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Abstract

Membrane vesicles (MVs) are spherical particles naturally released from the membrane of

Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes

including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host

immune responses and virulence. This study reports comparative profiling of MVs from

bacterial strains isolated from three widely disperse geographical areas. Mass spectrome-

try identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia

salmonis isolated from salmonids in Chile (LF-89), Norway (NVI 5692) and Canada (NVI

5892), respectively. MV comparison revealed several strain-specific differences related to

higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities

between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and

appearance as analyzed by electron microscopy and dynamic light scattering. The MVs

from all three strains were internalized by both commercial and primary immune cell cul-

tures, which suggest a potential role of the MVs in the bacterium’s utilization of leukocytes.

When MVs were injected into an adult zebrafish infection model, an upregulation of several

pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect

on the immune system. The present study is the first comparative analysis of P. salmonis

derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate

that the MV proteome from one bacterial strain is not representative of all bacterial strains

within one species.

Introduction

Membrane vesicles (MVs) are 50 to 250 nm spherical structures, enclosed by a single or double
membrane, secreted from the surface of many Gram-negative bacteria during all stages of
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growth [1–3]. Proteomic and biochemical characterization has revealed that the vesicles con-
tain a variety of bacterial components, including periplasmic and outer membrane proteins as
well as lipopolysaccharides (LPS), DNA, RNA and cytoplasmic proteins [4–7]. Together they
represent several aspects of the bacteria, but in a non-replicative form. MVs have also been
reported to contain several important immunogenic factors, such as toxins [8], chaperons [9],
and active enzymes [5]. The mechanisms of the MV formation and their biological role have
yet to be clearly defined.However, bacterialMV secretion has been associated with several phe-
notypes including biofilm formation [10], bacterial survival [11], toxin delivery [12], cell-to-
cell communication [13], and host-pathogen interactions [14]. MVs from infectious agents
have also been found in both tissue and fluid samples from patients [15–17], indicating that
the vesicle secretion plays an important role in the bacterial pathogenesis. The MV secretion is
shown to be upregulated during stress and environmental changes [11]. These include treat-
ment with membrane active antibiotics, nutrient depletion, temperature alteration and chemi-
cal exposure [18–21], alterations which the bacteriummay encounter both in its natural
environment and within a host. Alterations in MV production upon environmental changes
can be exemplified by the human opportunistic pathogen Pseudomonas aeruginosa, which
increases its secretion of MVs during treatment with gentamycin [18]. Similar observations
have been done for Shigella dysenteriae serotype 1, which displayed a significantly higher con-
centration of the shiga toxin inside the MVs when treated with mitomycin C [19]. Pathogenic
bacteria, in general, have the tendency to produce more MVs compared to their non-patho-
genic counterparts, and for marine bacteria the vesicle production is reported to be important
for survival [22–24]. Marine isolates of Alteromonas have been shown not only to persist, but
also to grow in seawater media when supplemented with purifiedMVs from Prochlorococcus.
In contrast, the control group displayed a reduced viability when grown in non-supplemented
seawater media [24–25]. Furthermore, comparative MV protein profiling of two clinical iso-
lates of Acinetobacter baumannii has revealed potential strain-specific links between vesicle
content and virulence factors [26]. Taken together, it illustrates that the release of MVs may
play an important role for bacterial survival and pathogenesis within a host.
In a host, isolatedMVs have been shown to induce an immune response by activating the

production of various cytokines, and have therefore been investigated and used as vaccines [4,
27]. However, modulating the immune response could also be beneficial for bacterial patho-
gens [28]. For a pathogen to successfully establish an infection, it needs to overcome the host’s
initial immune defense [29]. The human pathogenMoraxella catarrhalis has been shown to
utilizeMV secretion in order to modify the B-cell response, to avoid direct contact with the
host’s immune cells [30]. Furthermore,MVs form bothHelicobacter pylori, Pseudomonas aeru-
ginosa and Neisseria gonorrhea has been shown to upregulate the expression of nuclear factor
NF-κB and the intracellular pattern recognition receptor NOD1 in vitro, promoting inflamma-
tion and pathology in infected hosts [31]. NF-κB is shown to be important for regulating the
expression of several inflammatory and immune genes [32], while NOD1 has been described
as a key pathogen recognitionmolecule (PRM) for the innate immune response [33]. Thus, the
release of MVs interacting with the immune response could be beneficial for the pathogen in
order to fight of the host’s defense system. Nonetheless, MV-based vaccines have successfully
been used for epidemic control in Cuba, Norway, Brazil, and New Zealand against serogroup B
meningococcal disease [34–37]. MVs used in vaccination of fish have also been reported to
give good protection against Edwardsiella tarda in olive flounder (Paralichthys olivaceus) [38],
Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) [39], and Francisella
noatunensis in zebrafish (Danio rerio) [40].
The Gram-negative intracellular bacterium Piscirickettsia salmonis is the etiologic agent of

salmonid rickettsial septicaemia (SRS), a chronic and often fatal disease in salmonid and a
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variety of marine fish species [41–42]. P. salmonis was and characterized from Coho salmon
(Oncorhyncus kisutch) in 1989 after a devastating epizootic in the Chilean aquaculture industry
[41]. The bacteria has since then been recognized as an emerging problem as outbreaks of SRS
has been reported across the world [43–45]. Strains of P. salmonis has been identified in salmon
net-pens in Norway, Canada, Ireland and Scotland, but with a reduced virulence compared
to the Chilean strains [46]. P. salmonis has been shown to infect, replicate and survive within
macrophages as a part of its infection strategy. The infection process includes the formation
of vacuoles within the host cells, enabling the bacterium to avoid the fish’s primary immune
defense [44, 47–49]. The mechanisms behind P. salmonis ability to utilizemacrophages are still
poorly understood, but a Dot/Icm Type IV Secretion System homolog, has been identified
within the genome of P. salmonis, and might be involved in the inhibition of phagosome-lyso-
some fusion during infection [50]. Furthermore, the heat shock protein ClpB and virulence fac-
tor BipA, proteins known to modulate the host cells defense mechanisms, has been reported to
be expressed by the bacterium [51]. Nonetheless, the specific function of the Dot/Icm system,
ClpB and BipA during SRS are still unknown. Thus, the mechanisms behind P. salmonis patho-
genesis are poorly understood and further research is needed to characterize the bacterium.
MVs are of interest as they are considered to be important virulence factor and the secretion

of MVs from P. salmonis was recently described for LF-89 [52]. As a geographic difference in
virulence of SRS outbreaks have been reported [46], the present study focused on evaluating
potential strain-specific differences in MV properties using three geographically disperse iso-
lates of the bacterium including P. salmonis isolated fromNorway (NVI 5692), Canada (NVI
5892) and Chile (LF-89). The identification and comparison of the proteins packed into MVs
were analyzed to give new insight to the adaptation and virulence of P. salmonis. We show
that intact MVs can be isolated from the three P. salmonis strains. Comparative MV profiling
revealed several strain-specific factors, and in depth-analysis revealed that the vesicles contain
a variety of proteins and that MVs may have a biological function both in vivo and in vitro.

Material and Methods

Bacterial Strains and growth conditions

Three isolates of P. salmonis were used for the characterization of MVs: LF-89 (type-strain
ATCC VR 1361) isolated from Coho salmon (Oncorhyncus kisutch) in Chile [41], and NVI
5692 and NVI 5892 isolated from Atlantic salmon (Salmon salar) in Norway and Canada,
respectively [53] (Kindly donated by Duncan J. Colquhoun,NorwegianUniversity of Life Sci-
ence). All three isolates were routinely grown at 20°C on Eugon Chocolate Agar (ECA), con-
taining 30.4 g/L BD Bacto TM Eugon Broth (Becton,Dickinson and Company, Franklin lakes,
NJ, USA), 15 g/L Agar Bacteriological (Thermo Fisher Scientific,Hudson, NH, USA) and 5%
bovine blood (Håtunalab AB) [54] or in EBFC containing BD Bacto TM Eugon Broth supple-
mented with 2 mM FeCl3 (Sigma-AldrichCo., St. Louis, MO, USA) and 1% Casamino Acids
(BD) with agitation (100 rpm) for 7–10 days, depending on the isolate. The bacterial stocks
used were frozen in autoclaved 10% skimmedmilk (BD Difco) or in BD Bacto TM Eugon
Broth supplemented with 20% glycerol (Sigma-Aldrich) and stored at—80°C.

Purification and fluorescent labeling of MVs from Piscirickettsia

salmonis

10 mL of exponential-growth phase cultures of each P. salmonis isolate was used to inoculate
200 mL of EBFC. The cells were grown at 20°C with agitation, and growth curveswere mea-
sured by using optical density reading at 600 nm until the isolates reached late exponential-
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phase. MVs were isolated as described [40]. In short, the bacterial cells were removed by centri-
fugation (10 minutes, 15 000 g, 4°C), and the supernatant filtered sequentially through a 0.45-
and 0.22 μm/pore filter in order to remove the remaining bacterial cells. The filtrate was then
ultra-centrifuged sequentially at 125 000 g at 4°C for 2 hours and 125 000 g at 4°C for 30 min-
utes, to eliminate cell debris and aggregates. The MVs were resuspended in 100 μL 1x phos-
phate buffered saline (PBS) pH 7.2, and protein concentration determined by a Picodrop
spectrophotometer (Picodrop Limited, UK). MV aliquots (10 μL) were spread onto ECA plates
to check for sterility, and the remaining sample was stored at -80°C until use. A ZetasizerNano
ZS (Malvern instruments Ltd., UK) was used to conduct dynamic light scattering measure-
ments, to determine the MVs size [55]. A velocity gradient centrifugationwas preformed to
evaluate the purity of the MV isolation, and each layer of the gradient investigated by transmis-
sion electronmicroscopy for quality control [7]. The labeling of MVs with fluorescein isothio-
cyanate (FITC; Sigma-Aldrich,USA) was done according to the method described [56], with
someminor modifications.Vesicles were incubated for 1 hour at 25°C with 1 mg/mL isothiocy-
anate and pelleted at 25 900 rpm for 30 minutes. The FITC-labeledMVs were then washed
three timed with 50 mMHEPES, resuspended in PBS and monitored for sterility and protein
concentration as described above.

Isolation of outer- and inner membranes using water lysis

10 mL of exponential-growth phase cultures of each P. salmonis isolate was used to inoculate
200 mL of EBFC. The cells were grown at 20°C with agitation until the isolates reached late
exponential-phase. For the preparation of mixed membrane fractions the cell cultures were
split into four sterile 50 mL Falcon tube and a water lysis protocol was used [57]. The mixed
membranes were separated by a linear sucrose gradient of: 55%, 50%, 45%, 40%, 35% and 30%
(w/w) sucrose in Tris-EDTA buffer. The mixedmembrane samples were placed on top of each
gradient and the samples ultra-centrifugedat 38 000 rpm at 4°C for 17 hours. The sucrose lay-
ers were carefully removed and the membrane fractions harvested, the inner membranes were
at the 35–40% interface and the outer membranes at the 50–55% interface. The protein concen-
tration was determined by a Picodrop spectrophotometer, and membrane aliquots (10 μL)
were spread onto ECA plates to check for sterility. The remaining samples were stored at -80°C
until use.

SDS-PAGE

A standard SDS-PAGE procedure was used [58]. Briefly, 20 μg of membrane fractions and
MVs isolated from LF-89, NVI 5692 and NVI 5892 was loaded onto a 12% (w/v) SDS poly-
acrylamide gel. The proteins separated through SDS-PAGE were stained with Coomassie Blue,
and the image was acquired and evaluated using Gel doc™ XR+ with Image Lab™ software (Bio-
Rad,Munich, Germany). Protein molecular weight standards were obtained from Bio-Rad.

Electron Microscopy

For transmission electronmicroscopy carbon coated Formvar copper grids were placed on a
drop of MV suspension for 5 minutes. The grids were then washed three times with PBS and
the samples were fixed in 1% glutaraldehyde (Sigma-Aldrich) for 4 minutes. The samples were
washed three times with PBS, two times with Milli-Q (MQ) water, stained for 20 seconds with
4% uranyl acetate (Sigma-Aldrich) in MQ water, washed once with MQ water and finally left
on a solution of (9:1) methyl-cellulose (Sigma-Aldrich)with 4% uranyl acetate for 10 minutes
on ice. The grids were then dried and viewed in a Philips CM200 transmission electronmicro-
scope and the images were acquired using the iTEM software (Olympus, PA, USA). For
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scanning electronmicroscopy a drop of bacterial suspension was placed on pre-coated poly-L-
lysine (Sigma-Aldrich) coverslips (Thermo Scientific) and fixed overnight at 4°C with 2% glu-
taraldehyde in 0.1 M sodium cacodylate buffer pH 7.4. The coverslips were then washed twice
in 0.1M sodium cacodylate buffer pH 7.4 for 10 minutes, and the samples dehydrated in a
graded ethanol series for 10 minutes at 70%, 90%, 96% and 100% and for 15 minutes 4 times in
100% ethanol. Dehydrated samples were subsequently critical-point dried using carbon dioxide
in a CPD 030 critical-point dryer (Bal-Tec, CA, USA), then mounted on stub with carbon-cir-
cles colloidal silver and sputter coated with a Cressington coating system 308R. The samples
were viewed in a Hitachi S-4800 scanning electronmicroscopy, and images acquired using
Scandium software (Olympus)

Liquid chromatography-mass spectrometry

Three biological replicates of MVs harvested from P. salmonis LF-89, NVI 5692 and NVI 5892
were diluted to 40 μg of total protein in PBS and the samples were centrifuged at 16,000 g for
20 minutes at 4°C (Centrifuge 5415R, Eppendorf, Hamburg, Germany) and the supernatant
discarded. Proteins were re-dissolved in 50 μL 6 M urea and 100 mM ammonium bicarbonate,
pH 7.8. For reduction and alkylation of cysteines, 2.5 μL of 200 mMDTT in 100 mMTris-HCl,
pH 8 was added and the samples were incubated at 37°C for 1 hour followed by addition of
7.5 μL 200 mM iodoacetamide for 1 hour at room temperature in the dark. The alkylation reac-
tion was quenched by adding 10 μL 200 mMDTT at 37°C for 1 hour. Subsequently, the pro-
teins were digested with 10 μg trypsin (Promega, sequencing grade) overnight at 37°C. The
digestion was stopped by adding 5 μL 50% formic acid and the generated peptides were puri-
fied using a ZipTip C18 (Millipore, Billerica,MA, USA) according to the manufacturer’s
instructions, and dried using a Speed Vac concentrator (Concentrator Plus, Eppendorf, Ham-
burg, Germany). The tryptic peptides were analyzed using an Ultimate 3000 nano-UHPLC
system connected to a Q Exactive mass spectrometer (Thermo Fisher Scientific, Bremen, Ger-
many) equipped with a nano electrospray ion source (S1 File). The MVs fromNVI 5692 and
NVI 5892 were analyzed as routinely performed by the Australian Proteome Analysis Facility
(APAF) and MVs from LF-89 by the Proteomic unit at the University of Oslo.

Proteomic data analysis

Raw spectra files were converted into mgf format and processed using the global proteome
machine (GPM) software with version 2.2.1 of X!Tandem algorithm [59] and a nonredun-
dant output file was generated for protein identifications with log (e) values less than -1. Pep-
tide identification was determined using a 0.8 Da fragment ion tolerance. Protein sequences
extracted from the genome of LF-89 = ATCC VR-1361 [60] were used as the search database.
A database of reversed sequences was searched to determine the false discovery rate at pro-
tein level. The three protein identification output files from each biological replicate of pep-
tide samples were combined together to produce a single merged output file for each strains
MV fraction. To ensure data quality, identified proteins were filtered based on two criteria:
reproducible identification across three replicates and a total spectral count of>6, making
the minimum number of peptides used to identify each protein an average value of 2 per
replicate [61]. The subcellular location and functions for each of the identifiedMV proteins
was predicted using PSORTb 3.0.2 [62] and their gene otology (GO) molecular function
derived from The UniProt database [63]. The proteins were also subject to in silico analysis
using VirulentPred, which predicts bacterial virulence proteins based on their sequences
information [64].
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Flow analysis of MVs in fish cells

Zebrafish were anesthetized in tricainemethanesulfonate (MS-222, Sigma-Aldrich). Kidney
and spleen were isolated as described [65]. Ten whole kidneys or spleens were pooled in 1 mL
media; Leibovitz L-15 medium (Gibco) supplemented with 2% fetal bovine serum (FBS), peni-
cillin (10 μg/mL) and streptomycin (10 μg/mL). Single-cell suspensions were generated by gen-
tle teasing of the tissue on a 40 μm cell strainer with a plunger from a 1 mL syringe, collected in
a 50 mL tube and rinsed twice with 1 mLmedia. The cells were cultivated in a concentration of
1x106 cells/mL in 24 well plates. The SHK-1 Salmo salarmacrophage-like cell line (passage 58)
was maintained at 20°C in L-15 medium supplemented with 15% FBS in 25 cm2 flasks. For
the microscopy imaging to observe cytopathic effect at different time points, 3 x105 cells/mL
were cultivated in μ-slide IV (Ibidi) with 20 μg/mL of MVs. Cells were analyzed with a Nikon
invertedMicroscope ECLIPSE TE300. The ability of kidney, spleen or SHK-1 cells to endocy-
tose MVs in vitro was measured followingmethods describedpreviously [66]. Briefly, 1 mL of
cells (1x106 cells) per sample was incubated for 1 hour at 20°C with 10 μg, 20 μg or 40 μg of
FITC-MVs. After the incubation with MVs, the cells were washed three times with ice-cold
phosphate buffered saline (PBS) and analyzed by flow cytometry using a BeckmanCoulter
(GaLLios). At least 10.000 events were collected for each sample. Data were analyzed using
Kaluza software v.1.2 (BeckmanCoulter) and macrophage/lymphocytes gated using Side scat-
ter (SSC) (granularity) and Forward scatter (FSC) (size) parameters. Discrimination of aggre-
gates from singlets was preformed using side scatter-W (SSC-W) versus side scatter (SSC) and
Hoechst stains were used for the separation of dead and live cells. The fluorescence of the FITC
conjugated MVs was measured before and after the addition of trypan blue (0,025% final con-
centration), to quench extracellular fluorescence. Incorporation of MVs-FITCwas measured at
520 nm (FL1). The significant differences in percentage of MV uptake for each cell type was
calculated using a Two-way ANOVA, Tukey`s multiple comparison test.

Intraperitoneal injection of Piscirickettsia salmonis derived MVs in adult

zebrafish

The biological effect of MVs in vivowere assessed by using 10–11 months old male and female
ZebrafishDanio rerio wild type strain AB obtained from the model fish unit at the Norwegian
University of Life Science. The fish were acclimatized to room temperature (20 ± 2°C) two
weeks prior to the experimental setup. The fish were fed everymorning with brine shrimp
(Scanbur AS, Nittedal, Norway) and SDS 400 Scientific Fish Food (Scanbur AS) in the after-
noon. Experimental groups of 20 fish were anesthetized by immersion in water containing 100
mg/mL tricainemethanesulfonate (MS-222, Sigma Aldrich) buffered with bicarbonate to pH
7–7.5. The fishwere injected intraperitoneally (i.p.) with 20 μL of PBS, 1x108 colony forming
units (CFU) of LF-89, NVI 5692, NVI 5892 or a total of 40 μg MVs in PBS isolated from LF-89,
NVI 5692 and NVI 5892 respectively, by using a 27 g needle [40, 67]. After injection, the fish
were immediately returned to recovery tanks and kept in separate 6-liters polycarbonate tanks
(Pentair, USA), in which 50% of the water was manually changed daily. Fish that did not
resume normal behavior after the injections were removed from the experiment and eutha-
nized with an overdose of 250 mg/mL tricainemethanesulfonate. The water was provided by
the model fish unit at the NorwegianUniversity of Life Science and was supplemented with
0.55 g/L Instant Ocean sea salt, 0.053 g/L SodiumBicarbonate and 0.015 g/L CalciumChloride.
The tanks were housed in a water-system with a controlled temperature (20°C) and with a
cycle consisting of 14 hours of light and 10 hours of darkness. The fish were closely monitored,
and the animal’s health recorded twice a day. Moribund or fish that clearly showed deviant
behavior and clinical symptoms not consistent with good animal welfare (greatly reduced level
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of activity, response to environment and appetite), were euthanized as previously described.
Water parameters were monitored every third day using commercial test kits (TetraTest kit):
pH, NO2-, NO32-, NH3/NH4+ and water hardness. All zebrafish experiment was approved by
NARA (The Norwegian Animal Research Authority) and waste water decontaminated by chlo-
rination and tested for sterility before disposal.

RNA isolation and quantitative real-time PCR

For RNA isolation, three randomly chosen fish from each experimental group were sacrificed
by an overdose of tricainemethanesulfonate (250 mg/mL) after 14 days, and kidney and spleen
harvested. The organs were kept in RNAlater (Ambion) and stored at 4°C until further process-
ing. The tissue was homogenized in 600 μL with buffer RLT (supplemented in RNeasy Mini
Kit, QIAGEN) using a mortar and pestle (Sigma-Aldrich), followed by passing the lysate
through a blunt 20 gauge needle fitted to a small 1 mL syringe (BD). Total RNA was extracted
using the QIAGEN RNeasy kit according to the manufactures instructions, including a 15 min-
ute on-column DNase treatment using an RNase-free DNase set (QIAGEN). The RNA was
diluted in 30 μL RNase-free H2O (QIAGEN). RNA quantity and quality was measured with a
Picodrop spectrophotometer. Reverse transcription reaction was performed by using High
Capacity RNA to cDNA kit (Applied Biosystems). Quantitative real-time PCR (RT-qPCR) was
carried out for each of the sampling points for a defined set of genes. These includedmajor
histocompatibility complex II (MHC II), cluster of differentiation 40 (cd40), interferon gamma
(ifnγ), tumor necrosis factor alpha (tnfα), suppressors of cytokine signaling 3a and 3b (socs3a
and socs3b), macrophage expressed gene 1 (mpeg1), nucleotide binding and oligomerization
domain 1 and 2 (nod1 and nod2), and the six interleukins: il-1β, il-6, il-8, il-10 and il-12a.
QuantiTec bioinformatically validated primers were obtained fromQIAGEN (Hilden, Ger-
many) for most of the genes used; the remaining primers were obtained from Life Technologies
Inc. (Carlsbad, CA, USA). Primers are listed in S1 Table. RT-qPCR was performed in triplicates
using a Lightcycler1 480 (Roche, Basel, Switzerland) as previously described [54]. 18S ribo-
somal RNA (18S) and Elongation factor-1 alpha (ef-1α) were used as reference genes for the
normalization of the relative transcription levels of each gene, and the normalized immune
response data of MV injected fish was standardized against the transcription levels of PBS
injected fish for each time point. The significance of difference in relative gene expression levels
betweenMV or bacterial challenges fish and PBS injected fish was calculated by a Student t test
assuming unequal variance.

Results and Discussion

Isolation and phenotypic characterization of Piscirickettsia salmonis

MVs

The P. salmonis derivedMVs were observedon the surface of bacterial cells when exanimated
by scanning electronmicroscopy, demonstrating that vesicles may bud off from the bacterial
membrane during growth in liquid medium (Fig 1A). All three strains of P. salmonis, LF-89,
NVI 5692 and NVI 5892 produced small spherical MVs when grown to late exponential-phase
in EBFCmedium. In vitro growth has previously been obtained for P. salmonis up to an optical
density of OD620 = 1.8 in AUSTRAL-SRS medium [68] and OD600 = 2 in BM1 [69]. For NVI
5692 and NVI 5892 the late exponential to stationary growth-phase is reached at an optical
density of OD60 0 = 10–12 with a measured CFU ~5x109 in EBFC (Fig 1B). LF-89 expressed
a reduced growth pattern in comparison to the other strains, reaching its late exponential to
stationary growth-phase at an optical density of OD600 = 4–5 with CFUmeasured to ~2x109
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(Fig 1B). Thus, the EBFCmedium enhances the optimal growth of the three P. salmonis isolates
up to six fold from previously published media. The three strains do, however express a diver-
gent growth pattern in EBFC reaching different optical densities within the same period,which
could potentially affect the MV production, lipid content and protein composition. As NVI
5692 and NVI 5892 reach their exponential-phase betweenOD600 = 10–12, the two strains will
have a higher cell density prior to the isolation compared to LF-89, thus the bacterial cultures
were diluted to an equal cell number before harvesting the vesicles [70]. Alternatively, MVs
could be harvested fromNVI 5692 and NVI 5892 at an optical density of OD600 = 4–5, but the
cultures would then not have been in late exponential-phase in contrast to LF-89. MVs isolated
from P. aeruginosa grown in both cultures has been reported to display differences in both
lipid and protein composition when harvested from exponential and stationary phase. These
data indicate that the MV properties could be growth phase dependent [71]. Furthermore, as

Fig 1. Identification and isolation of membrane vesicles isolated from Piscirickettsia salmonis. (A)

Bacterial cultures of P. salmonis NVI 5692 grown in EBFC is viewed by scanning election microscopy.

Arrows indicate MVs secreted from the bacterial cells. (B) Growth curves of P. salmonis in EBFC medium,

square show time point for isolation of MV (n = 3).

doi:10.1371/journal.pone.0165099.g001
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the different stages of bacterial growth has been reported to affect protein expression in general
[72–73], harvestingMVs from cultures in an equal growth phase is preferable over a variation
in cell density.
Examination of the MVs isolated from EBFCmedium by transmission electronmicroscopy

and dynamic light scattering revealed a phenotypical similarity between the three strains of P.
salmonis, analogues in both size and distribution (Fig 2). MVs from all three strains were also
dominated by double membrane vesicles (S1 Fig), indicating that the MVs contain both an
plasma and outer membrane, similar to what has been described for other Gram-negative bac-
teria [3]. Vesicles isolated from LF-89 had a higher tendency to form clusters of MVs compared
to NVI 5692 and NVI 5892, however, some collections of vesicles were observed for all strains.
Both image analysis using the iTEM software and Dynamic light scattering was used to deter-
mine the size distribution for the MVs between the three stains of P. salmonis. All strains were
shown to have MVs ranging from 10–220 nm in size, with an average between 80–100 nm (Fig
2), similar to what has been reported for other bacterial species [5, 74–75]. The isolated vesicles
from all three strains of P. salmonis were also compared to their outer membrane fractions by
SDS-PAGE and coomassie blue staining (S2 Fig). Although not directly quantitative, coomassie
blue staining is useful to examine differences in protein composition between samples. For all
three strains of P. salmonis the vesicles resembled, but were not identical to the membrane frac-
tions. This indicates that the vesicles are purified fractions and not membranes from lysed bac-
terium; however, the presence of non-MV associatedmaterial cannot be completely excluded.

Identification of MV proteins from Piscirickettsia salmonis and their

predicted subcellular distribution

The total number of proteins identified from liquid chromatography-mass spectrometry (MS)
of P. salmonis derivedMVs identified 119 (FDR 0.18%) different proteins in vesicles isolated
from LF-89, 159 (FDR 0.16%) fromNVI 5692 and 142 (FDR 0.16%) fromNVI 5892 (S2–S4
Tables). However, as the genomes of NVI 5692 and NVI 5892 have not been sequenced, the
identified proteins by MS are based on the genome of LF-89 for all three strains, limiting the
protein identification. The PSORTb 3.0.2 identified the potential subcellular localization of
98%, 79% and 70% of the P. salmonisMV proteins identified for LF-89, NVI 5692 and NVI
5892, respectively. The majority of the identified proteins (~ 60%) in MVs isolated from P. sal-
monis were predicted to be cytoplasmic proteins (Fig 3A). The high number of cytoplasmic
proteins is most likely do to the presences of a double membrane in the majority of the MVs
(S1 Fig). As the formation of double membrane vesicles are characterized by a disruption of
both the plasma and outer membrane, high amounts of cytoplasmic proteins have been shown
to be packed into the MVs [3]. We cannot, however, fully exclude the presence of cytoplasmic
contaminants in the samples, which could contribute to a higher number of proteins been
identified as cytoplasmic. The presence of several cytoplasmic proteins have, nonetheless, been
identified in proteomic studies of several bacterial derivedMVs [5, 9, 76–77], and it has been
suggested that some of these proteins could be sorted into the vesicles during the MV forma-
tion [2, 78–79]. This may implicate that the MV production is specific and not a random event,
allowing for selective incorporation of proteins into the vesicles. Compared to the hypothetical
proteome of P. salmonis LF-89 (ATCC VR 1361) (S3 Fig), the cytoplasmic proteins were down-
regulated in the vesicles, while outer membrane proteins were enriched. An enrichment of
outer membrane proteins in bacterial derived vesicles has been described for several other
Gram-negative bacteria includingVibrio cholerae [80],Neisseria meningitides [81] andMyco-
bacterium tuberculosis [77]. An escalation of outer membrane proteins in the P. salmonis
derivedMVs, may therefore play an important role in the biological function of the vesicles, as
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membrane proteins often function as an interface between the pathogen and its host. An in-
depth analysis of the MV proteins revealed a strain-specific difference, were the highest simi-
larity were observedbetween the vesicles from NVI 5692 and NVI 5892 (Fig 3B). Strain-spe-
cific variations of MV content has been reported forHaemophilus influenza, revealing that
certain outer membrane proteins were enriched or excluded in MVs from different isolates
[82]. A variation between the three isolates is therefore not unique for P. salmonis, however,
why the LF-89 derivedMVs differentiates from the Norwegian and Canadian strain has yet to
be revealed.

Functional classification of proteins identified in Piscirickettsia salmonis

MVs

The identifiedMV proteins were further categorized based on their predicted functions, where
limited differences were identified between the MVs from the three stains of P. salmonis. Both
proteins involved in translation/transcription and catalytic activity were abundant in all the
samples (Fig 3C). Proteomic profiling during different stages of bacterial growth has shown

Fig 2. Size distribution and imaging analysis of Piscirickettsia salmonis membrane vesicles. Vesicle

size and range analyzed by dynamic light scattering (left panels) (n = 3) and electron transmission

microscopy imaging (right panels) of MVs isolated from LF-89, NVI 5692 and NVI 5892. Bar size, 200 nm.

doi:10.1371/journal.pone.0165099.g002
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Fig 3. Proteomic characterizations of Piscirickettsia salmonis membrane vesicles. The identified

proteins in the MVs were grouped into families according to their (A) predicted subcellular localization and

(C) putative function. (B) Venn diagram comparing MV proteins from three different strains of P. salmonis.

doi:10.1371/journal.pone.0165099.g003
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that proteins involved in DNA and RNA synthesis are upregulated during the log-phase [72–
73, 83]. A study of the Acinetobacter baumannii proteome has shown that several translation-
related proteins are upregulated during both exponential and early stationary phase. These
include 50S ribosomal protein L3, L5, L6, 30S ribosomal protein S2, S8 and elongation factor G
and Tu [84]. Therefore, proteins involved in transcription and translation may naturally be
packed into the vesicles, as these are upregulated by the bacteriumduring early growth stages.
A differentiation in protein levels has been observed for MVs harvested from Salmonella enter-
ica grown in different medium.MVs isolated from S. enterica grown in LB mediumwere
reported to have higher number of translation/transcription proteins compared to S. enterica
grown in acidic MgMmedia. The MgM cultures on the other hand, had a higher abundance of
proteins involved in transporter activity [85]. Thus, the bacterial growth conditions could have
an impact on the vesicles protein composition. However, growth phase dependent packing of
P. salmonisMVs was not performed in the present work and will be interesting to investigate
in future studies.
In addition to a high abundance of translation/transcription proteins in the P. salmonis

MVs, approximately one fourth of all the proteins were assigned a catalytic activity. The identi-
fication of catalytic proteins in MVs is reported in several species [4, 14, 86] and the packing of
active enzymes into MVs is proposed to have an important role in virulence. This can be exem-
plified by studies of Pseudomonas aeruginosa derivedMVs, which, has been shown to contain
active chromosomally encoded β-lactamase [87]. β-lactamases are enzymes that deactivate β-
lactam antibiotics like penicillin and cephamycins by interruption of the β-lactam ring and
thus its activity, providing bacterial resistance against antibiotic treatment [88]. Furthermore,
P. aeruginosa has been reported to upregulate its production of MVs in the presence of antibi-
otics [86]. Therefore, the presence of enzymatic proteins withinMVs may provide increased
survival and resistance during infections. Proteins displaying catalytic activity have also been
reported in non-virulent bacteria, including Bacteroides fragilis and Bacteroides thetaiotaomi-
cron, members of the human microbiota. Both B. fragilis and B. theaiotaomicron derivedMVs
were reported to display sugar-hydrolyzing activity [89]. The catalytic activities of the P. salmo-
nis derivedMVs were not determined in this study, but based on the bioinformatics analysis
the vesicles harbor a variety of enzymes.

Identification of strain-specific MV proteins and their relation to virulence

and adaptation

The full protein content of all three strains of P. salmonis derivedMVs is listed in the S2–S4
Tables, while the 20 most abundant proteins identified by mass spectrometry analysis are
shown in Table 1. As the proteomic analysis of the MVs was performed on a collection of vesi-
cles, rather than a single MV, the 20 most abundant proteins are most likely presents in multi-
ple MVs, due to the high number of total mass spectra assigned to the individual proteins. Of
the 20 most abundant proteins, six proteins are common for all the strains, while ten proteins
overlap betweenNVI 5692 and NVI 5892. These data illustrate a higher similarity between the
Norwegian and Canadian strains compared to the Chilean.When taking the total proteomic
profile of the strains-specific vesicles into account, similar findings were identified. 42 proteins
were identified only in the vesicles derived from LF-89, in contrast to 32 in NVI 5692 and 17 in
NVI 5892 (Fig 3B). To which degree these individual differences in protein content affects the
vesicles biological role is not known, but they might contribute to a differentiation in virulence
and adaptation for the three strains of P. salmonis. NVI 5692 and NVI 5892 are both isolated
from Atlantic salmon from the northern Atlantic Ocean in Norway and Canada respectively,
while LF-89 isolated from Coho salmon form the South Pacific Ocean in the south of Chile.
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Strains of P. salmonis found in the south of Chile, including LF-89, are reported to cause a high
mortality rate in salmonids, with an accumulatingmortality reaching almost 90% [90–91].
Outbreaks of P. salmonis in Norway and Canada have been, in contrast to Chile, less severe.
Out of 14 fish farms in Norway affected during 1988–1992, only 35% of the fish displayed mul-
tiple symptoms of SRS. The mortality rate has also been, as in Canada, subsequently lower,
ranging from 2–30% [92–93]. The reason for the higher severity of P. salmonis outbreaks in

Table 1. Top 20 proteins most commonly identified by label-free shotgun proteomics in Piscirickettsia salmonis membrane vesicles.

LF-89 NVI 5692 NVI 592

Identified protein Total number

of spectra

Identified protein Total number

of spectra

Identified protein Total number

of spectra

Outer membrane family

protein

81 Putative uncharacterized protein* 144 Putative uncharacterized protein* 171

DNA-directed RNA

polymerase subunit beta

79 Putative uncharacterized protein** 136 Peptidyl-prolyl cis-trans

isomerase**
140

Bacterial DNA-binding family

protein*
72 Prolyl oligopeptidase family

protein**
133 Outer membrane beta-barrel

domain protein**
104

Chaperone protein DnaK* 63 Type I secretion outer membrane

TolC family protein**
89 Outer membrane protein assembly

factor BamA**
89

60kDa chaperonin GroEL 58 SH3 domain of the SH3b1 type

family protein*
86 Prolyl oligopeptidase family

protein**
83

30s ribosomal protein S1* 44 Conjugal transfer/type IV secretion

DotA/TraY family protein**
81 Type I secretion outer membrane,

TolC family protein**
82

SH3 domain of the SH3b1

type family protein*
44 Outer membrane beta-barrel

domain protein**
81 Outer membrane family protein 79

ATP synthase subunit beta 40 Outer membrane protein assembly

factor BamA**
72 Chaperone protein DnaK* 74

Succinyl-CoA synthetase

subunit beta

37 30s ribosomal protein S1* 69 SH3 domain of the SH3b1 type

family protein*
72

Adenylosuccinate synthetase 35 Peptidyl-prolyl cis-trans

isomerase**
65 Conjugal transfer family protein** 71

50S ribosomal protein L2* 35 Bacterial DNA-binding family

protein*
65 OmpA family protein 68

Pyruvate dehydrogenase E1

component

35 50S ribosomal protein L2* 64 Outer membrane protein assembly

factor BamD**
64

Translation elongation factor

Tu

32 Outer membrane protein assembly

factor BamD**
63 Bacterial DNA-binding family

protein*
62

ATP synthase subunit alpha 31 Chaperone protein HtpG 60 Conjugal transfer/type IV secretion

DotA/TraY family protein**
61

30S ribosomal protein S10 31 Conjugal transfer family protein** 60 Glycerophosphoryl diester

phosphodiesterase family

protein**

57

Acetyl-CoA carboxylase,

biotin carboxylase subunit

30 NAD-specific glutamate

dehydrogenase

59 50S ribosomal protein L2* 57

GTP-binding protein TypA/

BipA

30 ATP synthase subunit alpha 57 30s ribosomal protein S1* 55

Adenylosuccinate lyase 30 Chaperone protein DnaK * 57 Putative uncharacterized protein 52

Putative uncharacterized

protein*
29 Glycerophosphoryl diester

phosphodiesterase family

protein**

56 ostA-like family protein 48

Glutamine synthetase 28 Succinyl-CoA synthetase subunit

beta

50 DSBA-like thioredoxin domain

protein

46

*Proteins identified in MVs from all three strains of P. salmonis

**Proteins identified in MVs from P. salmonis strains NVI 5692 and NVI 5892

doi:10.1371/journal.pone.0165099.t001
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Chile compared to other graphical areas is yet to be revealed. Different strains of P. salmonis
have been shown to be closely related independently of their geographical distribution, as 16S
and intergenic spacer ITS-1 sequencing of different isolates has shown that strains from both
Chile, Norway and Canada has a high phylogenetic similarity [94–96]. Other factors, including
environmental and geographical variations, might therefore contribute to a variation in viru-
lence among the different strains of P. salmonis.
Nonetheless, the three strains have several proteins in common, and many of these proteins

are highly represented in the vesicles of all three isolates. This indicates that MVs can have sim-
ilar functions although isolated from three geographically disperse strains of P. salmonis. To
evaluate the potential virulence of the P. salmonis derivedMVs, the vesicles were subjected to
in silico analysis using VirulentPred, to predict putative virulence factors [64]. Based on the
VirulentPred analysis, almost 50% of the MV proteins were predicted to be associated with
virulence in all three strains (results not shown). Some of these proteins were in addition
among the most commonly identified protein by the proteomic analysis, which includes TolC,
GroEL and DnaK (Table 1). TolC is involved in multidrug resistance and has previously been
described as an virulence factor in the human pathogen Francisella tularensis [97]. Deletion of
the TolC orthologue in F. tularensis did exhibit a significant reduction of virulence in mice,
suggesting that TolC is involved in the bacterial pathogenesis of F. tularensis [97]. TolC has
also been reported to be important for environmental adaptation, protein secretion and drug
resistance in several Gram-negative bacteria [98]. The identification of TolC in P. salmonis
derivedMVs may reflect their presence in the bacterialmembrane, although it is not known if
the proteins play an active role in the bacterial vesicles. While TolC is identified as the top six
most abundant proteins in NVI 5692 and NVI 5892, it does not reach the top 20 list in the LF-
89 strain (Table 1).
Certain proteins do not need to be active to have a biological role. This can be exemplified

for chaperone proteins, including GroEL and DnaK, which initially prevents protein aggrega-
tion by either refolding or degradingmisfolded proteins [99]. Both of these proteins has been
shown to be highly immunogenic independently of their function [100], and reported to
induce the expression and release of the pro-inflammatory cytokines IL-6 and tumor necrosis
factor alpha (TNFα) in human monocytes, both individually and in combination [101–102].
Treatment of HUVEC cells with Escherichia coli derived GroEL and DnaK has further been
shown to upregulate the release of intercellular adhesion molecule-1 (ICAM-1), and vascular
cell adhesion molecule-1 (VCAM-1), important for the recruiting of leucocytes, in addition to
IL-6 in a dose dependent manner [101]. Thus, the high abundance of GroEL and DnaK in P.
salmonis derivedMVs might contribute to an increased immunogenic effect of the vesicles.

Dose-dependent internalization of MVs by in vitro cell cultures

To investigate the biological role of the P. salmonis derivedMVs, the vesicles interactions with
both commercial and primary cell cultures were assessed by microscopic examination and flow
cytometry. As the appearance of a cytopathic effect (CPE) has previously been used to evaluate
the susceptibility of cell lines to P. salmonis [42, 103], the CPE after exposure to MVs was eval-
uated using a salmon head-kidney cell line (SHK-1) (Fig 4A). A 20 μg/mL concentration of P.
salmonis derived vesicles was added to SHK-1 cultures, and the CPE was observed after 48
hours by the formation of round vacuoles within the cell (Fig 4A). P. salmonis have previously
been reported to infect SHK-1 cells [104], and the CPE induced by vesicles isolated from
P. salmonismight therefore indicate a virulent effect of the MVs. Cellular damage caused by
bacterial vesicles has been reported in a variety of cell lines as exemplified by RAW264.7,
THP-1, and HL60 cells treated with MVs from Acinetobacter baumanii, Aggregatibacter
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actinomycetemcomitans and Actinobacillus actinomycetem- comitans, respectively [26, 76, 78].
The secretion of MVs has also been observed from the fish pathogen Francisella noatunensis
subsp noatunensis during infections in primary cod leukocytes and within zebrafish embryos
[40, 105].
The interaction betweenP. salmonis derivedMVs and cultured cells were further evaluated

using flow cytometric analysis in combination with FITC-labeled vesicles. A concentration of
10 μg/mL of FITC conjugated MVs from all three strains of P. salmonis were shown to be inter-
nalized by both kidney and spleen primary leukocytes isolated from adult zebrafish (S4 Fig).
To investigate the dose-response in the incorporation of MVs two additional doses of FITC
conjugated MVs (20 and 40 μg/mL) from all three bacteriumwere incubated with primary cul-
ture or SHK-1, and the incorporation analyzed by flow cytometry. Increasing concentrations of
vesicles resulted in a linear enrichment of MVs association with zebrafish primary cells and in
SHK-1 cells (Fig 4B). Vesicles isolated from LF-89 were shown to display a significantly higher

Fig 4. Internalization and effect of membrane vesicles isolated from Piscirickettsia salmonis in fish cells. (A) Cytopathic effect of 20 μg/mL MVs

in SHK-1 cells. The cytopathic effect is characterized by the production of rounded vacuoles (arrow). Bar size, 100 μm. (B) The effect of three different

MV concentrations (10, 20 and 40 μg/mL) on internalization in SHK-1 cells and kidney and spleen primary leukocytes isolated from adult zebrafish

assessed by flow cytometry (n = 3). Results are presented as mean ± SD. Asterisks indicate statistical significances between the different concentrations

of MVs within each cell type (Two-way ANOVA, Tukey‘s multiple comparison test). P value: **** < 0.0001; *** < 0.001; ** < 0.01; * < 0.1.

doi:10.1371/journal.pone.0165099.g004
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degree of association with primary zebrafish kidney leukocytes compared to SHK-1 cells and
primary zebrafish spleen leukocytes (p<0.001). NVI 5692 and NVI 5892 derivedMVs dis-
played a similar internalization in all three cell types (Fig 4B).
A dose-dependent uptake of MVs has previously been described for Brucella abortus [56].

Moreover, B. abortus derived vesicles has been reported to modulate the innate immune
response in human epithelial and monocytes cells, as well as increasing the adherence and
internalization of B. abortus in vitro [56]. In general, the cellular process for internalization of
MVs is not known, but studies with B. abortus andH. pylori has shown a potential uptake of
MVs by the clathrin-mediated endocytosis, the main pathway for receptor-mediated endocyto-
sis in most eukaryotic cells [56, 106–107]. A similar infection strategy has been suggested for P.
salmonis, indicating that the utilization of macrophages is dependent upon the interaction with
host-cell clathrin and actin [108]. The capability to exploit host cells for survival by manipulat-
ing cellular processes by protein secretion and specific effectors has been described for a range
of pathogens [109]. E.g. membrane vesicles isolated from Legionella pneumophila inhibit the
fusion of phagosomes with lysosomes in primarymouse macrophages [110]. Therefore, P. sal-
monis could potentially utilize the MV secretion as a survival strategy to replicate within mac-
rophages. Both the primary and commercial cell lines revealed a higher association with LF-89
derivedMVs in contrast to NVI 5692 and NVI 5892 in this study. This suggests that MVs
might promote bacterial survival within macrophages, which could explain the higher viru-
lence reported for the Chilean strain. Thus, bacterial release of MVs within the host may
contribute to the utilization of host cells and modulations of the immune system during an
infection. To which degreeMVs are released during SRS outbreaks has yet to be investigated
but was recently shown in CHSE-cells [52].

Studies of Piscirickettsia salmonis derived vesicles in adult zebrafish

To study the potential effect of MVs in vivo, adult zebrafish were injected with MVs from the
three strains of P. salmonis. In recent years, zebrafish has proven to be a unique model for the
study of leukocytes subset, immune cell migration and host-pathogen interaction [111]. The
effects of MVs have previously only been described for F. noatunensis in a zebrafish model
[40], with no observed cytotoxic effects. For zebrafish injectedwith 40 μgMVs from NVI 5692
and NVI 5892, no behavioral alterations were observedover two weeks compared to the PBS
control group (Fig 5). Interestingly, fish injected with MVs from LF-89 presented a reduction
in activity and approximately three days post injectionmortalities were detected. A rapid
decrease in accumulative survival up to 50% were registered for the LF-89 MV group during
the first seven days, indicating an initial acute phase, which stabilized by day 9 (Fig 5). In the
NVI 5692 and NVI 5892 MV group, less than 10%mortalities were registered, most likely due
to complications from the injections, as they occurred shortly after the procedure. Kidney and
spleen samples were harvested two weeks post-injection to evaluate the MVs immunogenic
effect in the fish. Of the genes analyzed no significant up or down regulation were detected for
il-6, il-10, il-12a, socs3a,mpeg1, cd40, nod1 and nod2. This could mean that the MVs do not
affect the selected genes, or that it occurs at an earlier time point. An increased expression of
immune genes was, however observed for il-1β, il-8, tnfα, infγ, socs3b and MHC II in all three
groups injected with P. salmonis derivedMVs (Fig 6). The gene expression profile for the fish
challenged with MVs were in most cases similar to the ones challenged with live bacteria, indi-
cating that the vesicles mimic their mother cells. Several pathogens, including the intracellular
ones, modify the suppressor of cytokine signaling (Socs) to inhibit the host’s ability to clear an
infection [112]. Thus, the effect of MVs on the socs3b gene expression was investigated, show-
ing a significant increased expression. Such alterations of the cytokine secretion is a common
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modification initiated by several intracellular pathogens, enabling prolonged utilization of
macrophages, by downregulating the host’s defense mechanisms [113]. To what degree the P.
salmonis derivedMVs can modulate the cytokine expression has not previously been explored.
However, as socs3b in combination with several other immune related genes were upregulate
after exposure to MVs, the P. salmonis derived vesicles might display immunogenic abilities.
However, further studies including sampling at earlier time points are needed to fully evaluate
the potential immunogenic effect of the vesicles.
These immunogenic abilities are, nonetheless, partly the reason why MVs over the last

decades have been explored and successfully used as vaccine components [1, 36]. Thus, several
pro-inflammatory genes were investigated and shown to be significantly upregulated in zebra-
fish injected with the P. salmonis derived vesicles, including il-1β, il-8, tnfα and infγ. The
inflammatory cascade of an infection begins with receptors involved in the binding and uptake
of infectious agents and their products by cells of the innate immune system. This is then fol-
lowed by the production of pro-inflammatory cytokines, such as TNFα, IL-1, IL-8 and IFNγ
[114]. In the present work, we show that P. salmonis derivedMVs are able to upregulated
genes involved in an inflammatory response, as well as genes related to antigen representing
cells, (MHC II) in an adult zebrafish model. Interestingly, theMHC II genes were significantly
upregulated in fish injected with MVs compared to fish injected with live bacteria (p<0.05).
However, as P. salmonis is an intracellular bacteria utilizingmacrophages as a part of its infec-
tion strategy, a lowMHC II expression might be expected [115]. On the other hand, the MVs
do not replicate within a host, and might therefore be taken up and degraded by antigen repre-
senting cells, increasing theMHC II expression, which also makes them interesting as potential
vaccine components. Several of the genes investigated have been reported to be upregulated at
early time points post vaccination in salmon [116–117]. Olive flounder injected with E. tarda
derived vesicles has been reported to display immunogenic alterations due to MV exposure,

Fig 5. Adult zebrafish challenged with membrane vesicles isolated from Piscirickettsia salmonis.

Cumulative survival of adult zebrafish injected with 40 μg of MVs isolated from the three different strains of P.

salmonis (LF-89, NVI 5692 and NVI 5892) or PBS (n = 20).

doi:10.1371/journal.pone.0165099.g005
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including upregulation of il-1β and il-6 detected in kidney samples at 3 hours post challenge
and maintained up to 5 days [38]. Similar results are found for Japanese flounder immunized
with vesicles isolated from Vibrio anguillarum, where they observed, an increased production
of pro-inflammatory cytokines, including tnfα, il-1β and il-6, during the first 48 hours [118].
Furthermore, whenMVs isolated from E. tarda was tested as a vaccine candidate towards
edwardsiellosis, it provided an equal level of protection as Formalin-killedE. tarda cells [38].
An activation of the innate immune system, including upregulation of pro-inflammatory cyto-
kines, plays an important role in the adaptive immune response by attracting the antigen pre-
senting cells [119]. Thus, the up-regulation of immune-related genes detected in this study,
might indicate a potential activation of the host’s immune system initiated by the MVs.
Whether this activation is mediated by i.e. toll-like receptors (TLRs) or not, is not known.
Considering the composition of MVs, containing several molecules and proteins identified as

Fig 6. Immune gene transcription of adult zebrafish challenged with P. salmonis and isolated membrane vesicles analyzed by RT-qPCR.

Immune gene expression of kidney and spleen, isolated 14 days post injection with either 40 μg MVs isolated from three different strains of P.

salmonis or 1x107 CFU of the same bacteria strains (LF-89, NVI 5692 and NVI 5892). Results are presented as mean +/- SD. Asterisk indicate

significantly upregulated genes compared to the PBS control p<0.05, two tailed unpaired Student’s t-test (n = 3).

doi:10.1371/journal.pone.0165099.g006
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pathogen associatedmolecular pattern (PAMPS) including LPS, carbohydrates, heat-shock
proteins (HSPs) and nuclei sequencemotifs suggest the participation of TLRs as a bridge
between innate and adaptive immunity, making P. salmonisMVs interesting as a vaccine can-
didate. As mortalities were observed for fish immunized with vesicles isolated from LF-89, fur-
ther dose-response studies are needed to evaluate the vesicles long-term effect. However, as an
effect was observedboth in vivo as well as in vitro by the P. salmonis derivedMVs, the vesicles
could be an integral part of the bacterium’s pathogenesis as suggested by others [52]. It could
be argued that mortalities observed in the zebrafish when exposed LF-89 derivedMVs com-
pared to the two other strains are caused by differences in the LPS. LPS isolated from E. coli has
been shown to have a limited effect in adult zebrafish [120], but an immunogenic response has
been observed in zebrafish larva exposed to E. coli and P. aeruginosa LPS [121–122]. There is,
however, still a lack of knowledge regarding the immunogenic effect of LPS from fish patho-
gens, and studies of P. salmonis derived LPS would be interesting to follow up in future studies.

Conclusion

The present study is the first investigation of MV proteomes from bacterial species isolated
from a wide geographical area. It is also the first in-depth analysis of MVs frommultiple P. sal-
monis isolates. We show that MVs derived from LF-89, a high-virulent strain isolated from
Chile, differs compared to the MVs of a Norwegian and Canadian strain, isolated from low
infection-associatedareas. According to the number of shared proteins in the MVs, we can
identify two cluster, one that include NVI 5692 and NVI 5892 derived vesicles and a second
one including LF-89 MVs. In general, these results illustrate that the MVs proteome analyzed
from one bacterial strain is not representative of all bacterial strains within the same species.
Furthermore, our findings also demonstrate that P. salmonis derivedMVs are able to associate
within both primary and commercial fish cells suggesting a potential role with fish immune
cells. The use of zebrafish as a model for studies of MVs allowed us to investigate toxicity and
the immunogenic effects upon injection with the bacterial derived vesicles indicating that the
P. salmonis derivedMVs are able to modulate the host’s immune response. These data indi-
cates that the P. salmonis derivedMVs could be important for the bacterium’s virulence,which
also make them relevant as potential vaccine candidate against SRS.
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