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STUDY QUESTION: Can a high-throughput screening (HTS) platform facilitate male fertility drug discovery?

SUMMARY ANSWER: An HTS platform identified a large number of compounds that enhanced sperm motility.

WHAT IS KNOWN ALREADY: Several efforts to find small molecules modulating sperm function have been performed but none have
used high-throughput technology.

STUDY DESIGN, SIZE, DURATION: Healthy donor semen samples were used and samples were pooled (3–5 donors per pool).
Primary screening was performed singly; dose–response screening was performed in duplicate (using independent donor pools).

PARTICIPANTS/MATERIALS, SETTING, METHODS: Spermatozoa isolated from healthy donors were prepared by density
gradient centrifugation and incubated in 384-well plates with compounds (6.25 lM) to identify those compounds with enhancing effects on
motility. Approximately 17 000 compounds from the libraries, ReFRAME, Prestwick, Tocris, LOPAC, CLOUD and MMV Pathogen Box,
were screened. Dose–response experiments of screening hits were performed to confirm the enhancing effect on sperm motility.
Experiments were performed in a university setting.

MAIN RESULTS AND THE ROLE OF CHANCE: From our primary single concentration screening, 105 compounds elicited an
enhancing effect on sperm motility compared to dimethylsulphoxide-treated wells. Confirmed enhancing compounds were grouped based
on their annotated targets/target classes. A major target class, phosphodiesterase inhibitors, were identified, in particular PDE10A inhibi-
tors as well as number of compounds not previously known to enhance human sperm motility, such as those related to GABA signalling.

LARGE SCALE DATA: N/A.

LIMITATIONS, REASONS FOR CAUTION: Although this approach provides data about the activity of the compound, it is only a
starting point. For example, further substantive experiments are necessary to provide a more comprehensive picture of each compound’s
activity, the effect on the kinetics of the cell populations and subpopulations, and their potential mechanisms of action. Compounds have
been tested with prepared donor spermatozoa, incubated under non-capacitating conditions, and only incubated with compounds for a
relatively short period of time. Therefore, the effect of compounds under different conditions, for example in whole semen, for longer in-
cubation times, or using samples from patient groups, may be different and require further study. All experiments were performed in vitro.
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WIDER IMPLICATIONS OF THE FINDINGS: This phenotypic screening assay identified a large number of compounds that increased
sperm motility. In addition to furthering our understanding of human sperm function, for example identifying new avenues for discovery,
we highlight potential compounds as promising start-point for a medicinal chemistry programme for potential enhancement of male fertility.
Moreover, with disclosure of the results of screening, we present a substantial resource to inform further work in the field.
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Introduction
Sperm dysfunction is the single most common cause of infertility.
However, there is an absence of new diagnostic tools and non-medi-
cally assisted reproduction (MAR) based treatments for the subfertile
man (Barratt et al., 2017; De Jonge and Barratt, 2019). A fundamental
obstacle is the relative paucity of knowledge of the production, forma-
tion, maturation and physiological functions of both the normal and
dysfunctional spermatozoon. There is an urgent need to address this
knowledge gap to formulate appropriate diagnostic assays, develop
rational therapies and understand how external factors, such as the
environment, influence these processes (Barratt et al., 2021).

Although some progress has been made in our understanding of the
workings of the mature spermatozoon using tools such as proteomics,
electrophysiology and imaging, one area in which there has been mini-
mal progress is the development of an effective high-throughput screen-
ing (HTS) system using motile human spermatozoa (Martins da Silva
et al., 2017). Current methods for assessment of sperm quality are
time-consuming and inappropriate for high-throughput drug discovery
(Schiffer et al., 2014; Tardif et al., 2014). One way around this has been
to utilize HTS assays with surrogate measures of sperm function such as
intracellular calcium concentration [Ca2þ]i (Schiffer et al., 2014; Martins
da Silva et al., 2017). Although informative, these do not directly assess
cell function and have key limitations. For example, [Ca2þ]i should not
be used as a surrogate of sperm motility, as a number of compounds
can generate an increase in [Ca2þ]i but have no significant effect on mo-
tility (Martins da Silva et al., 2017; McBrinn et al., 2019). To provide a
transformative leap in understanding an HTS system for the assessment
of quantitative motility is necessary. Recently, a phenotypic platform has
been developed which examined human sperm motility in a high-
throughput manner (Gruber et al., 2020; Johnston et al., 2022).

Although this HTS system has been used to identify potential com-
pounds for male contraception, i.e. those having a negative effect on
human sperm function, it can conversely be used to uncover elements
of sperm cell biology and function, and to identify compounds that en-
hance sperm function. For example, it allows for large scale screening
of not only approved drugs, target-class specific libraries (such as ion
channels, kinase inhibitors) but also large libraries of chemically diverse
lead-like small molecules that could provide the starting point for me-
dicinal chemistry. In this study, we utilized this HTS system to examine
six libraries incorporating �17 000 compounds with the dual aim of
furthering our understanding of human sperm function and, generating
possible starting points for a medicinal chemistry programme for po-
tential enhancement of male fertility.

Materials and methods

Experimental design
We used an HTS screening platform to assess the motility of live
human spermatozoa. The platform and its development are described
in detail in Gruber et al. (2020) and summarized below in brief. The
platform was used to screen six compound libraries for their enhancing
effects on motility. Whilst we have developed a screening module for
detection of the acrosome reaction using flow cytometry (Gruber
et al., 2020), this was not examined in this study in order to increase
throughput and focus on compounds affecting motility. The HTS
system and experimental design are illustrated in Fig. 1.

Selection and preparation of spermatozoa
Semen samples were obtained from volunteer donors. Written con-
sent was obtained from each donor in accordance with the Human
Fertilization and Embryology Authority (HFEA) Code of Practice (ver-
sion 8) under local ethical approval (13/ES/0091) from the Tayside
Committee of Medical Research Ethics B.

Donors had no known fertility problems and normal sperm concen-
trations, motility and semen characteristics according to Wolrd Health
Organisation (WHO) criteria (2010). Samples were obtained by mas-
turbation, after sexual abstinence of 2–5 days, and delivered to the re-
search laboratory within 1 h of production. Samples were allowed to
liquify at 37�C for 15–30 min prior to preparation by discontinuous
density gradient centrifugation (DGC). Gradients were prepared using
80% and 40% Percoll (Sigma Aldrich, UK) diluted with non-
capacitation media (Minimal Essential Medium Eagle Sigma M3024),
supplemented with HEPES, sodium lactate and sodium pyruvate to
achieve concentrations previously described (Tardif et al., 2014).

For initial screening, prepared donor spermatozoa (80% fraction)
were routinely pooled to create screening batches of three to five
donors to reduce donor-to-donor variability. After preparation by
DGC and pooling into screening batches, cells were incubated for 3 h
at 37�C under non-capacitating conditions, as described previously
(Gruber et al., 2020).

The high-throughput screening system
Full details of the HTS system, and its development, are discussed by
Gruber et al. (2020). In brief, screening batches of cells were trans-
ferred to a robotic platform (HighRes Biosolutions Inc.) and maintained
during the screen at 37�C. Assay-ready 384-well plates, containing
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..compounds were prepared prior to the screen, and filled with
�10 000 spermatozoa (20 ll) per well using a liquid handling system
(MultiDrop Combi; ThermoFisher). These plates were incubated for
10 min prior to imaging. The HTS system utilized a Yokogawa CV7000
Cell Voyager high-throughput microscope to record time-lapse images
from two positions in each well. An adaptation of a tracking algorithm,
Trackpy v0.4.1 (Allan et al., 2018), was utilized to track individual sper-
matozoa within each well and obtain kinematic parameters. Within
the compound-test plates, dimethylsulphoxide (DMSO) was used
as the vehicle control. Compounds in the plates were allocated at
random.

Libraries screened
The Pathogen box (generously provided by Medicines for Malaria
Venture (MMV), https://www.mmv.org/mmv-open/pathogen-box/
about-pathogen-box) is a small repurposing library assembled to
screen against rare and neglected tropical diseases containing �400

diverse, drug-like molecules with demonstrated biological activity
against different pathogens.

The CeMM Library of Unique Drugs (CLOUD) purchased from
Enamine (https://enamine.net/hit-finding/compound-collections/biore
ference-compounds/the-comprehensive-drug-collection-cloud) is a set
of 263 small molecules representing the target and chemical space
of FDA-approved drugs that has been used for drug repurposing.

Tocris compound library (Tocris, Bristol, UK, https://www.tocris.
com/products/tocriscreen-plus_5840) comprises 1280 biologically
active small molecule compounds.

LOPACVR 1280LOPAC (Library of Pharmacologically Active
Compounds https://www.sigmaaldrich.com/life-science/cell-biology/
bioactive-small-molecules/lopac1280-navigator.html) composes a bio-
logically annotated collection of inhibitors, receptor ligands, pharma-
developed tools and approved drugs which impact many signalling
pathways and covers all major drug target classes (1280 compounds).

Prestwick Chemical Library (http://www.prestwickchemical.com/
libraries-screening-lib-pcl.html) comprising 1280 off patent drugs with

Figure 1. Summary of screening platform and compound screening cascade. (A) Motility screening overview as in Gruber et al. (2020).
Donated human sperm are pooled and used for automated compound screening to detect compounds which increase sperm motility. DMSO is the
vehicle control and the compound label represents a compound which increases motility (reflected by the green arrows). (B) Overview of screened
compound libraries and follow-up steps. If a compound is selected as a potential hit in the initial screen, dose–response experiments are performed
(hit confirmation). Analysis of the compounds with confirmed effects by a dose–response experiment provided some indication of potential target
class (data analysis). DMSO, dimethylsulphoxide.
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.
high chemical and pharmacological diversity as well as known bio-
availability and safety in humans (1280 compounds).

ReFRAME (Repurposing, Focused Rescue, and Accelerated
Medchem) consists of �12 000 approved drugs, in-development small
molecules and bio-active compounds in the initial library and was con-
structed as a library for potential drug repurposing (Janes et al., 2018).
The advantages of using this library was the potential to identify chemi-
cal compounds that are already approved for other indications or have
undergone (or currently undergoing) clinical trials or have IND
(Investigational New Drug) approval, hence potentially accelerating the
progress towards a safe and effective enhancer of motility. CALIBR
kindly provided up to 1% of hits for subsequent dose–response experi-
ments. Only the structures of confirmed hits were unblinded. We also
received a further 950 compounds, which were been added at a later
stage to the ReFRAME collection (termed Reframe supplement).

Data normalization and hit confirmation
All steps were performed as previously described (Gruber et al.,
2020). In summary, data from every compound well were normalized
to those from in-plate DMSO controls (wells containing the same
amount of DMSO as compound wells). Two positions were recorded
in every well and the average of those positions was used for calculat-
ing % of control ¼ (VCL median/DMSO median) � 100, where cur-
velinear velocity (VCL) median is the median of all sperm tracks
(immotile, non-progressively motile, progressively motile) in each test
well and DMSO median is the median of all 16 DMSO control wells
on the corresponding plate. Hits from the primary screening were
chosen based on percentage change compared to the control: 40%
(for ReFRAME first batch, MMV Pathogenbox) or 20% (for LOPAC,
CLOUD, Tocris, Prestwick, ReFRAME Supplement).

Hit compounds were examined in subsequent dose–response
experiments. These consisted of two independent experiments utilizing
different biological material (i.e. pooled spermatozoa samples from at
least three different donors in each experiment). A compound was
only identified as having a positive effect if it was confirmed in these
dose–response experiments. Dose–response curves consisting of a se-
ries of 8-points with 3-fold dilution (with 10mM top concentration)
were fitted using the DR4PL (four-parameter logistic fit) package in R

from which ECx (half-maximum effective concentration of � % effect)
was estimated.

Hit analysis
Chemical space was visualized by generating Morgan fingerprints using
RDKit (radius ¼ 2, bits ¼ 2048) and using UMAP (Unifold Manifold
Approximation and Projection) (McInnes et al., 2018) for dimensional-
ity reduction. Physico-chemical properties were calculated using RDKit
(https://www.rdkit.org) and KNIME (Berthold et al., 2008).

Results
In order to find compounds that positively enhance sperm motility, we
used an HTS platform (Fig. 1A), to screen �17 000 compounds com-
prising a variety of small molecule libraries (Fig. 1B). Primary hits were
identified based on percentage effect relative to DMSO control. These
limits varied among the libraries and produced a hit rate between
0.3% and 1.9% (Table I). Primary hit compounds were confirmed in
subsequent dose–response experiments and, in total 105 compounds
were identified as confirmed hits (Supplementary Table SI), with mod-
erate to high motility enhancing activity (Table I, Fig. 2A,
Supplementary Table SI). Motility enhancing compounds shift the VCL
of the population towards faster moving sperm cells compared to
DMSO-treated wells (Fig. 2B–E, Supplementary Movie S1). The con-
firmed hits were annotated (broad definitions based on vendor anno-
tations) to affect a variety of protein target classes (Fig. 3A,
Supplementary Table SI).

Some compounds could not be assigned to a clear target class,
however, of the annotated compounds, protein kinase inhibitors and
phosphodiesterase inhibitors were the most common target classes
(Fig. 3A). Another prominent target class were receptor modulators
(inhibitor, agonist, antagonist), some of which are related to GABA sig-
nalling (Fig. 3A and C, Panel 1, Supplementary Table SI).

The most potent hits had sub-micromolar potency and substantial
effects on motility (up to 190% compared to DMSO controls
(Table II, Supplementary Table SI)). Chemical space visualization
(Fig. 3B) reveals that several confirmed hits have similar or identical
structures (Fig. 3C). The small molecule libraries used had some

............................................................................................................................................................................................................................

Table I Summary table of screened libraries.

Library No. of compounds No. of increaser hits Hit cut-off1 % Hit rate

ReFRAME �12 000 37 �40%2 0.3

ReFRAME supplement �950 9 20% 0.9

Prestwick chemical library 1280 4 20% 0.3

Tocriscreen plus 1280 24 20% 1.9

LOPAC 1280 20 20% 1.6

MMV pathogenbox 400 8 40% 2

CLOUD 263 3 20% 1.1

Total 17 503 105 – 1.2

1Increase relative to DMSO control.
2Max. 1% resupply.
DMSO, dimethylsulphoxide; MMV, Medicines for Malaria Venture; ReFRAME, Repurposing, Focused Rescue, and Accelerated Medchem.
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Figure 2. Primary screening results with examples. (A) Primary screening data from all screened libraries. Data are presented as a percent-
age of the control, which is defined as a well median VCL (including all sperm tracks) relative to a median VCL of vehicle (DMSO) control wells.
Dashed lines represent hit cut-offs for each library. Each dot represents an individual compound and black dots represent hits with motility increase
above the cut-off. (B) Example tracks of spermatozoa treated with Torin 2 or DMSO. The colour indicates the track class: IM (immotile), NPM (non-
progressively motile) or PM (progressively motile). (C) Fraction of classified sperm tracks and frequency distribution of sperm track VCL of a well-
treated with Torin 2. The x denotes a median of 16 DMSO wells in the same 384-well plate. (D) Example tracks of spermatozoa treated with
Linsitinib or DMSO. (E) Fraction of classified sperm tracks and frequency distribution of sperm track VCL of a well-treated with Linsitinib. The x
denotes a median of 16 DMSO wells in the same 384-well plate. DMSO, dimethylsulphoxide; VCL, curvelinear velocity.

Figure 3. Classification of screening results. (A) Summary of the target classes of compounds confirmed by dose–response experiments.
Target classes were identified according to library annotations. The ‘other/unknown’ category is comprised of compounds with no annotation avail-
able from the library vendor or unknown mode of action. (B) Chemical space visualization of motility enhancing compounds. Each enhancing com-
pound has been encoded as chemical fingerprint (Morgan Fingerprint) with 2048 bit features. All features have been reduced to two dimensions using
UMAP. The colour indicates screening library (left panel) or annotated target class (right panel). (C) Examples of similar hit structures with names
and library information related to GABA signalling (Panel 1, also highlighted in B) and mTOR signalling (Panel 2, also highlighted in B). UMAP, Unifold
Manifold Approximation and Projection.
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.overlapping compounds and a number of these were either consis-
tently active (e.g. SCH 58261, Torin2 (Fig. 3C, Panel 2) or Ethaverine)
or consistently inactive (e.g. Rolipram, Milrinone or Sildenafil). A small
number of compounds, for example Papaverine, were active in one li-
brary but not others.

One prominent target class of confirmed hits were phosphodiesterase
(PDE) inhibitors (Table II, Figs 3A and 4A). A number of these, TAK-
063, JNJ-42396302, RG-7203 and PF-2545920 have an annotation of
PDE10A inhibition (Table III, Fig. 4B) and showed sub-micromolar
responses (0.04–0.49mM) in dose–response experiments (Fig. 4B). All
annotated PDE10A inhibitors used in this study had an enhancing effect
on motility. For all four PDE10A inhibitors, a similar shift of VCL relative
to DMSO controls was observed (Fig. 4C) and we observed an increase
in the fraction of progressively motile cells (Fig. 4D). We did not detect
any enhancing effect of compounds belonging to the methylxanthine
class, e.g. IBMX or Pentoxifylline. Annotated PDE inhibitors used in this
study are summarized in Supplementary Table SII.

Discussion
The current study utilized a validated imaging-based screening platform
that measures fundamental aspects of human sperm behaviour
(Gruber et al., 2020) to screen a collection of chemical libraries
comprising �17 000 approved drugs, clinically tested compounds and
annotated chemical tool compounds for their potential to enhance
motility. The aim was to further our understanding of human sperm
function and generate possible start points for a medicinal chemistry
programme for potential enhancement of male fertility.

There are significant challenges in producing a suitable platform for
HTS of mature human spermatozoa (see Gruber et al., 2020), and de-
velopment is always a balance between achieving the necessary high
throughput, assay robustness and a detailed assessment of each com-
pound (see Johnston et al., 2022). In these experiments, initial screen-
ing was performed under non-capacitating conditions at one
concentration (6.25mM) with compounds being assessed after a rela-
tively short incubation (10–27 min). The data will therefore primarily
reflect the use of these conditions and it is possible that other permu-
tations, for example, screening under capacitating conditions, higher
concentrations and/or longer incubation times may generate different
results. In the current study, when a primary hit was identified, dose–
response experiments were undertaken to confirm the hit and provide
initial information on activity. Although this approach provides data
about the activity of the compound, it is only a starting point. For ex-
ample, further experiments are necessary to provide a more compre-
hensive picture of each compound’s activity and the effect on the
kinetics of the cell populations and subpopulations and to determine
their mechanisms of action (see McBrinn et al., 2019 for examples of
such investigations on human spermatozoa).

This study used spermatozoa from selected healthy donors rather
than samples from patients. This was because, firstly, the aims of the
study were to improve our understanding of the spermatozoon in ad-
dition to identifying possible compounds for further investigation; sec-
ondly, screening a large number of compounds requires substantial
numbers of semen samples and, thirdly, donor samples are relatively
homogenous. Future studies, using compounds, could subsequently
utilize selected patient groups, e.g. those with oligozoospermia, iso-
lated asthenozoospermia or oligoasthenozoospermia. These patient

............................................................................................................................................................................................................................

Table II Summary table of most potent screening compounds.

Compound ECX [mM]1 [% of control] Target action

TAK-063 0.04 145 Phosphodiesterase inhibitor

RFM-012-216-7 0.14 128 Unknown

GW 843682X 0.17 192 Protein kinase inhibitor

Torin2 0.22 196 Protein inhibitor

Linsitinib 0.24 191 Receptor inhibitor

Tolafentrine 0.26 153 Phosphodiesterase inhibitor

Epetirimod 0.32 166 Unknown

E6005 0.33 151 Phosphodiesterase inhibitor

GABAalpha2/alpha3 agonists 0.35 138 Receptor agonist

JNJ-42396302 0.39 158 Phosphodiesterase inhibitor

NM-702 0.48 152 Phosphodiesterase inhibitor

RG-7203 0.49 162 Phosphodiesterase inhibitor

Trequinsin hydrochloride 0.5 143 Phosphodiesterase inhibitor

Dextofisopam 0.54 143 Unknown

Papverine 0.55 175 Phosphodiesterase inhibitor

LY-3023414 0.56 140 Protein kinase inhibitor

KF 15832 0.61 143 Phosphodiesterase inhibitor

STL515575 0.62 140 Unknown

Carbazeran 0.63 146 Phosphodiesterase inhibitor

1Half maximal effective concentration.
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Figure 4. Confirmation of PDE10A inhibitor hits. (A) Summary graph of PDE inhibitor classes based on vendor annotation or available infor-
mation resources (ChEMBL, PubChem, DrugBank). (B) Dose–response curves of four PDE10A inhibitors, with structures and physico-chemical
properties. Blue line: four parameter logistic model. ECx, estimated half-maximum concentration. Each dot represents an individual data point, n ¼ 2
for each concentration with data collected from two independent dose–response experiments utilizing different biological material (i.e. pooled sper-
matozoa samples from different donors in each experiment). Physico-chemical properties are defined as: MW, TPSA and cLogP. Note that no
curve/ECx for PF-2545920 is shown due to noisy data at the two highest concentrations. (C) Frequency distributions of sperm VCL of each PDE10A
inhibitor shown in (B) at 1.25 mM concentration (blue) compared to DMSO control wells (grey). (D) Fraction of classified sperm tracks for each
PDE10A inhibitor at 1.25 mM concentration. The x denotes a median of 16 DMSO wells run in the same 384-well plate. cLogP, computed Crippen-
LogP; DMSO, dimethylsulphoxide; MW, molecular weight; PDE, phosphodiesterase; TPSA, topological polar surface area; VCL, curvelinear velocity.
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groups are heterogeneous with a variety of underlying causes (environ-
ment, genetic) and, as a consequence, different responses to the same
or similar compounds are possible (see Tardif et al., 2014).

The screening platform is complementary to a reductionist ap-
proach. Identification of several PDE inhibitors as confirmed hits in
dose–response experiments (discussed below) provide evidence of
the robustness of the HTS platform. Several phosphodiesterase inhibi-
tors (PDEis) (e.g. ibudilast, trequinsin hydrochloride and papaverine)
have previously been shown to significantly increase human sperm mo-
tility, confirming the ability of the HTS platform to identify compounds
which are effective at or below concentrations of 6.25 lM.
Furthermore, identical or related compounds which were present in
two or more libraries were identified. For example, ibudilast was
detected as a hit in both the LOPAC and Tocris libraries, and
Trequinsin hydrochloride was confirmed in the ReFRAME and Tocris
libraries. Another example is Torin2, a small molecule mTOR inhibitor,
which was also detected in two libraries (LOPAC and Tocris) along
with a structurally related compound (LY-3023414) with annotated
activity against mTOR (see Figs 2B and C and 3C, Panel 2). This is
intriguing as it has been recently described that in older men,
mTORC1 is inhibited in highly motile spermatozoa compared to
their defective/immotile counterparts (Silva et al., 2019). For the
largest library screened, the ReFRAME set, only 1% of the hits
were unblinded, limiting our ability to analyse less active and inac-
tive compounds from this set.

Of the target classes identified, PDE inhibitors (PDEi) account for
18/105 of the compounds found to increase sperm motility. This is
not surprising and several of the PDEi hits have been previously identi-
fied to increase human sperm motility, e.g. Dipyrimadole, Ibudilast,
Trequinsin Hydrochloride and Papaverine (Tardif et al., 2014).
Strikingly, a proportion of the PDEi hit compounds are annotated as
specific to PDE10A. Although relatively little has been published on
the effects of PDE10A inhibitors on human sperm, active PDE10A has
been identified (Marechal et al., 2017). Marechal confirmed their find-
ings in additional experiments with the newly available PDE10A inhibi-
tor MP-10 (Marechal et al., 2017). MP-10, also known as
Mardepodect or PF-2545920, was a hit in our screen (Supplementary
Table SII). Little information is available for the other PDE10A inhibi-
tors but the high representation of PDE10A inhibitors, combined with
their apparent potency, could indicate their potential for further inves-
tigations for use in fertility treatment and or MAR.

Several PDE inhibitors which have been well documented for their
effects on motility parameters of human sperm, including pentoxifylline

aminophylline, theophylline, pentoxifylline, caffeine, and 3-Isobutyl-1-
methylxanthine (IBMX) did not appear as hits (Supplementary Tables
SI and SII). While this might initially be surprising, it is worth noting
that initial screening conditions were at 6.25 lM for 10–27 min incuba-
tion and the actions of these drugs may require higher doses and/or
longer incubation times. IBMX, for example, is used at concentrations
from 30 lM to 1 mM (Lefievre et al., 2000; Pons-Rejraji et al., 2011;
Tardif et al., 2014; Marechal et al., 2017). Similarly, pentoxifylline has
been used at 3–4 mM (Tesarik et al., 1992; Burger et al., 2000;
Patrizio et al., 2000; Terriou et al., 2000), although conflicting reports
have found no improvement in human sperm motility at the same con-
centrations (Mathieu et al., 1994; Tournaye et al., 1994) and higher
concentrations of 10 mM have been used to examine its effects on
spermatozoa DNA damage (Banihani et al., 2018). Other such PDE
inhibiting compounds included Milrinone, a PDE3 inhibitor shown to
effect human spermatozoa motility at 50 lM (Lefièvre et al., 2002),
and rolipram, a PDE4 inhibitor with effects at 10mM (Marechal et al.,
2017). Sildenafil and its analogue Vardenafil were also screened with-
out appearing as a hit. PDE5 is expressed at low levels in human sper-
matozoa (Lefièvre et al., 2002) and its inhibition, in vitro, using sildenafil
can improve sperm motility. However, conflicting studies reported
that this effect requires vastly different concentrations. Lefievre et al.
(2000) report that an increase in progressive motility required concen-
trations of at least 100 lM, while Glenn et al. (2007) report an im-
provement in progressive motility with just 0.67 lM (Lefievre et al.,
2000; Glenn et al., 2007).

A substantial advantage of phenotypic screening is that it potentially
opens new areas for investigation to improve our understanding of cell
(Johnston et al., 2022). In this screen, in addition to those addressed
above, there are several examples that warrant further investigation.
For instance, enhancement of sperm motility by Linsitinib
(Supplementary Movie S1, Fig. 2D–E) that selectively inhibits IGF-1R
and the insulin receptor, is in keeping with the recent data of insulin
modulating human sperm survival (Aitken et al., 2021). Another novel
consistent finding was that modulation of c-Aminobutyric acid-GABA
resulted in an increase in sperm motility (Supplementary Table SI).
While there is significant literature on the role of GABA in induction
of the acrosome reaction there is little relating to human sperm motil-
ity. In the current data, GABAalpha2/alpha3 agonist and NS11394 (a
GABAA receptor modulator) significantly increased sperm motility.
Both are selective positive allosteric modulators of GABAA receptors,
albeit working on different GABAA receptor subtypes. Usually, they
are inert in the absence of GABA or an equivalent agonist. Moreover,
TP003 and U90042, also GABAA receptor agonists, were identified.
More detailed experiments examining modulation of GABA and asso-
ciated receptor complexes will uncover as yet undetermined biology
related to human sperm motility.

In summary, using a novel HTS, we identified a large number of
compounds that increased sperm motility. In addition to furthering our
understanding of human sperm function, for example identifying new
avenues for discovery such as the role of GABA in sperm motility,
we highlighted PDE10A inhibitors as promising starting point for a
medicinal chemistry programme for potential enhancement of male
fertility. Moreover, with full disclosure of the results of screening
(Supplementary Table SI), we present a detailed resource to inform
further work in the field.

......................................................................................................

Table III Summary table of confirmed phosphodiester-
ase (PDE) inhibitors.

Compound ECX [mM]1) [% of control]

TAK-063 0.04 145

JNJ-42396302 0.39 158

RG-7203 0.49 162

PF-2545920 n.d.2 130

1Half maximal effective concentration.
2ECX not determined.
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Supplementary data
Supplementary data are available at Human Reproduction online.
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line supplementary material.
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