distinct peptides identified by all three database search programs with peptide charge state +3
using only (A) 50% or (B) 25% of all ion information.
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calculation adds considerable time due to the permutation-
based approach to assess the statistical significance of the
database match. This approach requires the generation and
scoring of dummy sequences to obtain the Weibull density for
each match. The computation of p-values for 100 and 1000
dummy sequences required over 1 and 13 h of CPU time,
respectively. The increase in time is linear on the number of
sequences evaluated such that each sequence took approx-
imately 47 CPU seconds. This resampling test approach is not
limited to Crux and a comparable increase in time would occur
when this approach is used with X!Tandem and OMSSA.
Impact of Ion Series-Dependent Scoring on Peptide
Identification

An alternative approach to improve the speed of peptide
matches offered by some programs is to search only one ion
series. Table 5 summarizes the performance of OMSSA and X!

Tandem in terms of number of peptides unmatched,
mismatched or correctly matched at various significance levels
by ion series scored for charge state +1. Supporting Information
Tables 7 and 8 summarize the performance of the database
search programs across match significance levels when the b-
and y-ion series were scored, respectively for charge states +1,
+2 and +3. Supporting Information Table 9 reports the number
of peptides identified at E-value < 1 × 10−6 by both or either
program.
Scoring only one of the ion series was noticeably detrimental

to peptide detection for both OMSSA and X!Tandem. The y-
ion series provided a higher detection rate than the b-ion series
at E-value < 1 × 10−6. The number of mismatched and
unmatched peptides when one series was scored increase
substantially in OMSSA compared to X!Tandem. OMSSA had
more false positive and false negative results when scoring only
one ion series. The number of correctly matched peptides at E-
value > 1 × 10−8 was higher in X!Tandem than in OMSSA and
at E-value < 1 × 10−8 was higher in OMSSA than in X!Tandem

when either ion series was used for scoring. Overall, the
number of correctly matched peptides regardless of E-value was
higher in OMSSA than in X!Tandem when either ion series was
used for scoring. The major reason for weaker performance of
X!Tandem when scoring one ion series was that the peptides
had less significant E-values than when scoring both ion series.
Scoring using only y-ion series resulted in fewer unmatched
peptides (difference of 34), mismatched peptides (difference of
12) and peptides with less significant E-values (98% of peptides
with the E-value < 1 × 10−2) in OMSSA. In both programs,
higher charge states were associated with slightly poorer
peptide detection with scoring based on the y-ion series being
less affected than on the b-ion series.
The length of the peptide was also critical when one ion

series was used to score the matches between the query and
target database mass spectra. The minimum length among the
detected peptides was 10 and 13 amino acids in OMSSA and X!
Tandem, respectively, compared to six amino acids when both
ion series were scored. The median length of the correctly
identified peptides with both programs using the b- and y-ion
series was 83 and 76 amino acids, respectively. Also, the median
length of the missed (false negative) peptides in both programs
was seven and six amino acids when the b- and y-ion series were
used, respectively. This result reflects the issues of correctly
identifying small peptides at E-value < 1 × 10−6.

Impact of Chimera Spectra on Peptide Identification

Chimera spectra is a likely phenomenon in peptidomics
measurements; this occurs when multiple peptides coelute in
the same LC fraction and each peptide present contributes to
the observed peaks in the tandem MS spectra, usually when the
peptides are similar to each other. As neuropeptides span many
orders of magnitude in concentration dynamic range, chimera
spectra can be caused by peptides at vastly different levels. To
evaluate the performance of the programs when spectra from
multiple coeluted peptides are present, peptides that have
similar mass and are likely to coelute were identified. Of the
7649 peptides identified by all programs at E- or p-value < 1 ×
10−2, 2049 peptides had at least one other peptide with
theoretical mass ±0.4 Da. These peptides were split into 945
groups each including at least two peptides within a theoretical
mass range or tolerance within group. Of these, 804, 126, 12,
and 3 groups included 2, 3, 4, and 5 peptides, respectively.
Table 6 summarizes the number of peptides identified from

chimera spectra with precursor charge state +1, all ions are
available and including neutral mass losses by X!Tandem,
OMSSA and Crux. Crux had the best performance and X!
Tandem generally failed to identify peptides from chimera
spectra regardless of the threshold used. At E- or p-value < 1 ×
10−2 threshold, OMSSA, X!Tandem and Crux, correctly
identified 81%, 43% and 99% of peptides, respectively. Of
these, Crux only had three unmatched peptides at p-value
<10−2 meanwhile X!Tandem only reported one peptide in the
chimera spectra unless the other matches had the same score.
OMSSA had a correct match rate similar to Crux at E-value < 1
× 10−6 and lower at E-value < 1 × 10−2 threshold. A further
decrease in the accuracy of peptide identification in chimeras
was observed in small peptides for X!Tandem and Crux. At E-
or p-value < 1 × 10−2 threshold, the correct identifications by
X!Tandem and Crux were 39.1% and 98.5% in peptides less
than 20 amino acids in length, and 37.6% and 91.8% in peptides
less than 10 amino acids in length, respectively. Consistent with
our results, Houel et al.25 reported that Mascot correctly

Table 5. Number of Peptides Unmatched, Mismatched and
Correctly Matched at Various Significance Levels by X!
Tandem, OMSSA and Crux When Either the b- or the y-Ion
Series Is Used to Score the Match for Precursor Charge State
+1 and Including Neutral Mass Losses

OMSSA X!Tandem

significancea bb y b y

Unmatchedc 415 365 75 74
Mismatchedd 11 11 10 11
0 122 47 248 151
1 63 50 113 108
2 76 69 187 179
3 76 66 270 214
4 103 87 746 591
5 62 81 1902 1785
6 102 90 1536 1948
7 108 80 842 861
8 116 126 690 648
≥9 6596 6778 1231 1280
Prop >6e 88.2% 90.1% 54.8% 60.3%

aSignificance threshold (t) for matched to be considered significant at
E- or p-value < 1 × 10−t. bb- or y-ions used to score the peptide match.
cUnmatched: the program does not provide a match with the program
setting. dMismatched: the program provided an incorrect match.
ePercentage of the matches that have E- or p-value < 1 × 10−6.
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identified peptide A in 87% of chimera spectra containing 50%
of peptide A and 50% of peptide B.

■ CONCLUSIONS
The present study demonstrated that although most neuro-
peptides and prohormone peptides with ideal MS/MS spectra
can be identified using standard database search methods, a
careful assessment of the accuracy of the match is still required.
Furthermore, the search must be optimized for the specific
biological context, here prohormone cleaved neuropeptides.
The results from the present study indicate that the correct

identification of peptides based on a single threshold across all
spectra is challenging even when provided with ideal spectra
and target database. A major component of this challenge was
the scoring and assignment of a single significance threshold for
all peptides. This problem is exacerbated when analyzing
experimental data because the quality of the data and the
specifications of the program have a large impact on the
accuracy of peptide identification. Crux was the only program
able to correctly match all the peptides regardless of p-value.
The E- and p-values rapidly become more significant with
increasing peptide length before stabilizing at approximately 50
amino acids in Crux and 13 amino acids in OMSSA and X!
Tandem. Of the three programs, Crux is better suited to detect
short peptides although the p-value calculation in Crux is more
stringent. The typically short prohormone peptides have less
significant E- or p-values because of the higher number of
expected matches by chance. Overall, results indicated the need
to optimize the scoring and associated E- or p-value calculation
in database searches for neuropeptides and small peptides. A
straightforward approach that does not require program
modifications is to accept less significant matches for short
peptides meanwhile keeping more significant thresholds for
longer peptides. The peptide length that was associated with
stabilization of E- and p-values (50 amino acids in Crux and 13
for OMSSA and X!Tandem) offer a good start.
Most small peptides were detected by one or two programs

(Crux or OMSSA) and thus the program consensus approach
advocated for protein identification is not well suited to identify
small peptides. Crux had the best performance in the

identification of peptides from chimera spectra and when ions
were missing, OMSSA provided the most significant E-values;
meanwhile, X!Tandem returned results fastest for peptides
detected by all programs.
A comprehensive evaluation of the impact of multiple factors

on peptide identification was undertaken. Additional simu-
lations can help to assess the importance of other aspects of
MS/MS on peptide identification.37 The evaluations performed
in this study assumed that the peptides had ideal uniform
spectra to avoid additional confounding factors. Different
peptide ion fragmentation methods (e.g., CID, HCD, ETD)
have different abilities to fragment that affect the performance
of the database search tools.38 Additional studies can consider
the impact of the fragmentation method and PTMs on the
ability to identify neuropeptides. Also, the identification of
peptides using spectrum-to-spectrum search tools has been
proposed in recent years.39 A study of the performance of
spectrum-to-spectrum searches when applied to small prohor-
mone peptide identification needs to be undertaken.

■ ASSOCIATED CONTENT
*S Supporting Information

Individual performance of X!Tandem, OMSSA and Crux in
each simulated scenario are provided in Tables S1−S9. This
material is available free of charge via the Internet at http://
pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author

*Tel: (217) 333-8810. Fax: (217) 333-7861. E-mail: rodrgzzs@
illinois.edu.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The support of NIH/NIDA (Grant Numbers: R21DA027548
and P30DA018310) and COMSATS Institute of Information
Technology are greatly appreciated.

Table 6. Number of Peptides Identified from Chimera Spectra of Groups of 2−5 Peptides with Precursor Charge State +1, All
Ions Are Available, and Including Neutral Mass Losses by X!Tandem, OMSSA and Crux

number of peptides correctly matched in a spectra with an E- or p-value < 1 × 10−2 percentage of peptides detected

program N pepa 0 1 2 3 4 5 >2b >6c

OMSSA 2 11 213 580 85.4 84.1
3 3 25 64 34 67.5 61.9
4 1 3 5 2 1 47.9 33.3
5 0 0 1 0 1 1 73.3 66.7
Total 15 241 650 36 2 1 81.1 78.7

X!Tandem 2 0 799 5 50.3 12.8
3 59 67 0 0 17.7 0.5
4 11 1 0 0 0 2.1 0.0
5 3 0 0 0 0 0 0.0 0.0
Total 73 867 5 0 0 0 42.8 10.2

Crux 2 0 10 794 99.4 81.3
3 0 0 3 123 99.2 61.6
4 0 0 0 0 12 100.0 20.8
5 0 0 0 0 0 3 100.0 13.3
Total 0 10 797 123 12 3 99.4 75.8

aNumber of peptides simulated in a chimera spectra. bPercentage of correctly matched peptides with an E- or p-value < 1 × 10−2. cPercentage of
correctly matched peptides with an E- or p-value < 1 × 10−6.
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