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Genome instability is a hallmark of cancer, and the function of lncRNAs in

regulating genomic stability has been gradually characterized. However, the

prognostic value of lncRNAs related to genetic instability has not been found in

breast cancer. Here we constructed a genetic instability-related lncRNA model

including U62317.4, SEMA3B-AS1, MAPT-AS1, AC115837.2, LINC01269,

AL645608.7, and GACAT2. This model can evaluate the risk and predict the

survival outcomes of patients. Further analysis showed that the differentially

expressed genes between the high- and low-risk groups were enriched in

immunity and cornified envelope formation pathways. In addition,

M2 macrophages infiltrated more obviously in the high-risk group. In

summary, lncRNAs related to genetic instability may influence the

development of breast cancer through immune infiltration and

keratinization. This study provides a wider insight into breast cancer

development and treatment.
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Introduction

Breast cancer is a heterogeneous disease, including prominent characteristics with

specific pathologic features and biological behaviors (Simpson et al., 2005). According to

the different lineage pathways, breast cancer can be divided into five subtypes: luminal A,

luminal B, normal breast-like, HER2 overexpressing, and basal-like (Tang et al., 2008).

Although the overall 5-years survival rate is high, some subtypes are still challenging to

treat and have poor prognoses (Blows et al., 2010). A complex series of genetic changes

causes breast cells to transform from precancerous lesions to carcinoma and affects the

prognosis. Thus, it is necessary to estimate breast cancer prognosis by leveraging genetic

changes.
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Genome instability is a hallmark of cancer. Several

mechanisms carefully preserve genomic integrity in normal

cells, including DNA damage checkpoints, the DNA repair

machinery, and the mitotic checkpoint. When these

mechanisms are impaired, genomic alterations accumulate,

leading to genome instability and driving cells from healthy to

malignant (Duijf et al., 2019). In addition, genome instability

gives rise to genetic heterogeneity, genetic diversity, and

phenotypic diversity, facilitating tumor cell escape from

immune surveillance and gradually developing into different

subtypes. The different subtypes further lead to differences in

prognosis. It has been demonstrated that genome instability can

induce recurrence and therapeutic resistance in multiple

myeloma (Neuse et al., 2020).

Genome instability includes the distinction between

chromosomal instability or genomic instability and DNA

instability or genetic instability (e.g., gene mutations) (Heng

et al., 2013). The role of genetic instability (GI) in tumor

development has been confirmed. BRCA1 can repair double-

stranded DNA damage to maintain genomic stability, and

BRCA1 mutations increase the risk of breast cancer (Welcsh

and King, 2001). Due to GI, triple-negative breast cancer lacks

the expression of epidermal growth factor 2, estrogen receptor,

and progesterone receptor, which are common therapeutic

targets (Ivanova et al., 2020). In luminal breast cancer,

p27kip1, a necessary molecular for maintaining genomic

stability, is often underexpressed (Berton et al., 2017).

Therefore, early detection and intervention in GI may

represent an effective measure for improving prognosis.

Various mechanisms can regulate GI. As one epigenetic

regulatory molecule, lncRNAs play critical roles in genomic

stabilization. LncRNAs are RNA molecules with transcripts

longer than 200 nucleotides. They cannot be translated into

proteins, but they regulate diverse cellular activities in normal

development and disease occurrence by interacting with DNA,

RNA, and proteins. LncRNAs regulate multiple signaling

pathways in cancer development and metastasis (Peng et al.,

2017) and are involved in regulating genomic stability.

Noncoding RNA activated by DNA damage maintains

genomic stability by binding to RNA-binding proteins (Lee

et al., 2016). GUARDIN, a P53-responsive lncRNA, preserves

genome integrity through TRF2 and BRCA1 (Hu et al., 2018). At

present, genomic biomarkers are used to predict tumor prognosis

in breast cancer research (Walsh et al., 2016), but whether

lncRNAs related to GI predict survival outcomes of patients is

still unclear.

Here, we divided samples from The Cancer Genome Atlas

(TCGA) database into two groups. Based on the differentially

expressed lncRNAs, we established a model to evaluate breast

cancer prognosis. We explored the possibility of linking the

lncRNA signature with GI and analyzed the pathways related

to the lncRNA signature. Our results provide a new method for

the early detection, screening, and treatment of breast cancer.

Methods

Data collection

Transcriptome, mutation, and clinical data of breast cancer

were downloaded from TCGA database. The flowchart for the

whole analysis is shown in Supplementary Figure S1.

Screening lncRNAs associated with
genetic instability and mRNAs co-
expressed with these lncRNAs

The mutation frequency of breast cancer mutation data was

analyzed using VarScan, and 986 samples were found to be

mutated. The samples were sorted in descending order according

to mutation frequency. Samples with the lowest 25% mutation

frequency were regarded as the low mutation group (Low, n =

253), and those with the highest 25% mutation frequency were

regarded as the high mutation group (High, n = 244). The

lncRNAs of the two groups were extracted and analyzed. The

average of multiple lines of a gene was displayed in only one line.

The low expression lncRNAs (<0.4) were deleted. The Wilcoxon

test was used to analyze the differences with a cutoff of |logFC|

>1 and FDR <0.05. If logFC >1, the lncRNA was upregulated in

the high mutation group, while if logFC < −1, the lncRNA was

downregulated. These differentially expressed lncRNAs were

defined as lncRNAs associated with genetic instability.

Pearson correlation coefficients were computed to measure the

correlation between differentially expressed lncRNAs and

mRNAs. Correlation coefficient >0.2 and p < 0.05 were used

as the criteria for screening mRNAs and the top 10 mRNAs with

the strongest correlation were considered as the co-expressed

mRNAs. GO function and KEGG pathway enrichment analyses

were performed for the co-expression mRNAs.

Classification of breast cancer

All breast cancer samples (n = 1,066) were clustered

according to the expression of lncRNAs using the R hclust

package for clustering. Then, the mutation frequencies of the

two clusters were compared. A high mutation frequency

indicated genetic instability, and a low mutation frequency

indicated genetic stability.

Data processing

For clinical data processing, samples with a follow-up time

under 30 months were first deleted, and then samples with a

survival time/survival status of 0 were deleted. For expression

data processing, 122 differentially expressed lncRNAs related to
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genetic instability were extracted. Samples with intersecting

clinical data and expression data were extracted, and then the

clinical data and expression data were combined (all data = 998).

We randomly divided the data into two sets (training set = 500,

test set = 498). We performed univariate Cox and Lasso analyses

on the data in the training set and screened out prognosis-related

lncRNAs. Then, we constructed a prognostic risk model based on

the following formula:

Risk score � ∑n
i�1coef (lncRNAi) × expr (lncRNAi). The

lncRNAi represents the ith prognostic lncRNA, expr

(lncRNAi) is the expression level of lncRNAi for the patient,

and coef (lncRNAi) represents the contribution of lncRNAi to

prognostic risk scores that were obtained from the regression

coefficient of multivariate Cox analysis. The median score of

patients in the training set was used as a risk cutoff to classify

patients into high- and low-risk groups. The test group and all

data were analyzed using the same model formula as the training

group, and the high-risk and low-risk groups were obtained.

The Kaplan-Meier method was used to calculate the survival

rate and median survival for each prognostic risk group. The log-

rank test was used to assess the difference in survival between the

high-risk and low-risk groups with a significance level of 5%.

Multivariate Cox regression and stratified analysis were used to

assess the independence of the genetic instability-related lncRNA

signature (GILncRNASig) from other key clinical factors. The

hazard ratio (HR) and 95% confidence interval (CI) were

calculated by Cox analysis. The performance of GILncRNASig

was also evaluated by the time-dependent receiver operating

characteristic (ROC) curve. All statistical analyses were

performed using R version 4.0.2.

Pathway enrichment analysis, screening of
hub genes and the survival curve of related
genes

Differentially expressed genes between the high- and low-risk

groups were screened through the “limma”R packagewith a cutoff of

|logFC|>0.5 and FDR <0.05. Pathway enrichment was analyzed

through the Metascape website (http://metascape.org/) (Zhou

et al., 2019). The cytoHubba and MCODE functions of Cytoscape

were used to screen the hub genes and MCODE modules. The

survival rates of the hub genes were downloaded from the Kaplan-

Meier Plotter database. The sources for the database include GEO,

EGA, and TCGA and the primary purpose of the tool is a meta-

analysis-based discovery and validation of survival biomarkers

(Lanczky and Gyorffy, 2021).

Infiltration of immune cells

The CIBERSORT method was used to calculate the

infiltration rate of each immune cell. Based on these results,

we compared the infiltration rate between the high- and low-risk

groups. CIBERSORT is an analytical tool to estimate the

abundances of member cell types in a mixed cell population,

using gene expression data (Newman et al., 2015). The

association between immune infiltrates and gene expression

was analyzed in the TIMER 2.0 database. This database is a

comprehensive resource for systematical analysis of immune

infiltrates across diverse cancer types (Li T. et al., 2020).

Statistical analysis

Genetic difference analysis and the difference in immune cell

infiltration between the two groups were assessed using the

Wilcoxon test (Mann–Whitney). Survival analysis was

performed using the log-rank test. A chi-square test was used

to compare the frequency of TP53 mutations between the high-

and low-risk groups. All data are expressed as the mean ±

standard deviation (x ± s), ***p < 0.001, **p < 0.01, *p < 0.05.

Results

Screening of lncRNAs associated with
genetic instability in breast cancer patients

To identify lncRNAs associated with GI, we calculated the

cumulative number of genetic mutations in each patient and

arranged them in descending order. The first 25% and last 25% of

samples were divided into two groups. Based on the analysis,

122 lncRNAs were significantly differentially expressed. In the

high mutation group, 55 lncRNAs were upregulated, and

67 lncRNAs were downregulated (Figure 1A). We defined

these differentially expressed lncRNAs as lncRNAs associated

with GI. According to the correlation between differentially

expressed lncRNAs and mRNAs, we obtained mRNAs related

to the lncRNAs (Supplementary Figure S2). Gene Ontology (GO)

enrichment analysis revealed that these mRNAs were related to

DNA transcription activity, ion channel activity, signal release,

stem cell differentiation, and breast epithelial proliferation

(Figure 1B). The KEGG pathway analysis showed that they

were involved in the cell cycle, the MAPK signaling pathway,

the p53 signaling pathway, and central carbon metabolism in

cancer (Figure 1C).

Breast cancer samples were divided into
genomically stable and unstable subtypes

Based on the differentially expressed lncRNAs, 1,066 breast

cancer samples were divided into two clusters by hierarchical

clustering (Cluster 1 = 774, Cluster 2 = 292). Comparing the

mutation frequencies, we defined Cluster 1 as the GS group and
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Cluster 2 as the GU group (Figures 2A,B). Then, we compared

expression levels of the UBQLN4 gene, a newly identified driver

of genomic instability (Jachimowicz et al., 2019), between the GS

and GU groups and found that the expression levels of

UBQLN4 in the GU group were significantly higher than

those in the GS group (Figure 2C).

Construction of a genetic instability-
derived lncRNA signature

To further investigate the predictive function of these candidate

lncRNAs, we screened 1,066 samples. We removed unqualified

samples (those with a follow-up time under 30 months or

FIGURE 1
Identification and functional annotations of genetic instability-related lncRNAs in breast cancer patients. (A). Differentially expressed lncRNAs
between the High group and the Low group. Patients with the lowest 25% mutation frequency were regarded as the Low group (n = 253). Patients
with the highest 25%mutation frequencywere regarded as theHigh group (n=244). |LogFC|>1 and FDR <0.05were used as the criteria for screening
differentially expressed lncRNAs. Red means upregulated and blue means downregulated. (B). Functional enrichment analysis of GO for
lncRNAs co-expressed mRNAs. (C). Functional enrichment analysis of KEGG for lncRNAs co-expressed mRNAs.
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survival time/survival status of 0) and ultimately obtained

998 samples (TCGA set). We randomly divided these samples

into two sets (training set = 500, test set = 498). We ran statistical

analyses on the clinical data comparing the groups to avoid

intergroup differences (Table 1). The two groups were not

significantly different based on their nongenomic stability-related

characteristics. Using Cox regression and Lasso analyses, we

compared the relationships between the expression of these

122 lncRNAs and overall survival, from which we constructed a

seven-lncRNA model related to prognosis (Figure 3A). Then, we

named the model GILncRNASig and used it to evaluate the

prognostic risk (Supplementary Table S1). The coefficients of

U62317.4, SEMA3B-AS1, and MAPT-AS1 were negative,

indicating that these lncRNAs are low-risk lncRNAs and have a

protective effect on clinical prognosis. In contrast, the coefficients of

AC115837.2, LINC01269, AL645608.7, and GACAT2 were positive,

indicating that they are high-risk lncRNAs and have a promoting

effect on breast cancer. Next, we utilized GILncRNASig to obtain the

risk score of each patient in the training set and divided them into

high- and low-risk groups using the median risk (1.356) as the

FIGURE 2
Hierarchical clustering of breast cancer patients and the characteristics between the groups. (A). Hierarchical clustering of 1,066 breast cancer
patients based on the expression pattern of 122 candidate genetic instability-derived lncRNAs. The left blue cluster was the GS-like group (n = 774),
and the right red cluster was theGU-like group (n=292). (B). Boxplot of somaticmutations count between two groups. (C). UBQLN4 expression level
between these two groups.
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threshold. Kaplan-Meier analysis showed that the overall survival of

patients in the low-risk group was significantly better (Figure 3B).

Time-dependent ROC curve analysis showed the AUC of

GILncRNASig was 0.690 (Figure 3C). We then classified patients

according to their scores. We observed changes in the levels of

GILncRNASig expression and somatic mutation counts with

increasing scores (Supplememntay Figure S3A). For patients with

high scores, the expression levels of the risk lncRNAs AC115837.2,

LINC01269, AL645608.7, and GACAT2 were upregulated, while the

expression levels of the protective lncRNAsU62317.4, SEMA3B-AS1,

and MAPT-AS1 were downregulated. In contrast, GILncRNASig in

patients with low scores displayed the opposite expression pattern.

There were significant differences in somatic mutation patterns

between the two groups, with the number of somatic mutations

in the high-risk group being significantly higher (Figure 3D).

Independent validation of GILncRNASig in
the test and TCGA sets

To determine the accuracy of GILncRNASig, we tested its

predictive performance in the other two sets. By applying the

same risk model and threshold in the training set, 498 patients

in the test set were divided into high-risk (n = 261) and low-risk

(n = 237) groups (Figure 4A). Survival analysis showed that the

overall survival of the high-risk group was significantly lower,

and the AUC of GILncRNASig was 0.685. There were

differences in somatic mutation count between the two

groups. The expression of GILncRNASig in the test set are

shown in Supplementary Figure S3A. The predictive

performance of GILncRNASig in TCGA set was consistent

with the above results. A total of 998 samples were divided

into the high-risk (n = 511) and the low-risk (n = 487) groups

(Figure 4B). The survival analysis showed that the overall

survival of the high-risk group was lower with an AUC of

0.686. As the risk increased, the frequency of somatic mutations

also increased. The expression of GILncRNASig in TCGA set

are shown in Supplementary Figure S3A. TP53 is a crucial gene

for maintaining genomic stability. We compared the frequency

of TP53 mutations between the two groups. In the training set,

105 patients (42%) in the high-risk group had TP53 mutations,

which was significantly higher than the 58 patients (23%) with

TP53 mutations in the low-risk group (chi-square test p <
0.001). Similar results were also observed in the other sets

(Supplementary Figure S3B).

Performance comparison between
GILncRNASig and other characteristic-
related lncRNAs for survival prediction

We next compared the predictive performance of

GILncRNASig to two recently published lncRNA signatures:

the 6-lncRNA signature derived from Erjie’s study (hereafter

referred to as ErjielncRNAsig) (Zhao et al., 2020) and the 8-

lncRNA signature derived from Zhenbin’s study (hereafter

referred to as ZhenbinlncRNAsig) (Liu et al., 2019). Using the

same TCGA patient cohort, the AUC of GILncRNASig we

constructed was 0.686 for 1-year OS, which was significantly

higher than those of ErjielncRNASig (AUC = 0.583) and

ZhenbinlncRNASig (AUC = 0.661) (Figure 5A).

The efficiency of GILncRNASig in clinical
characteristics

To assess the independence of GILncRNASig, we

performed multivariate Cox regression analysis on age,

TABLE 1 Clinical characteristics of included patients.

Covariates Type Total (n = 998) Train (n = 500) Test (n = 498) p value

age ≤65 724 (72.55%) 349 (69.8%) 375 (75.3%) 0.0606

>65 274 (27.45%) 151 (30.2%) 123 (24.7%)

gender FEMALE 986 (98.8%) 494 (98.8%) 492 (98.8%) 1

MALE 12 (1.2%) 6 (1.2%) 6 (1.2%)

stage Stage I-II 735 (73.65%) 370 (74%) 365 (73.29%) 0.7291

Stage III-X 252 (25.25%) 123 (24.6%) 129 (25.9%)

T T1-2 840 (84.17%) 422 (84.4%) 418 (83.94%) 0.8505

T3-4 155 (15.53%) 76 (15.2%) 79 (15.86%)

M0 M0 827 (82.87%) 411 (82.2%) 416 (83.53%) 0.6905

M1 21 (2.1%) 9 (1.8%) 12 (2.41%)

N N0-1 799 (80.06%) 400 (80%) 399 (80.12%) 1

N2-3 182 (18.24%) 91 (18.2%) 91 (18.27%)
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pathological stage, and the predictive risk score model of

GILncRNASig. Age and pathological staging were selected

because they are important clinical factors affecting breast

cancer prognosis. Breast cancer patients were divided into

ages under 65 (n = 376) and over 65 (n = 419). They were

further divided into high- and low-risk groups according to

GILncRNASig. There was a significant difference in overall

survival between the two groups (Figure 5B). Next, all breast

cancer patients were stratified according to the pathological

stage. Patients with pathological stages I or II were combined

into the early-stage group (n = 593). Patients with

pathological stage III or IV were combined into the

advanced group (n = 181). GILncRNASig further divided

the early-stage group into a high-risk group (n = 279) and a

low-risk group (n = 314) and divided the advanced group into

a high-risk group (n = 85) and a low-risk group (n = 96). The

overall survival of the high-risk group was significantly lower

than that of the low-risk group (Figure 5C). These results

indicate the efficiency of GILncRNASig in clinical

characteristics.

GILncRNASig can be used to evaluate the
immune infiltration in breast cancer

Next, we analyzed the differentially expressed genes

between the high- and low-risk groups. The enriched

pathways showed that these genes were related to various

immune pathways, especially the adaptive immune response

and the B-cell receptor signaling pathway (Figure 6A).

FIGURE 3
Establishment of genetic instability-related lncRNA signature (GILncRNASig) for prognosis prediction and identification of the predictive
efficacy of the model. (A). Forest plot of 7 lncRNAs, which were screened from candidate genetic instability-derived lncRNAs through univariate Cox
analysis and Lasso analysis. (B). Kaplan–Meier curves of overall survival of patients with low or high risk predicted by the GILncRNASig in the training
set. (C). Time-dependent ROC curve analysis of the GILncRNASig. (D). Boxplot of somatic mutations count between the High-Risk and Low-
Risk groups in the training set.
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Tumor-infiltrating immune cells are closely associated with

prognosis prediction (Bense et al., 2017). By analyzing the

protein-protein interactions, we screened six hub genes of the

adaptive immune pathway and eight hub genes of the B-cell

receptor signaling pathway (Figure 6B). Except for CXCL8

(MENCF/IL-8), the expression levels of other genes were

down-regulated in the high-risk group, and correlated with

better prognosis (Figures 6C,D). CXCL8 is a member of the

FIGURE 4
Verification of the GILncRNASig. (A). The Kaplan–Meier curves and boxplot of somatic mutations between low- and high-risk, and the time-
dependent ROC curve analysis in the testing set. (B). The Kaplan–Meier curves and boxplot of somaticmutations between low- and high-risk groups,
and the time-dependent ROC curve analysis in TCGA set.
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chemokine family that induces the infiltration of immune

cells. Therefore, we explored the differences in the immune

microenvironment between the two groups. We found that

CD8+ T-cells displayed a downward trend in the high-risk

group, while M2 macrophages were increased (Figure 6E).

We searched the association between immune infiltrates and

the expression of CXCL8 from the TIMER 2.0 database.

(Figure 6F). The results showed that CXCL8 expression

was negatively correlated with CD8+ T-cell infiltration and

positively correlated with M2 macrophage infiltration.

FIGURE 5
Identification of the efficiency of GILncRNASig in clinical characteristics. (A). Comparison of the time-dependent ROC curve with other
characteristic-related lncRNAs model. (B). Kaplan–Meier curves of overall survival of patients between low- and high-risk groups in patients with
Age <65 and Age ≥65. (C). Kaplan–Meier curves of overall survival of patients between low- and high-risk groups in patients with Stage I–II and Stage
III–IV.
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GILncRNASig can be used to evaluate
keratinization in breast cancer

The previous analysis also revealed that the different

genes were related to cornified envelope formation

(Figure 6A). Further analysis of involved in this pathway,

it indicated that these genes were primarily enriched in

epithelial cell differentiation and formed two main

MCODE modules (Figures 7A,B). One module was mainly

composed of keratin family genes, most of which were

upregulated in the high-risk group (Figure 7C). CYK4

(KRT4), K6C (KRT6A/KRT6C), KRT16, and K6HF

(KRT75) affected overall survival (Figure 7D). In addition,

the genes in another module also exhibited differential

expression between the two groups and were related to

prognosis (Supplementary Figure S4).

Discussion

GI is reflected in various malignant tumors and

precancerous lesions. Additional GI leads to different

genetic lesions, ranging from increased point insertion and

deletion frequency to chromosome rearrangement and ploidy

FIGURE 6
Identification of the immune-related pathways involved in the differentially expressed genes between high- and low-risk groups.(A). The
enrichment pathways for the differentially expressed genes between the high- and low-risk groups. (B). The hub genes related to the adaptive
immune pathway and the B-cell receptor signaling pathway. (C). Kaplan–Meier curves of overall survival of the hub genes for breast cancer patients
in Kaplan-Meier Plotter database. (D). Volcano plot of hub genes between the high- and low-risk groups. The right red labeled gene was
significantly higher in the high-risk group than the low-risk group, and the left blue labeled genes were significantly lower in the high-risk group than
the low-risk group. (E). Boxplot of the infiltration level of immune-associated cells in the high- and low-risk groups. (F). The expression of CXCL8was
negatively correlated with CD8+ T cell infiltration and positively correlated with M2 macrophage infiltration in TIMER 2.0 database.
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changes (Burrell et al., 2013). With the accumulation of gene

lesions, many molecules become abnormally expressed.

Therefore, GI plays an essential role in tumor progression.

LncRNAs have been proven to affect the expression of

intracellular molecules, including genes relating to GI,

through various mechanisms. Therefore, we screened

lncRNAs associated with GI. These lncRNA target genes

were enriched in various tumor related pathways, including

MAPK signaling pathway, p53 signaling pathway, and central

carbon metabolism. It is well known that changes in the

p53 signaling pathway are closely related to tumorigenesis;

the MAPK pathway plays a vital role in cell proliferation,

differentiation, apoptosis, and tumor metastasis (Guo et al.,

2020). In addition, central carbon metabolism is the main

source of energy required. In normal cells, the tricarboxylic

acid cycle provides energy for cell growth and development,

while tumor cells need to induce the Warburg effect to satisfy

consumption (Wong et al., 2017). This metabolic

reprogramming is also closely correlated with GI (Yang

et al., 2016). Thus, these lncRNAs participate in the

regulation of tumor development.

Then, we screened lncRNAs related to prognosis from the

above lncRNA set and constructed the GILncRNASig. It has been

found that lncRNAs involved in the model participated in the

occurrence and development of tumors. Among them,

U62317.4 is related to autophagy (Li et al., 2021), and

SEMA3B-AS1 is associated with the stemness regulation of

breast cancer stem cells (Li X. et al., 2020). Overexpression of

MAPT-AS1 is associated with a better prognosis in non-triple-

negative breast cancer Wang et al., 2019). However,

unexpectedly, the high expression of MAPT-AS1 is considered

to promote tumor invasion, metastasis, and drug resistance in

ER-negative breast cancer patients (Pan et al., 2018). In addition,

LINC01269 is related to the prognosis of liver cancer (Liao et al.,

2020), while GACAT2 influences the prognosis of gastric cancer

(Tan et al., 2016). We verified the evaluation effect of

GILncRNASig and demonstrated its independent predictive

value.

According to the model, we divided the patients into two

groups and compared the different genes. We found there were

differences in immune pathways and M2 macrophage

infiltration between the two groups. Tumor-associated

macrophages, generally having an M2-like phenotype and

function, contribute to tumor progression by accelerating

angiogenesis, tumor cell activation, metastasis, and

immunosuppression (Komohara et al., 2016). Immune cells

are usually recruited by chemokines. CXCL8, as a hub gene in

the pathway, is a member of the chemokine family. CXCL8 has

been found to affect angiogenesis, tumor genetic diversity,

immune escape, proliferation and metastasis, and multidrug

resistance (Asokan and Bandapalli, 2021). In addition, tumor-

derived CXCL8 can traffic M2 macrophages and mediate local

immunosuppression (Zhang et al., 2020). Therefore, GI may

affect the expression of CXCL8, leading to the change of M2 cell

FIGURE 7
Identification of the formation of cornified envelope pathway involved in the differentially expressed genes between high- and low-risk groups.
(A). The enrichment pathways of genes involved in the formation of the cornified envelope pathway. (B). The genes of two main MCODE modules
analyzed by Cytoscape. (C). The expression levels of genes in keratin-related MCODE module between the high- and low-risk groups. (D).
Kaplan–Meier curves of overall survival of some genes in keratin-related MCODE module for breast cancer patients in Kaplan-Meier Plotter
database.
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infiltration and finally influencing the tumor immune

microenvironment.

Finally, we analyzed pathways related to forming the cornified

envelope and found that they were closely associated with keratin.

Keratin is a typical intermediate protein of epithelial cells that is

highly specific to the epithelial type and cell differentiation stage

(Moll et al., 2008). Keratin expression can affect epithelial cell

migration and the ECM process (Yoon and Leube, 2019). Breast

cancer is primarily derived from mammary epithelial cells. Many

keratin genes have been found to affect the occurrence and treatment

of breast cancer. Overexpression of KRT16 enhances cell motility and

promotes breast cancer metastasis (Elazezy et al., 2021).

KRT19 regulates cell proliferation and can predict the effect of

CDK inhibitor treatment (Sharma et al., 2019). Targeting

KRT1 may represent a new method for treating triple-negative

breast cancer (Saghaeidehkordi et al., 2021). We speculate that GI

may lead to abnormal expression of keratin genes and induce

keratinization pathway activation in mammary epithelial cells,

leading to the formation of breast cancer.

Although our study evaluates the degree of GI and predicts

breast cancer prognosis, there are still some shortcomings. First,

we could not conduct an in-depth analysis of all subtypes due to

the limited data. Second, we need to verify GILncRNASig in

additional independent datasets to ensure accuracy. Finally, we

need to conduct further clinical and biological research on these

seven lncRNAs to explore their role in the occurrence and

development of breast cancer.

Conclusion

In conclusion, we identified a GILncRNASig model to

evaluate the prognosis of breast cancer patients. We also

found that lncRNAs related to GI may affect keratinization

gene expression and the immune microenvironment of

tumors. These findings may provide wider insights into the

development and treatment of breast cancer.
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