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Stem cell-based regenerative therapies hold great promises to treat a wide spectrum of diseases. However, stem cell engraftment and
survival are still challenging due to an unfavorable transplantation environment. Advanced glycation end-products (AGEs) can
contribute to the generation of these harmful conditions. AGEs are a heterogeneous group of glycated products,
nonenzymatically formed when proteins and/or lipids become glycated and oxidized. Our typical Western diet as well as
cigarettes contain high AGEs content. AGEs are also endogenously formed in our body and accumulate with senescence and in
pathological situations. Whether AGEs have an impact on stem cell viability in regenerative medicine remains unclear, and
research on the effect of AGEs on stem cell proliferation and apoptosis is still ongoing. Therefore, this systematic review
provides a clear overview of the effects of glycated proteins on cell viability in various types of primary isolated stem cells used
in regenerative medicine.

1. Introduction

Regenerative therapies, including stem cell treatments, hold a
high potential for treating patients with a spectrum of dis-
eases. Stem cells can stimulate endogenous tissue repair
mechanisms or replace damaged, necrotic tissue [1]. Stem
cells are defined as undifferentiated cells with unlimited
self-renewing capacity. They have the potential to form iden-
tical clones throughout the symmetrical division but can also
differentiate into multiple cell types depending on the stem
cell potency [1]. The source of stem cells is diverse as they
can be found throughout the body in embryonic, fetal, and
adult stages [2]. Because stem cells are the building blocks
of organs and tissues, they are interesting candidates for
regenerative medicine in order to repair multiple types of
injuries [3]. For example, mesenchymal stem cells (MSCs)
have the potential to differentiate into adipose, bone, or car-
tilage tissue, which makes them attractive candidates for the
regeneration of these tissues in multiple diseases or injuries

such as metabolic bone diseases or osteoarthritis [4–6]. Neu-
ral stem cells (NSCs) are adult precursor cells, therapeutically
relevant in diseases of the brain and central nervous system,
such as Alzheimer’s disease or stroke [7]. Adipose tissue-
derived stem cells (ADSCs), a specific type of MSCs isolated
out of the adipose tissue [8], have been found to modulate
inflammation, thereby promoting chronic wound healing
[9]. Endothelial precursor cells (EPCs) are found in the bone
marrow or blood and are capable of migrating towards
lesions due to tissue ischemia or traumatic injury [10]. In
addition, EPCs are involved in endothelial repair in patients
with diabetes and atherosclerosis. Finally, blood-derived
stem cells (BDSCs) are used in the clinic to restore the hema-
topoietic system in the blood and bone marrow malignancies
or in autoimmune diseases [11]. However, despite their
promising paracrine effects, differentiation, and migration
capacities for repairing injured tissue, transplantation of stem
cells remains challenging due to low cell engraftment, low cell
survival, and suboptimal transplantation conditions [12].

Hindawi
Stem Cells International
Volume 2020, Article ID 8886612, 13 pages
https://doi.org/10.1155/2020/8886612

https://orcid.org/0000-0001-8818-0074
https://orcid.org/0000-0003-4860-5781
https://orcid.org/0000-0002-1645-319X
https://orcid.org/0000-0001-8969-873X
https://orcid.org/0000-0002-8320-1320
https://orcid.org/0000-0002-4200-4144
https://orcid.org/0000-0003-0986-7906
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8886612


Oxidative stress, presence of inflammatory cytokines, and/or
advanced glycation end-products (AGEs) contribute to the
generation of the harmful environment in which stem cells
need to be transplanted and survive.

AGEs are a heterogeneous group of glycated proteins.
They are formed when reducing sugars or aldehydes none-
nzymatically react with proteins and lipids during posttrans-
lational modifications [13]. Highly reactive dicarbonyl
compounds, such as glyoxal or methylglyoxal, which can be
oxidized by aldoses and ketoses, are also AGEs precursors
[14]. AGEs can be endogenously formed in our body during
hyperglycemia via the Maillard reaction and in situations of
increased oxidative stress, such as increased levels of hydroxy
radicals or decreased antioxidants, typically seen in an
injured tissue. In addition, AGEs can also be absorbed via
dietary compounds, especially when food is rich in both fat
and proteins or cooked at high and dry heat [15].

Based on their molecular weight, AGEs are categorized in
2 classes: low-molecular weight AGEs (LMW-AGEs) and
high-molecular weight AGEs (HMW-AGEs). There is no
clear boundary between LMW-AGEs and HMW-AGEs. Ger-
demann et al. defined LMW-AGEs as proteins with a molec-
ular mass lower than 12 kDa [16], while HMW-AGEs are
molecules with a molecular mass higher than 12 kDa.
HMW-AGEs are considered to be protein-bound molecules
which can form crosslinks, while LMW-AGEs tend to be free
proteins or noncrosslinking. As for HMW-AGEs, high levels
of LMW-AGEs like N(6)-carboxymethyllysine (CML), pen-
tosidine, and pyraline are associated with different disease
settings like diabetes, neurodegenerative diseases, and cardio-
vascular diseases [13, 17, 18]. The deleterious effects of AGEs
throughout the body are classified according to their different
mechanisms of action.

Firstly, AGEs can bind to specific cell surface receptors,
e.g., receptor for AGEs (RAGE), and cause production of
reactive oxygen species (ROS) and inflammatory cytokines
or activation of intracellular pathways [19]. RAGE is a trans-
membrane receptor, localized on various cell types [20]. This
receptor contains a binding site for various ligands, such as
AGEs, high-mobility group protein box-1 (HMGB1), and
members of the S100 protein family [21]. The full length of
RAGE is anchored in the cell membrane with a transmem-
brane domain and contains an intracellular domain for signal
transduction. Due to alternative splicing, several splice vari-
ants of RAGE are known in humans [22]. Soluble RAGEs
(sRAGE) and endogenous secretory RAGE (esRAGE) are
isoforms which are not anchored to the cell membrane.
These variants lack the transmembrane domain and are
therefore circulating forms, unable to be involved in signal
transduction. They contribute in regulating and scavenging
circulating ligands like AGEs [23]. Other splice events can
lead to changes in the ligand binding domain of RAGE or
the lack of the intracellular signal domain. Therefore, differ-
ent splice variants can have different functionalities.

Next to binding to RAGE, AGEs can form crosslinks with
proteins within the cell such as intracellular domains of differ-
ent receptors or with proteins from the extracellular matrix
such as collagen [24], leading to altered structural and func-
tional properties of these proteins and thus organ function.

In the process of aging, AGEs contribute to decreased
vessel elasticity, loss of skin plasticity, and degeneration of
cartilage, ligaments, or the eye lens [25]. Furthermore, it
has been shown that AGEs have an important role in the
pathophysiology of different complications of diabetes melli-
tus, e.g., cardiomyopathy, retinopathy, neuropathy, and
nephropathy [26]. Additionally, in cardiovascular diseases
[27], Alzheimer’s disease, and cancer, AGEs have been
proven to display a causative role [28]. They can accumulate
throughout the body in various tissues such as in the heart
[29], blood vessels [30], lungs [31], and adipose tissue [32],
exerting long-term effects.

Whether AGEs have an impact on stem cell viability and
in situ proliferation in regenerative medicine remains
unclear. Therefore, this systematic review provides an over-
view of the effects of glycated proteins on cell viability, prolif-
eration, and apoptosis in various types of primary isolated
stem cells. Unraveling the deleterious effects of AGEs on
stem cells can help to tackle this issue in the future and
may contribute to improved efficient stem cell therapy regen-
erative medicine.

2. Methods

2.1. Literature Search Identification. The primary objective of
this systematic review was to assess the impact of AGEs on
viability and proliferation of different primary stem cell
types, by identifying the PICO elements (P=population: pri-
mary stem cells, I = intervention: AGEs, C= comparison: to
control, and O=outcome: cell viability, proliferation, or apo-
ptosis) [33]. In this systematic review, databases were
searched for articles published from inception until the 27th

of October 2020. The electronic databases PubMed and
Web of Science were used with the following mesh terms
‘Glycation End Products, Advanced’ OR ‘Stem Cells’ and
the following keywords: (Advanced Glycation End Product
OR Advanced Glycation End Products OR Advanced Glyca-
tion End-Product OR Advanced Glycation End-Products OR
Advanced Glycated End Product OR Advanced Glycated
End Products OR Advanced Glycated End-Product OR
Advanced Glycated End-Products OR Glycated Protein OR
Glycated Proteins) AND (Stem Cell OR Stem Cells OR
Progenitor Cell OR Progenitor Cells).

2.2. Inclusion and Exclusion Criteria. After database search-
ing in Pubmed and Web of Science, 339 abstracts of articles
were included in the screening procedure. Articles were
excluded based on different criteria: (1) articles with AGEs,
RAGE, or stem cells as outcome measurements; (2) effects
on other cell types than stem cells or progenitor cells; (3) arti-
cles about RAGE or diabetes and not AGEs; (4) articles with
AGEs used as a diabetic model; (5) reviews; (6) book chap-
ters; (7) announcements; (8) retracted papers; and (9) articles
written in other languages than English. 75 full-text articles
were assessed for eligibility. When experiments were not
performed on primary stem cells, but on stem cell lines or
when stem cells are provided and material and methods lack
isolation procedure, articles were excluded. When outcome
measurements were different from viability, proliferation,
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or apoptosis, articles were also excluded. Finally, 37 studies
were included in this review.

2.3. Data Extraction, Analysis, and Quality Assessment.
Results of the search were manually screened and are shown
in Figure 1. Literature searches were independently per-
formed by two reviewers (LE and HB). In case of disagree-
ment, a consensus-based decision was made by the two
reviewers to include/exclude an article. Data about the effect
of AGEs on proliferation and apoptosis of different types of
primary stem cells were analysed. Data were grouped based
on stem cell type/isolation source: blood-derived stem cells
(Table 1), endothelial progenitor cells from the bone marrow
(Table 2), mesenchymal stem cells (Table 3), adipose tissue-
derived stem cells (Table 4), and neural stem cells
(Table 5). Because there is no standardized protocol for qual-
ity assessment for in vitro studies, the study quality of the
selected full-text articles was assessed by two reviewers (LE
and HB). When both reviewers judged the quality of study
design to be inappropriate, articles were removed. Due to
the high heterogeneity of the data (i.e., outcome measures,
AGEs exposure duration, AGEs concentration, and experi-
mental protocols), a meta-analysis could not be generated.

3. Results

3.1. Study Selection and Flow Diagram. The electronic data-
bases PubMed and Web of Science were used to identify all
articles regarding the impact of AGEs on primary stem cell
proliferation and apoptosis. Study selection and flow chart
diagram are shown in Figure 1. 222 and 262 articles were
identified through database searching in PubMed and Web
of Science, respectively. 145 duplicates were removed ending
up to 339 articles being screened. 264 articles were excluded
after screening. Then, 75 full-text articles were assessed for
eligibility, resulting in the exclusion of 38 more articles. 20
articles about stem cells derived from cell lines or provided
stem cells (with methods of isolation lacking) and 18 articles
in which experiments about stem cell viability, proliferation,
or apoptosis were not assessed, were excluded. 37 studies
were therefore included in this review.

3.2. Study Results

3.2.1. Blood-Derived Stem Cells. Blackburn et al. [34] investi-
gated the effect of AGEs on peripheral blood mononuclear
cells (PBMCs, Table 1). PBMCs were isolated from periph-
eral blood samples of healthy humans and cultured on
1mM methylglyoxal- (MGO-) modified collagen gels for 4
days. Culturing PBMCs on MGO-modified collagen gels led
to a decrease in cell number. In addition, endothelial progen-
itor cells (EPCs), a specific type of PBMCs, were investigated
[1]. Isolation of EPCs from blood samples was performed by
gradient density centrifugation [35–43] (Table 1). Regarding
the origin of blood, one study isolated EPCs from umbilical
cord blood [37] while in all other studies peripheral blood
was used [35, 36, 38–44]. The concentration of AGEs appli-
cation ranged from 2μg/ml to 400μg/ml. In addition, stimu-
lation time varied from 1 up to 7 days. The effect of AGEs on
EPCs from the blood are inconsistent. Bhatwadekar et al.

[35], Chang et al. [36], Chen et al. [44], Li et al. [38], Liang
et al. [39], Shen et al. [41], and Sun et al. [42] reported a
decrease in cell proliferation and/or an increase in apoptosis
of EPCs after exposure to AGEs. As opposed to these find-
ings, Scheubel et al. [40] observed an increased EPCs prolif-
eration after stimulation with a low dose of AGEs
(20μg/ml). However, at higher concentrations (200μg/ml),
AGEs caused a decrease in proliferation together with an
increase in apoptosis. Zhu et al. [43] reported AGEs to have
no effect on EPCs apoptosis but caused a decrease in prolifer-
ation, while Chen et al. [37] observed no effect of AGEs on
EPCs proliferation but an increase in EPCs apoptosis. Con-
cisely, compared to control conditions, all studies show that
AGEs alter proliferation or stimulate apoptosis in EPCs
derived from the blood.

3.2.2. Endothelial Progenitor Cells Isolated from Bone
Marrow. Isolating EPCs from the bone marrow is a standard-
ized procedure [45–52] (Table 2), in which the tibia or femur
of rodents (rats or mice) were flushed with media or PBS.
AGEs were applied to EPCs in a fixed [46, 49] or dose-
dependent [45, 47, 48, 50] manner, with concentrations rang-
ing from 50 to 500μg/ml. The EPCs exposure time of 24
hours was the same in all studies, except for Zeng et al.
[51], in which EPCs were stimulated for 48 hours. Wang
et al. [52] stimulated in a time-dependent manner up to 48
hours. An increased apoptosis [16–18, 20–22] associated or
not with a decrease in cell proliferation [16–19, 22, 23] as a
result of AGEs exposure was reported in these studies. In
short, AGEs negatively impact cell proliferation and increase
apoptosis of EPCs isolated from the bone marrow.

3.2.3. Mesenchymal Stem Cells. Nine articles have studied the
effect of AGEs on mesenchymal stem cells (MSCs, Table 3)
derived from BM, tendons, periodontal ligament, or the pan-
creas. Despite differences in the concentration (25 up to
800μg/ml) and duration (6 hours up to 19 days) of AGEs
exposure, a decrease in proliferation associated or not with
an increase in apoptosis, was observed in 7 out of 9 studies
[53–60]. In contrast, Sakamoto et al. [56] observed a trend
of decreased proliferation of MSCs by AGEs, but results did
not reach significance. Duruksu and Aciksari [61] investi-
gated MSCs isolated from pancreatic islet explants and
cultured the cells on plates coated with modified collagen.
In contrast with other studies, pancreatic MSCs showed an
increase in proliferation when cultured on AGEs-modified
collagen.

3.2.4. Adipose Tissue-Derived Stem Cells. Five publications
reported the effect of AGEs on adipose tissue-derived stem
cells (ADSCs, Table 4). ADSCs are a type of MSCs, isolated
from adipose tissue samples of humans [62–64], mice [65],
and rats [66] by enzymatic dissociation with collagenase.
Irrespective of the differences in concentration (20 up to
1600μg/ml) and duration (8 hours up to 7 days) of AGEs
application, Li et al. [62] and Wang et al. [63, 64] reported
an increase in apoptosis. Li et al. [65] and Zhang et al. [66]
reported a decrease in proliferation. Taken together, AGEs
have deleterious effects on ADSCs viability.
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3.2.5. Neural Stem Cells. Neural stem cells (NSCs) were
investigated in four articles (Table 5). Brain tissues were iso-
lated from rats to obtain cultures of proliferative neuro-
spheres. Fleitas et al. [67] cultured NSCs for 6 days with
50μM MGO or glyoxal- (GO-) modified proteins. Mene-
ghini et al. [68] andWang et al. [69, 70] applied AGEs in con-
centrations ranging from 25 to 400μg/ml for 3 up to 7 days to
NSCs. Fleitas et al. [67] observed apoptosis in NSCs due to
modified proteins. The articles from Wang et al. [69, 70]
reported a decrease in proliferation of NSCs after AGEs

application, while Meneghini et al. [68] observed an
increased proliferation.

4. Discussion

4.1. Effect of AGEs on Primary Stem Cell Proliferation and
Apoptosis. According to this systematic literature review,
AGEs cause a significant decrease in proliferation or an
increase in apoptosis of BDSCs, ADSCs, and EPCs. In MSCs,
a reduced stem cell viability was observed in 8 out of 9

Articles identified through
database searching in PubMed

(n = 222)

Articles identified through
database searching in Web of Science

(n = 262)

Articles a�er duplicates (n = 145) are
removed (n = 117)

Articles screened
(n = 339)

Id
en

tifi
ca

tio
n

Sc
re

en
in

g
El

ig
ib

ili
ty

In
cl

ud
ed

Full-text articles
assessed for eligibility

(n = 75)

Studies included in
systematic review

(n = 37)

Blood-derived SC (n = 11)

Endothelial PC from BM (n = 8)
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Neural SC (n = 4)
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(iii) About RAGE not AGEs (61)
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(vi) AGEs as a model (1)
(vii) Review (53), book chapters
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(ix)

Other language than English
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Retracted paper (1)

Full-text articles excluded with
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(ii) Experiments not on cell
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Figure 1: Flowchart summary of the search and selection of the included articles. AGEs: advanced glycation end-products; RAGE: receptor
for AGEs; PC: progenitor cells; SC: stem cells; BM: bone marrow.
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studies. In NSCs, we can conclude that glycated proteins
induce a decrease in proliferation or increase in apoptosis
in 3 out of 4 articles. In short, our study reveals that AGEs
are deleterious and alter the proliferative capacity of primary
isolated stem cells in 35 out of 37 articles.

Compared to the results of other studies examining the
effect of AGEs on MSCs, the controversial results of Duruksu
and Aciksari [61] are likely due to the low concentrations of
AGEs products used, i.e., 10μg/cm2-modified collagen, while
the concentration of AGEs in other in vitro studies is

Table 1: Summary of included studies using BDSCs. Summary of isolation procedure and sampling, AGEs concentration, application
duration, and effect on outcome measurement proliferation and apoptosis.

Study name Year Isolation SC/PC AGEs application Effect on outcome
Concentration Duration Proliferation Apoptosis

Bhatwadekar
et al. [35]

2008
Human EPCs–peripheral

blood, DGC
Fibronectin coated with
10, 50, & 100 μM MGO

24 hours ↘

Blackburn
et al. [34]

2017
Human PBMC–peripheral

blood, DGC
Collagen type I gel +1mM MGO 4 days ↘

Chang et al. [36] 2017
Human EPCs–peripheral

blood, DGC
500μg/ml 24 hours ↘

Chen et al. [37] 2009
Human EPCs–umbilical

cord blood, DGC
50, 100, 200, & 400 μg/ml 24 hours - ↗

Chen et al. [44] 2019
Human EPCs–peripheral

blood, DGC
200μg/ml 48 hours ↘ ↗

Li et al. [38] 2016
Human EPCs–peripheral

blood, DGC
50, 100, & 200μg/ml 24, 48, and 72 hours ↘

Liang et al. [39] 2009
Human EPCs–peripheral

blood, DGC
50, 100, & 200μg/ml 7 days ↘ ↗

Scheubel et al. [40] 2006
Human EPCs–peripheral

blood, DGC
2, 20, & 200μg/ml 7 days

Low conc. ↗,
high conc. ↘

↗

Shen et al. [41] 2010
Human EPCs–peripheral

blood, DGC
2, 20, & 200 μg/l 24, 48, and 72 hours ↘ ↗

Sun et al. [42] 2009
Human EPCs–peripheral

blood, DGC
200μg/ml 24 hours ↗

Zhu et al. [43] 2012
Human EPCs–peripheral

blood, DGC
15 to 3704 μg/l or
250 to 1000 μg/l

24, 48, and 72 hours ↘ -

SC: stem cell; PC: progenitor cells;↘: decrease;↗: increase; -: no effect; EPCs: endothelial PC; PMBC: peripheral bloodmononuclear cell; DGC: density-gradient
centrifugation; MGO: methylglyoxal.

Table 2: Summary of included studies using EPCs isolated from the bone marrow. Summary of the isolation procedure and sampling, AGEs
concentration, application duration, and effect on outcome measurement proliferation and apoptosis.

Study name Year Isolation PC AGEs application Effect on outcome
Concentration Duration Proliferation Apoptosis

Chen et al. [45] 2010
Rat–bone marrow,

DGC
50, 100, 150, 200, & 400μg/ml 24 hours ↘ ↗

Chen et al. [46] 2016
Rat–bone marrow,

DGC
400μg/ml 24 hours ↘ ↗

Jin et al. [47] 2018 Mice–bone marrow, DGC 100, 200, & 400μg/ml 24 hours ↘ ↗

Kim et al. [48] 2018 Mice–bone marrow, DGC 250, 500, 600, & 750μM 24 hours ↘

Li et al. [49] 2017
Rat–bone marrow,

DGC
200μg/ml 24 hours ↗

Li et al. [50] 2012
Rat–bone marrow,

DGC
50, 100, 200, &

500μg/ml
24 hours ↗

Zeng et al. [51] 2017 Rat–bone marrow 200μg/ml 48 hours ↘ ↗

Wang et al. [52] 2019
Rat–bone marrow,

DGC
100, 200, & 400mg/l 12, 24, and 48 hours

Low conc. ↗,
high conc. ↘

PC: progenitor cells; ↘: decrease; ↗: increase; DGC: density-gradient centrifugation.
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generally ranging up to 500μg/ml. This was confirmed by
Scheubel et al. [40] and Wang et al. [52]. Low concentrations
of AGEs induce cell proliferation in EPCs, whereas at higher
concentrations, they decrease the proliferative capacity of
these cells. The concentrations of AGEs used in several
in vitro studies are varying but generally reflect the physio-
logical concentration of AGEs found in samples of patients.
Indeed, AGEs-albumin concentration in diabetic patients
has been shown to range from 50 to 400μg/ml [71, 72]. In
patients suffering from cardiovascular diseases, AGEs levels
can rise to concentrations up to 200μg/ml [73]. Other stud-
ies report lower AGEs concentrations in vivo in the range of
several ng/ml, for example, in patients with early-stage
Alzheimer’s disease [74]. However, estimation of reliable
AGEs concentrations in vivo is challenging, because of the
heterogeneity of different types of AGEs and the different
analytical methods used for measuring these AGEs [75].

Therefore, investigating a broad range of AGEs concentra-
tions in vitro is necessary. Furthermore, in in vitro experi-
ments, stem cells are exposed to AGEs in short term, while
in several diseases, stem cells are exposed to AGEs for
months or years. Therefore, subjecting these cells to higher
concentrations of AGEs in vitro compared to the in vivo sit-
uation remains relevant [48].

In the same line of controversial results, Meneghini et al.
[68] reported an increase in NSC proliferation after AGEs
application, with concentrations ranging from 25 to
100μg/ml. A possible explanation for these controversial
results could be, as stated in their article, that AGEs and other
ligands of the RAGE receptor like HMGB1 and S100
calcium-binding protein B, are enhancing stem cell prolifer-
ation. Due to traumatic or ischemic brain injury, the binding
of these specific ligands to the RAGE receptor can activate
the NF-κB signaling pathway, thereby inducing endogenous

Table 3: Summary of included studies using MSCs. Summary of the isolation procedure and sampling, AGEs concentration, application
duration and effect on outcome measurement proliferation and apoptosis.

Study name Year Isolation SC AGEs application Effect on outcome
Concentration Duration Proliferation Apoptosis

Duruksu et al. [61] 2018 Rat–pancreatic islets explants
Modified collagen

10μg/cm2 24, 48, & 62 hours ↗

Fang et al. [53] 2020 Human–periodontal ligament 100μg/ml 1 to 7 days ↘ ↗

Kim et al. [54] 2013 Rat–bone marrow 300μg/ml 24 hours ↗

Lu et al. [55] 2012 Human–bone marrow
25, 50, 100, 200, 400,

& 800mg/l
6, 12, 24, 48, 72,
& 96 hours

↘

Sakamoto et al. [56] 2016 Rat–bone marrow 500μg/ml
7, 11, 13, 16, &

19 days
-

Sun et al. [57] 2013 Rat–bone marrow
50, 100, 200, &

400μg/ml AOPPs
24, 48, & 72 hours ↘

Weinberg et al. [58] 2014
Rat–bone marrow

stromal cells
50, 100, 200, & 400μg/ml 16 hours ↗

Xu et al. [59] 2019 Rat–Achilles tendons
100, 200, &
400μg/ml

24 hours ↘ ↗

Yang et al. [60] 2010 Rat–Bone marrow
25, 50, 100, &
200μg/ml

6, 12, & 24 hours ↘

SC: stem cells; AOPPs: advanced oxidation protein products; ↘: decrease; ↗: increase; -: no effect.

Table 4: Summary of included studies using ADSCs. Summary of the isolation procedure and sampling, AGEs concentration, application
duration, and effect on outcome measurement proliferation and apoptosis.

Study name Year Isolation SC AGEs application Effect on outcome
Concentration Duration Proliferation Apoptosis

Li et al. [62] 2018
Human–adipose tissue

samples enzymatically digested
100, 200, 400, 800,
& 1600μg/ml

8, 12, 24, & 48 hours ↗

Li et al. [65] 2020
Mice–adipose tissue samples

enzymatically digested
20, 40, 80, & 160μg/ml 1, 2, & 4 days ↘

Wang et al. [63] 2015
Human–adipose tissue

samples enzymatically digested
50, 100, 300, & 500μg/ml 24 hours ↗

Wang et al. [64] 2016
Human–adipose tissue

samples enzymatically digested
300μg/ml 24 hours ↗

Zhang et al. [66] 2018
Rats–adipose tissue samples

enzymatically digested
40, 80, 120, & 160μg/ml 1, 4, & 7 days ↘

SC: stem cells; ↘: decrease; ↗: increase.

6 Stem Cells International



repair [68]. By increasing stem cell proliferation via the NF-
κB axis, damaged neurons and glia cells are replaced to repair
the injured regions after brain injury. In line with these find-
ings and hypothesis, Romanko et al. [76] and Jin et al. [77]
also reported that neural progenitor cells in the subventricu-
lar zone proliferate and replace damaged neural cells after
moderate brain insults.

4.2. Mechanisms Involved in the Decreased Proliferation or
Increased Apoptosis

4.2.1. AGEs Activate the Intrinsic and Extrinsic Apoptosis
Pathways. How AGEs interfere with the various apoptosis
pathways is depicted in Figure 2. Wang et al. [69, 70]
reported a decrease in proliferation of NSCs via PPARγ inhi-
bition. PPARγ is responsible for blocking the caspase cascade
in both the extrinsic and intrinsic apoptosis pathways
(Figure 2) [78]. AGEs downregulate PPARγ protein expres-
sion, which causes a release of caspase blockage, resulting in
apoptosis stimulation. AGEs can interact with RAGE in
order to activate multiple cellular signaling cascades, includ-
ing MAP kinase (MAPK) pathways [79]. PPARγ phosphory-
lation is therefore increased, resulting in a decrease of PPARγ
transcriptional activity. Indeed, it has been shown that
PPARγ agonists like rosiglitazone [39] or pioglitazone [59],
added to in vitro cultures of EPCs and MSCs, respectively,
reverse the deleterious effects of AGEs via PPARγ activation.
This is also confirmed in other cell types like chondrocytes
[79], macrophages, or endothelial cells [80].

Apoptosis can also be induced via the intrinsic mitochon-
drial pathway (Figure 2) [78]. Bax, a proapoptotic, and Bcl-2,
an anti-apoptotic regulatory protein, are involved in this
pathway. Li et al. [49] identified that this intrinsic pathway
was activated in MGO-stimulated EPCs via the reduction of
miRNA-27. miRNA-27 is antagonizing this intrinsic apopto-
sis pathway. If AGEs downregulate miRNA-27, the apoptotic
pathway is stimulated in an indirect manner. These data were
confirmed by Jin et al. [47]. Another indirect way of inducing
apoptosis is via Akt signaling. Chen et al. [37] showed that
AGEs downregulate Akt, which is normally responsible for
the inhibition of caspase activation [81]. AGEs exposure
can also lead to increased Bax expression and to a reduction
of Bcl-2 expression, stimulating apoptosis in EPCs [44].

4.2.2. RAGE Activation Leads to MAP Kinase Activation and
Generation of ROS. Figure 3 shows how activation of RAGE
can induce apoptosis and reduce proliferation through the
activation of several MAPK pathways. Zhang et al. [66] and
Wang et al. [63, 64] reported activation of the AGEs/RAGE
signaling pathway in ADSCs after exposure to AGEs.
Binding of AGEs to their receptor RAGE activates the
JNK and p38/MAPK pathways (Figure 3). Phosphorylation
of JNKs and p38 causes upregulation of proapoptotic tran-
scription factors in the nucleus, leading to an increase in
apoptosis [82, 83]. In EPCs [41, 42, 46] and MSCs [53,
54, 58, 60], JNK/MAPK pathways are also activated by
AGEs, leading to an increase in apoptosis. In addition,
AGEs activate the MAPK pathways via excessive ROS gen-
eration. AGEs can decrease the availability of antioxidant
enzymes, leading to increased oxidative stress [36, 38,
45]. Furthermore, RAGE activation by AGEs can directly
induce activation of NADPH oxidase, leading to formation
of ROS [84]. Next to the damaging effects of ROS on DNA
and proteins, oxidative stress can also be a trigger for acti-
vating apoptosis via the JNK and p38/MAPK pathways. In
MSCs and EPCs, excessive ROS production is thought to
be responsible for the inhibitory effect of AGEs on stem
cell proliferation [51, 55, 57].

Zhu et al. [43] investigated the effect of AGEs on the
ERK/MAPK pathway. The ERK/MAPK pathway, in contrast
to the JNK and p38/MAPK pathways, is responsible for cell
growth (Figure 3) [85]. Activation of ERK via phosphoryla-
tion causes translocation to the nucleus where it induces
transcription of factors related to cell growth and prolifera-
tion [86]. Zhu et al. [43] reported that AGEs caused less acti-
vation and phosphorylation of ERK, leading to decreased
activation of growth transcription factors, resulting in a
reduced proliferation.

4.2.3. AGEs Induce Changes in Extracellular Matrix
Composition and Stem Cell Attachment. Blackburn et al.
[34] suggest that changes in extracellular matrix (ECM) pro-
teins play a key role to induce stem cell dysfunction. AGEs-
modified ECM has been shown to support less adhesion
and retention of the stem cells, thereby causing detachment
of stem cells which results in cell death [34]. In addition,
the inhibitory effect of AGEs on EPCs derived from blood

Table 5: Summary of included studies using NSCs. Summary of the isolation procedure and sampling, AGEs concentration, application
duration, and effect on outcome measurement proliferation and apoptosis.

Study name Year Isolation SC AGEs application Effect on outcome
Concentration Duration Proliferation Apoptosis

Fleitas et al. [67] 2018
Rat–brain tissue samples,
outgrowth neurospheres

BDNF modified with 50μM
GO or MGO

6 days ↗

Meneghini et al. [68] 2010
Rat–brain tissue samples,
outgrowth neurospheres

25, 50, 100 μg/ml 4 days ↗

Wang et al. [69] 2009
Rat–brain tissue samples,
outgrowth neurospheres

0, 50, 100, 200, & 400mg/l 3 & 7 days ↘

Wang et al. [70] 2011
Rat–brain tissue samples,
outgrowth neurospheres

200 & 400mg/l 3 days ↘

SC: stem cells; BDNF: brain-derived neurotrophic factor; GO: glyoxal; MGO: methylglyoxal; ↘: decrease; ↗: increase.

7Stem Cells International



is also due to the modification of cell attachment and
decreased capacity to adhere [40]. A possible underlying
mechanism is that, at the site of injury, the recruited progen-

itors need to adhere to the preexisting vascular cells. AGEs
block the RGD domain, a peptide sequence which is recog-
nized by cell surface integrins. Therefore, EPCs cannot
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Figure 2: Interference of AGEs in the extrinsic and intrinsic apoptosis pathways. Via the extrinsic as well as intrinsic pathways, AGEs lead to
an increase in apoptosis. AGEs release the blockage of PPARγ on the caspase cascade. In addition, AGEs reduce the expression of miRNA-27
and Akt, increase the expression of BAX protein whereas the antiapoptotic Bcl-2 is inhibited, all resulting in an increase in apoptosis.
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Figure 3: Interference of AGEs in the MAPK pathways. AGEs lead to an increase in apoptosis or a decrease in proliferation via the MAPK
pathways. RAGE activation by AGEs causes activation of MAPK, which leads to phosphorylation of JNK and p38. These phosphorylated
proteins increase the transcription of different proapoptotic transcription factors (TF), leading to an increase in apoptosis. Next to that,
AGEs inhibit the phosphorylation of ERK, which normally promotes the transcription of growth factors leading to proliferation. Finally,
AGEs also induce ROS formation by reducing the availability of antioxidant enzymes, which directly leads to DNA and protein damage.
Indirectly, ROS interferes in the JNK/p38 MAPK pathway.
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attach, spread, or migrate, leading to a decrease in their pro-
liferative capacities [35].

4.2.4. Alternative Signaling Pathways Affected by AGEs.
According to Fleitas et al., [67] AGEs inhibit the processing
from probrain-derived neurotrophic factor (pro-BDNF) to
mature BDNF. BDNF is involved in neurotropic signaling
including differentiation, survival, and synaptic plasticity of
various populations of nerve cells, involved in tissue repair.
Therefore, an increase in AGEs possibly cause an increased
pathogenicity.

In addition, activation of RAGE can lead to the synthesis
of miRNAs in stem cells known to regulate apoptotic signal-
ing via intracellular ROS production. Li et al. [62] have found
that miR-5591-5p is upregulated in ADSCs, when stimulated
with AGEs. In the future, more insights on miRNA-mediated
effects on stem cells is necessary, as it has been shown that
microRNAs are key regulators in self-renewal processes in
different types of stem cells [87].

4.3. Different Strategies to Improving Viability of Stem Cells by
Tackling AGEs. AGEs have detrimental effects on the viabil-
ity of various primary stem cell types. However, tackling
the deleterious effects of AGEs on stem cells is until now
neglected but could potentially improve stem cell retention
and viability. This could be achieved by several strategies,
suggested by several studies [88], which are summarized in
Figure 4. A first option is blocking RAGE with different syn-
thetic small molecules [89], RAGE inhibitors such as FPS-
ZM1 [90] or anti-RAGE antibodies [91]. Consequently,
downstream pathways in the RAGE axis are not activated.
Thereafter, directly blocking proteins involved in the apopto-
tic or RAGE pathway could be a way to interfere in the
molecular pathways activated by AGEs. For example, MAPK
can be targeted in order to block cellular signaling [92]. How-
ever, clinical trials reveal issues which relate to limited drug
efficacy and toxicity of these compounds. AGEs and their

precursors can also be directly inhibited or scavenged [93].
By increasing sRAGE, AGEs are trapped, RAGE is not acti-
vated, and the mediated signaling is attenuated. In addition,
AGEs can also be broken down or AGEs formation can be
suppressed [94]. Finally, ROS scavengers or antioxidants like
N-acetylcysteine (NAC) can reduce oxidative stress levels
and might interfere in the AGEs pathway. By these interven-
tions, stem cell properties and viability could be improved.
Such approaches require scientific proof but could open
new therapeutic insights into stem cell transplantation as
an effective regenerative therapy.

5. Conclusion

AGEs are increased in a lot of pathological situations and
have detrimental effects on various tissues and cell types. In
this systematic review, we show that AGEs impair the prolif-
eration and apoptosis on different types of primary stem cells
in vitro. These effects can be executed throughout several
underlying mechanisms such as activation of RAGE or apo-
ptotic pathways and excessive ROS generation. In the future,
tackling this negative impact of AGEs on stem cells could
improve stem cell properties, retention, and viability. Such
approaches require solid scientific proof but could open
new therapeutic insights into stem cell transplantation as
an effective regenerative therapy.
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