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Abstract

Neonatal necrotizing enterocolitis (NEC) occurs worldwide and is a major source of neonatal

morbidity and mortality. Researchers have developed many methods for predicting NEC

diagnosis and prognosis. However, most people use statistical methods to select features,

which may ignore the correlation between features. In addition, because they consider a

small dimension of characteristics, they neglect some laboratory parameters such as white

blood cell count, lymphocyte percentage, and mean platelet volume, which could be poten-

tially influential factors affecting the diagnosis and prognosis of NEC. To address these

issues, we include more perinatal, clinical, and laboratory information, including anemia—

red blood cell transfusion and feeding strategies, and propose a ridge regression and Q-

learning strategy based bee swarm optimization (RQBSO) metaheuristic algorithm for pre-

dicting NEC diagnosis and prognosis. Finally, a linear support vector machine (linear SVM),

which specializes in classifying high-dimensional features, is used as a classifier. In the

NEC diagnostic prediction experiment, the area under the receiver operating characteristic

curve (AUROC) of dataset 1 (feeding intolerance + NEC) reaches 94.23%. In the NEC prog-

nostic prediction experiment, the AUROC of dataset 2 (medical NEC + surgical NEC)

reaches 91.88%. Additionally, the classification accuracy of the RQBSO algorithm on the

NEC dataset is higher than the other feature selection algorithms. Thus, the proposed

approach has the potential to identify predictors that contribute to the diagnosis of NEC and

stratification of disease severity in a clinical setting.

Introduction

Necrotizing enterocolitis (NEC) is one of the most devastating gastrointestinal diseases in the

neonatal intensive care unit (NICU), with significant morbidity and mortality [1]. It is esti-

mated that the incidence of NEC has been maintained at 3%-15%, and the mortality rate has

been maintained at 20%-30% for decades [2, 3]. In general, the diagnosis of NEC is based on a

combination of clinical, laboratory, and radiographic symptoms, most of which are
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nonspecific or even insidious [4, 5], such as abdominal distention and reduced bowel sounds

as clinical indications for feeding intolerance (FI) and NEC. These insensitive features hinder

timely diagnosis and accurate treatment. Due to the difficulty of early diagnosis of NEC and

the lack of reliable biomarkers, it is essential to develop an effective diagnostic model of NEC

to quickly and accurately identify the key information affecting the diagnosis and prognosis of

NEC, leading to more timely treatment.

NEC can be a rapidly progressing disease, and it may take only one to two days to progress

from initial symptoms to full-blown illness and death. The severity of the disease is usually

divided into "medical NEC" and" surgical NEC". Medical NEC refers only to medical manage-

ment, while surgical NEC involves surgical intervention. In addition, as the disease progresses,

the child’s symptoms become more pronounced and the risk of long-term complications

increases significantly, including neurocognitive impairment, developmental failure, short

bowel syndrome, and cholestasis [6–8]. Therefore, it is necessary to identify high-risk infants

before the disease progresses rapidly to ensure that therapeutic interventions can be initiated

as soon as possible before bowel resection is required.

In recent years, machine learning (ML) methods have been widely used to diagnose cancer

[9–11] and the other common diseases [12, 13]. Many researchers have developed prediction

models for early NEC diagnosis (suspected NEC + NEC) and graded NEC diagnosis (medical

NEC + surgical NEC). In the feature selection stage, they use statistical analysis to extract

important features. In the classification stage, most researchers use ML methods such as linear

discriminant analysis (LDA) [14, 15], random forest (RF) [16–18], or Light Gradient Boosting

Machine (GBM) [19] as classifier models. Table 1 summarizes some studies using ML for the

diagnosis or prognosis of NEC.

Most relevant studies perform well in the diagnosis and prognosis prediction of NEC. How-

ever, some key issues also need to be addressed. Firstly, most researchers use statistical meth-

ods to select features, which may ignore the correlation between features. Specifically, the idea

of statistical methods is to use statistical significance to explore the association between each

feature and category labels. Since there may be potential correlations between features, it is

crucial to consider the correlation between features to ensure that the best performing subset

of features is selected. Secondly, most researchers select a small number of features, which may

overlook features that are highly correlated with predicted outcomes. Therefore, in order to

solve the above problems, we need to include more features while considering their

correlation.

Table 1. Relevant studies involving ML methods for NEC diagnosis and prognosis.

Author Number of features in use classifier AUROC

NEC diagnosis (suspected NEC and NEC)

Pantalone, J. M. et al. 14 RF 87.7%

Lure, A. C. et al. 16 RF 98%

Jaskari, J. et al. 14 RF 80.6%

Gao, W. J. et al. 23 GBM 93.37%

NEC prognosis (medical NEC and surgical NEC)

Ji, J. et al. 9 LDA 84.38%

Sylvester, K. G. et al. 27 LDA 81.7%

Pantalone, J. M. et al. 14 RF 75.9%

Gao, W. J. et al. 23 GBM 94.13%

Abbreviations: RF, random forest; GBM, light gradient boosting machine; LDA, linear discriminant analysis.

https://doi.org/10.1371/journal.pone.0273383.t001
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Feature selection is a fundamental task in machine learning and statistics, and has been

proved to be an effective method to process feature-related data in previous studies [20, 21].

Feature selection methods fall into three categories: filter methods, wrapper methods, and

embedded methods. Filter methods [22–25] extract a subset of features from the initial dataset

and use the correlation score for each feature created based on statistical measures to filter fea-

tures. The advantage of this method is that the calculation is relatively easy and efficient. How-

ever, filter methods only rank features by their single-feature association with class labels and

thus tend to ignore correlations between features [26]. Wrapper methods [27, 28] integrate the

classification algorithm into the feature selection process. Because wrappers directly optimize

the target classification algorithm, they often achieve better classification performance than fil-

ters. Wrappers usually run much slower than filter methods due to their consideration of

inter-feature relationships [29]. Embedded methods [30–33] use a classification learning algo-

rithm to evaluate the validity of features, which retain the high precision of the wrapper meth-

ods and have the high efficiency of filter methods. However, the time complexity is relatively

high when processing high-dimensional data, and the redundant features cannot be

completely removed [34].

To address the above issues, various works are proposed to solve feature selection problems

using metaheuristics [35]. Most of them use genetic algorithms (GA) [36–39]. Meta-heuristic

algorithms based on swarm intelligence are also applied to feature selection, such as ant colony

optimization (ACO) [40, 41], particle swarm optimization (PSO) [42, 43], and bee swarm opti-

mization (BSO) [44, 45]. Although metaheuristic algorithms are very effective in solving fea-

ture selection problems, the increasing number of features makes this task more and more

difficult. Therefore, metaheuristic algorithms combined with machine learning and the other

areas of approaches may achieve better results [46, 47].

In this paper, we propose a novel algorithm called ridge regression and Q-learning strategy

based bee swarm optimization (RQBSO) metaheuristic algorithm to predict NEC diagnosis

and prognosis. Ridge regression is an embedded feature selection method. Compared with the

other feature selection methods, the ridge regression algorithm can filter out irrelevant features

while considering the correlation between features. Therefore, the ridge regression algorithm

will help to screen irrelevant variables and improve the efficiency of the meta-heuristic algo-

rithm search. To obtain the optimal feature subset, a Q-learning strategy based bee swarm

optimization (QBSO) metaheuristic algorithm is used. The advantage of Q-learning is that it

does not require a complete model of the fundamental problem, because learning is performed

by gathering experience referred to as trial-error [48]. By combining Q-learning with the BSO

algorithm, the BSO algorithm can be adaptive in the process of searching feature subsets. In

the classification stage, since the RQBSO method outputs sparse feature vectors, a linear SVM

specialized in processing such data is used as the classifier model.

Materials and methods

Datasets

Settings and patients. This retrospective observational study was conducted in the neo-

natal intensive care unit (NICU) of Jilin University First Hospital, China, from January 1, 2015

to October 30, 2021 in accordance with the Helsinki Declaration of the World Medical Associ-

ation. The study is approved by the Institutional Review Board of Jilin University First Hospi-

tal (Ethics No.2021-042). Due to the nature of the study, the informed consent from the

parents/guardians of the patients is waived.

The infants with the presentation of FI who underwent abdominal imaging were enrolled,

and their medical records were collected. FI is defined as “the inability to digest enteral
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feedings presented as gastric residual volume of more than 50%, abdominal distension or eme-

sis or both, and the disruption of the patient’s feeding plan” [49]. The exclusion criteria are as

follows: (a) congenital malformations, (b) spontaneous bowel perforation, (c) emergency sur-

gical conditions unrelated to NEC, and (d) incomplete information.

Data collection and definitions. The collected NEC and FI datasets include clinical

patient information obtained between diagnosis and discharge from the NICU. The final diag-

nosis is determined by two independent senior neonatologists from an examination of the

complete medical chart, including all perinatal and clinical findings, such as clinical manifesta-

tions, laboratory tests, the results of imaging, and the disease course. In case of disagreement

between the two neonatologists, a consensus is reached with the help of a senior expert. We

judge whether the infant experienced NEC based on modified Bell stage�IIA and then deter-

mine that the following criteria should be met in the whole disease course: (1) the presentation

of FI; (2) abdominal signs (such as bowel sound attenuation and abdominal tenderness) and

systemic signs (such as apnoea, lethargy, and temperature instability); and (3) antibiotics ther-

apy and withholding feeds for at least one week [2, 50].

The NEC group is further divided into a "medical NEC group" and a "surgical NEC

group". Medical NEC involves only medical management, including withholding feeds,

provision of parenteral nutrition, and empirical use of antibiotics, while surgical NEC

involves surgical interventions, including laparotomy and peritoneal drainage. To avoid

selection bias, infants who die from severe NEC disease are assigned to the surgical NEC

group. Timing of NEC onset (t0) is defined as the earliest occurrence of one of the follow-

ing, within 48 hours of confirmation: 1) first notification of abdominal problems by the

neonatologist, 2) abdominal radiographs or abdominal ultrasound ordered, 3) stopping

enteral feeding, or 4) initiation of antibiotics [51, 52]. To identify predictors of NEC diag-

nosis and disease severity, we evaluate perinatal, clinical, and laboratory variables includ-

ing treatment details prior to clinical onset of NEC in detail. A detailed description of each

variable is shown in the S1 Table.

Methods

In this paper, we propose a feature selection cascade framework to address NEC diagnosis and

prognosis prediction. Fig 1 shows the flowchart of our experiments, which can be divided into

three stages: data preprocessing, feature selection using the RQBSO algorithm, and model

classification.

All experiments are performed in a computer equipped with Jupyter notebook 3.6.1, which

contains 16 GB RAM and an i7-6700 CPU clocked at 3.40 GHZ. All analyses are performed

using the Scikit-learn library for Python 3.7 and the Matplotlib visualization tool.

Data preprocessing. First, we count the missing data and exclude clinical parameters

from the study if they are missing more than 30%. Then the remaining missing values are filled

using the k-nearest neighbor method. K-nearest neighbor filling is based on the principle that

missing values are estimated and filled by the eigenvalues of the k nearest neighboring samples.

Assuming that xai (the i-th feature of the a-th sample) is a missing value, the samples that do

not contain the missing value at the corresponding position will serve as providers of training

information (neighbors). The reciprocal of the Euclidean distance between the a-th sample

and the b-th sample is used as the weight in filling (Eq (1)).

oab ¼
1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k
ðxak� xbkÞ

2
p ð1Þ

where k denotes the k-th feature of the sample. The estimates of missing values can be filled
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Fig 1. The flowchart of the proposed method.

https://doi.org/10.1371/journal.pone.0273383.g001
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using a weighted averaging eigenvalue of the nearest neighbor samples (Eq (2)).

xai ¼
1

P
boab

X

b
xbioab

� �
ð2Þ

Obviously, the closer the sample is to the target structure, the smaller the Euclidean distance

between the two, the larger the weight factor and the greater the contribution provided to the

missing value padding. However, this method has a problem that it can only estimate continu-

ous variables, but not discrete variables. To address this drawback, we extend the existing k-

nearest neighbor algorithm for estimating discrete variables by voting based on the k-nearest

neighbor samples and using the nearest neighbor sample category with the most votes to fill in

the missing values, as shown in Eq (3).

xai ¼ Modefxbig; b 2 K ð3Þ

where K is the set of all k nearest neighbor samples.

By adopting a hybrid strategy missing value filling method, we not only make effective use

of the existing information, but also extend the application of the k-nearest neighbor feature

filling method so that it can be used to fill both discrete and continuous variables.

We normalize the raw NEC data by the z-score algorithm [53] to eliminate the effects of

inter-feature variation in magnitude and distribution. In addition, the normalized data can

improve the convergence speed and prediction accuracy of the ML model.

Feature selection using RQBSO algorithm. RQBSO framework is a feature selection

algorithm for the diagnosis and prognosis of NEC. It combines a ridge regression algorithm

and Q-learning strategy based BSO metaheuristic algorithm. Unlike BSO, it can filter out irrel-

evant features by ridge regression technique, so there is no need to traverse all features in the

search process of the BSO algorithm. Therefore, compared with BSO, the RQBSO algorithm

has a faster training speed. Figs 2 and 3 show the structure and pseudocode of the RQBSO

algorithm, respectively.

In the first stage of RQBSO, we collapse these NEC data vectors in the data input layer into

a NEC data matrix suitable for processing by the feature selection algorithm. Eq (4) shows the

process as

X ¼

x11 x12 . . . x1N

x21 x22 � � � x2N

..

. ..
. . .

. ..
.

xm1 xm2 � � � xmN

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð4Þ

where xij denotes the j-th feature of the i-th sample. The matrix X is fed to the next stage for

features prescreening.

In the second stage of RQBSO, ridge regression is used for preliminary screening of fea-

tures. The purpose is to filter out irrelevant features, reduce the space of the feature search, and

improve search efficiency. The optimization objective of Ridge is

Jð b
!
Þ ¼

Xm

i¼1
ðyi � b

!T � xi
!Þ

2
þ ljj b

!
jj

2

2
; l > 0 ð5Þ

where xi
! denotes the i-th sample, yi denotes the i-th label, and the regularization parameter λ

determines the compression degree of model coefficients. We use cross-validation to deter-

mine the appropriate λ value. To solve for the regression coefficient b
!

, we take the partial
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derivative of b
!

with respect to Eq (5), as shown in Eq (6)

J0ð b
!
Þ ¼ 2XTðY � X b

!
Þ � 2l b

!
ð6Þ

where X ¼ ½x1
!; x2
!; . . . ; xm

�!�
T
; Y ¼ ½y1

!; y2
!; . . . ; ym

�!�
T
. Let J0ð b

!
Þ ¼ 0, the value of b

!
can be

obtained (as shown in Eq (7)):

b
!
¼ ðXTX þ lIÞ� 1XTY ð7Þ

where I denotes identity matrix. The explainable model is obtained by filtering out the features

with regression coefficients equal to zero, and the purpose of feature screening is achieved.

In the final stage of RQBSO, the features that flow into the next stage are further filtered

using the QBSO feature selection method to obtain the optimal subset of features. The QBSO

method can be roughly divided into three stages: the determination of the search area, the

local search of the Q-learning strategy, and the determination of the optimal feature subset.

The determination of the search area. In the first iteration, 20% of features are randomly

generated as the initial feature set, which is used as the initial reference solution Refsol. To

obtain the feature subset of the search area, we use two different strategies to ensure that the

feature subset obtained is as different as possible. In the first strategy, the k-th feature subset is

generated by flipping starting from the k-th bit of RefSol with a flipping interval of n/flip bits.

Fig 2. The structure of the used RQBSO algorithm.

https://doi.org/10.1371/journal.pone.0273383.g002
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Here, flip is a hyper-parameter, and the size of this set is equal to the number of bees, which

determines the number of features to filter from Refsol. As an example, let n = 20 and filp = 5,

where n denotes the number of features in Refsol. If the index of features are 0 to 19, feature

subsets f0, f1, f2, f3 and f4 are obtained by flipping the following bits, as shown in Fig 4:

(0,5,10,15), (1,6,11,16), (2,7,12,17), (3,8,13,18) and (4,9,14,19). In the second strategy, the k-th

subset of features is obtained by flipping n/flip contiguous bits starting from the k-th bit. Fol-

lowing the previous example, the feature subsets f0, f1, f2, f3 and f4 are obtained by flipping the

following bits: (0,1,2,3), (4,5,6,7), (8,9,10,11), (12,13,14,15) and (16,17,18,19). With the above

two searching strategies, we determine the search area for each bee.

The local search of the Q-learning strategy. After determining the search area of the feature

sets, we perform a nearest neighbor search for each bee by flipping each bit of the feature set

separately. We denote the action of flipping the current feature as at(at2At) and the state as

Fig 3. The pseudocode of the used RQBSO algorithm.

https://doi.org/10.1371/journal.pone.0273383.g003
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st(st2St), where At = {at, at+1,. . .at+n}, St = {st, st+1,. . .st+n}, and denote at+1 as the action at the

next moment (flipping the next feature) and st+1 as the state resulting from that action. By

comparing the state at that moment with the next moment, we can obtain the reward rt when

searching for a subset of features in different neighborhoods, as shown in Eq (8).

rt ¼ Accðstþ1Þ;AccðstÞ < Accðstþ1Þ

rt ¼ Accðstþ1Þ � AccðstÞ;AccðstÞ > Accðstþ1Þ
ð8Þ

(

where Acc(st) denotes the classification accuracy of the selected feature subset in the current

state, and Acc(st+1) denotes the classification accuracy of the selected feature subset in the next

state. If the accuracy of selecting a subset of features in the current state is equal to that in the

next state, then the reward rt is calculated by comparing the number of selected features in the

two states, as shown in Eq (9).

rt ¼
1

2
� Acc stþ1

� �
; nbFeatures stð Þ > nbFeatures stþ1

� �

rt ¼ �
1

2
� Acc stþ1

� �
; nbFeatures stð Þ < nbFeatures stþ1

� �
ð9Þ

8
>><

>>:

where nbFeatures(st) denotes the number of features selected in the current state and nbFea-
tures(st+1) denotes the number of features selected in the next state. Then, we construct a Q-

table of states and actions to store the Q-values and obtain the most favorable action (subset of

features) based on the Q-values. The Q-values are calculated as shown in Eq (10).

Qðstþ1; atþ1Þ ¼ rt þ g � Qðst; atÞ ð10Þ

where 0�γ�1 denotes the discount parameter, Q(st+1, at+1) denotes the Q value under the

next state and action, Q(st, at) denotes the Q value under the current state and action, and the

initial value of Q value is zero. By comparing the Q values under each feature subset, we select

the feature subset with the largest Q value as the initial solution for each bee’s next search, and

continuously update the feature subset. The initial solution until a predetermined number of

iterations is reached (localInteration), and finally return an optimal solution as the result of

that bee’s search.

Fig 4. (a) solutions generated by the first strategy, (b) solutions generated by the second strategy.

https://doi.org/10.1371/journal.pone.0273383.g004
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The determination of the optimal feature subset. After determining the optimal solution for

each bee’s search, we compare its Q-value and return the feature subset corresponding to the

largest Q-value as the reference solution for the next iteration. Then the (1) and (2) are

repeated until a predefined number of iterations (MaxInteration) is reached. Finally, the fea-

ture set with the maximum Q-value is returned as the optimal feature subset. If the maximum

Q value determined in this iteration is less than the maximum Q value of the previous itera-

tion, we perform the diversification operation in the next iteration, that is, re-select 20% of the

features at random as the solution for the next iteration, and then perform the (1) and (2) pro-

cesses to determine the maximum Q value and continue the comparison with the current max-

imum Q value.

The advantage of the QBSO algorithm is that it processes learning through interactions

with the environment. At the same time, the Q-learning adaptive searching method is used to

avoid the problem of falling into local optimality.

Model classification. To evaluate the performance of the feature selection algorithm, we

use a supervised classification model called linear SVM to calculate the classification accuracy.

The linear SVM classifier is a popular supervised learning algorithm. It uses the computed

decision hyperplane to classify samples. The choice of the error penalty factor, which repre-

sents the error tolerance, significantly affects the accuracy of the linear SVM. In our experi-

ments, we use an SVM with a linear kernel function [54] and the parameter C set to 1.

Performance measurements

To obtain a highly robust model, we use ten-fold cross-validation in our experiments. Specifi-

cally, we randomly divide the experimental data into 10 equal parts. In each experiment, 9 cop-

ies of the data are selected in turn for training and the remaining data are tested. We take the

average of the 10 results as an estimate of the model accuracy.

A binary classification algorithm optimizes the parameters of a model and predicts that a

new sample belongs to the positive (P) or negative (N) group. The sizes of the positive and neg-

ative groups are respectively denoted as P and N. A positive sample is defined as a true positive

or false negative if it is predicted as positive or negative. A negative sample is defined as a false

positive or a true negative if its prediction is positive or negative. The numbers of true posi-

tives, false negatives, false positives, and true negatives are denoted as TP, FN, FP, and TN,

respectively. The binary classification performance is evaluated by the following measure-

ments, as [55]. This study defines recall (Rec) as the percentages of correctly predicted positive

samples, i.e. Rec = TP/(TP+FN). The overall accuracy is defined as Acc = (TP+TN)/(TP+FN
+TN+FP). F1-score is also known as F-measure or F-score and has been widely used to evalu-

ate the performance of a binary classification model [56]. F1-score is defined as 2�(Preci-
sion�Rec)/(Precision+Rec), and precision is defined as Pre = TP/(TP+FP). In addition, ROC

and PRC curves reflect the relationship between true positive rates and false positive rates, pre-

cision and recall, respectively. They are often used as performance graphing methods in medi-

cal decision-making [57].

Results

Study on the NEC cohort

Two datasets are created for analysis: dataset 1 include 447 patients, 296 (66.22%) are positive

for NEC (median gestational age 31.71 (30.00–34.00) [IQR] weeks), and 151 (33.78%) are clas-

sified as FI (median gestational age 31.71 (30.14–33.85) [IQR] weeks); dataset 2 include only

the NEC group (n = 296), in which a total of 91 patients (median gestational age 31.00 weeks

(28.86–33.71) [IQR]) undergo surgery and 205 patients (median gestational age 32.00 weeks
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(30.50–34.29)) undergo conservative treatment. Each dataset is consisted of 119 variables, and

the demographic factors, clinical characteristics, and laboratory results of each dataset are

shown in Table 2.

Comparison with other feature selection algorithms

We evaluate our proposed feature selection algorithm RQBSO and compare it with three

major groups of feature selection methods, including two filter methods, namely Max-Rele-

vance and Min-Redundancy (mRMR) [58] and ReliefF [59]. Three wrapper methods, namely

GA [39], BSO [44], and recursive feature elimination (RFE) [60]. Our method is also compared

with two leading embedded methods, namely LASSO [30], and Ridge regression [61]. The

important parameter settings of the RQBSO algorithm are shown in Table 3. The hyper-

parameters of other methods are detailed in S2 Table.

Fig 5A–5D and Table 4 show the comparison of the RQBSO algorithm with three sets of

feature selection methods using ten-fold cross-validation. As shown in Fig 5A and 5B, RQBSO

(orange curve) outperforms the other algorithms with AUROC values of 94.20% and 91.85%

on both datasets. For the same FPR level, both our method obtains a higher TPR value, which

is of great significance for the diagnosis and prognosis of NEC. The AUROC values of the two

filter methods (mRMR and reliefF) perform poorly due to the failure to consider the correla-

tion between features. The PRC curves in Fig 5C and 5D also confirms these results. RQBSO

has the highest AUPRC values on both datasets with 97.42% and 84.61%, respectively.

Table 4 shows that the classification accuracy of the NEC diagnosis and prognosis datasets

are 91.07% and 84.37%, respectively. The advantage of our experimental accuracy is signifi-

cant. In terms of accuracy, the prediction success rate of the RQBSO method exceeded 93% by

conducting experiments in both dataset 1 and dataset 2. Compared with the other feature

selection algorithms, our accuracy and precision are at a high level.

Feature importance analysis

We apply the RQBSO feature selection algorithm on dataset 1 and 2 to select the optimal fea-

ture set and calculate the final ranking of the selected features. The normalized importance

scores of the selected features are presented in Tables 5 and 6.

In the differential diagnosis of NEC, placenta abnormalities, platelet distribution width

(PDW) at birth are the two most important features. This is followed by type of milk, lympho-

cyte percentage (LY%) change, signs of peritoneal irritation, achieved full enteral feeding, and

drowsiness (Table 5). Overall, perinatal features account for 7.96% of the differential diagnosis

of NEC, clinical features before clinical onset account for 28.84%, clinical features at clinical

onset account for 25.04%, and laboratory parameters account for 38.16%.

In the classification of NEC, anemia-RBC transfusion, signs of peritoneal irritation, acido-

sis, tachycardia, and white blood cell count (WBC) change are the top five most important fea-

tures (Table 6). Overall, perinatal features account for 9.17% of NEC classification, clinical

features before clinical onset account for 27.85%, clinical features at clinical onset account for

28.06%, and laboratory parameters account for 34.92%.

Comparison with other ML classifiers

In addition to linear SVM, we evaluate three representative classification algorithms on the

dataset. The k-nearest neighbor (KNN) algorithm is a distance-based metric. The multi-layer

perceptron (MLP) algorithm is one of the most widely used neural network models, and the

algorithm is a multilayer feedforward neural network. The random forest (RF) algorithm is an

integrated learning algorithm consisting of multiple decision trees.
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Table 2. Main perinatal and clinical characteristics of two datasets.

Dataset 1 (n = 447) Dataset 2 (n = 296)

FI (n = 151) NEC (n = 296) Medical NEC (n = 205) Surgical NEC (n = 91)

perinatal characteristics

GA (median [IQR], weeks) 31.71[30.14–33.85] 31.71[30.00–34.00] 32.00[30.50–34.29] 31.00[28.86–33.71]

BW (median [IQR], g) 1660[1320–1920] 1600[1100–1790] 1660[1400–2100] 1450[1200–1850]

Female (n [%]) 48[47.1] 59[48] 91 [44.4] 42[46.2]

BW for GA

SGA (n [%]) 10[6.6] 41[13.9] 30[14.6] 11[12.1]

AGA (n [%]) 137[90.7] 250[84.5] 173[84.4] 77[84.6]

LGA (n [%]) 4[2.7] 5[1.6] 2[1.0] 3[3.3]

Vaginal delivery (n [%]) 72[47.7] 127[42.9] 81[39.5] 43[47.3]

Apgar 1-min (median [IQR]) 7[6–8] 7[6–8] 7[6–8] 7[5–8]

Apgar 5-min (median [IQR]) 8[8–9] 9[8–9] 9[8–9] 8[7–9]

PPROM (n [%]) 47[31.1] 98[33.1] 70[34.1] 28[30.8]

Corrected GA at clinical onset (median [IQR], weeks) 34.43[33.14–35.86] 34.07[32.61–35.86] 34.14[32.71–36.00] 34.00[32.29–35.71]

clinical characteristics

Early Use of Antibiotics 95[62.9] 172[58.1] 111[54.1] 61[67.0]

MV (n [%]) 73[48.3] 165[55.7] 94[45.9] 71[78.0]

PDA (n [%]) 93[61.6] 200[67.6] 136[66.3] 64[70.3]

IVH (n [%]) 62[41.1] 68[23.0] 38[18.5] 30[33.0]

Infectious diseases (n [%]) 60[39.7] 107[36.1] 64[31.2] 43[47.3]

Anemia-RBC transfusiona

Not anemia (n [%]) 94[63.6] 203[68.6] 166[81.0] 37[40.7]

Anemia-not transfusion (n [%]) 25[16.6] 28[9.5] 11[5.4] 17[18.6]

Anemia-transfusion (n [%]) 32[19.8] 65[21.9] 28[13.6] 37[40.7]

Feeding strategy
Type of milk

human milk (n [%]) 63[41.7] 54[18.2] 38[18.5] 16[17.6]

Formula milk (n [%]) 59[39.1] 158[53.4] 110[53.7] 48[52.7]

Combination (n [%]) 29[19.2] 84[28.4] 57[27.8] 27[29.7]

HMF 44[29.1] 29[9.8] 19[9.3] 10[11.0]

Enteral nutrition startb

Quick (n [%]) 124[82.1] 221[74.7] 160[78.0] 61[67.0]

Medium (n [%]) 25[16.6] 59[19.9] 32[15.6] 27[29.7]

Slow (n [%]) 2[1.3] 16[5.4] 13[6.4] 3[3.3]

daily milk incrementc

Quick (n [%]) 53[35.1] 73[24.7] 58[28.3] 15[16.5]

Slow (n [%]) 98[64.9] 223[75.3] 147[71.7] 76[83.5]

Probiotics 119[78.8] 124[41.9] 75[36.6] 49[53.8]

Clinical manifestations
Bowel sound attenuation 60[39.7] 182[61.5] 121[59.0] 61[67.0]

bloody stools 81[53.6] 105[35.5] 75[36.6] 30[33.0]

gastric residual 39[25.8] 141[47.6] 97[47.3] 44[48.4]

abdominal distension 55[36.4] 160[54.1] 91[44.4] 69[75.8]

laboratory parametersd

WBC at birth 8.87[2.48–44.36] 10.91[3.48–52.29] 11.12[3.48–39.46] 10.38[4.20–52.29]

NEUT% at birth 0.57[0.12–0.90] 0.58[0.06–0.93] 0.58[0.06–0.93] 0.57[0.15–0.84]

LY% at birth 0.32[0.08–0.80] 0.33[0.03–0.90] 0.34[0.03–0.90] 0.33[0.06–0.74]

(Continued)
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Table 2. (Continued)

Dataset 1 (n = 447) Dataset 2 (n = 296)

FI (n = 151) NEC (n = 296) Medical NEC (n = 205) Surgical NEC (n = 91)

MO% at birth 0.08[0.01–0.18] 0.07[0–0.22] 0.06[0.00–0.19] 0.07[0.00–0.22]

NEUT# at birth 4.78[0.5–32.4] 5.94[0.31–43.26] 6.04[0.31–35.00] 5.46[1.17–43.26]

LY# at birth 2.94[0.93–15.93] 3.4[0.7–30.67] 3.40[0.70–30.67] 3.46[0.79–29.90]

MO# at birth 0.67[0.05–5.90] 0.67[0–4.97] 0.62[0.00–3.40] 0.79[0.01–4.97]

RBC at birth 4.61[2.71–6.26] 4.57[2.54–6.13] 4.58[2.54–6.13] 4.43[3.07–5.92]

HGB at birth 172[99–237] 172[86–226] 173[86–226] 170[117–220]

HCT at birth 51.4[29.6–69.3] 51.4[29–69.3] 51.7[29.0–69.3] 50.4[33.6–67.6]

MCV at birth 111.9[98.6–129.3] 112.9[79.2–132.9] 112.4[97.0–209.0] 114.4[79.2–130.6]

MCH at birth 37.8[32.8–44.1] 37.9[15.6–44.7] 37.8[15.6–44.7] 38.0[25.8–43.6]

RDW at birth 16.45[13.9–21.1] 16.6[13.1–26.9] 16.7[13.1–26.9] 16.3[13.4–25.3]

PLT at birth 227[116–406] 219[42–509] 218[42–509] 220[69–460]

PCT at birth 0.23[0.11–0.41] 0.23[0.09–0.55] 0.23[0.09–0.55] 0.24[0.10–0.46]

MPV at birth 10.2[9.2–11.8] 10.7[8.5–13.0] 10.6[8.5–13.0] 11.0[8.9–12.4]

PDW at birth 11.1[9.3–14.6] 11.9[8.4–18.9] 11.8[8.4–18.9] 12.0[8.6–15.6]

WBC at clinical onset 9.71[3.44–25.37] 9.42[0.95–48.85] 9.72[2.07–48.85] 8.64[0.95–27.79]

NEUT% at clinical onset 0.41[0.12–0.84] 0.61[0.14–0.91] 0.60[0.14–0.88] 0.62[0.18–0.91]

LY% at clinical onset 0.43[0.10–0.73] 0.27[0.06–0.73] 0.27[0.06–0.71] 0.26[0.07–0.73]

MO% at clinical onset 0.09[0.01–0.24] 0.08[0–0.58] 0.08[0.00–0.58] 0.07[0.00–0.26]

NEUT# at clinical onset 3.90[0.94–16.76] 5.61[0.39–43.02] 5.77[0.51–43.02] 5.02[0.39–23.50]

LY# at clinical onset 3.97[0.72–8.62] 2.47[0.06–9.53] 2.57[0.21–7.86] 2.25[0.06–9.53]

MO# at clinical onset 0.86[0.04–3.37] 0.68[0.01–4.43] 0.74[0.01–4.43] 0.54[0.05–3.69]

RBC at clinical onset 3.71[2.29–5.50] 3.86[2.41–6.08] 3.87[2.50–6.08] 3.74[2.41–5.03]

HGB at clinical onset 125[77–180] 135[77–310] 136[77–310] 126[86–185]

HCT at clinical onset 37.4[23.0–51.4] 39.6[23.7–63.0] 40.3[23.7–63.0] 38.4[25.3–55.4]

MCV at clinical onset 101.75[83.80–113.20] 102.65[83.60–122.80] 103.3[85.1–122.8] 101.2[83.6–119.4]

MCH at clinical onset 34.6[28.1–39.7] 34.9[26.7–41.0] 35.3[26.7–41.0] 34.0[27.0–40.6]

RDW at clinical onset 15.9[13.2–20.8] 16.01[10.30–24.30] 16.0[10.4–24.3] 16.3[10.3–22.4]

PLT at clinical onset 317.5[105.0–823.0] 261.5[4.0–799.0] 257[5–609] 272[4–799]

PCT at clinical onset 0.36[0.15–0.85] 0.32[0.01–0.91] 0.31[0.11–0.68] 0.33[0.01–0.91]

MPV at clinical onset 11.2[9.2–13.2] 12[9–14] 11.96[9.50–14.00] 12[9–14]

PDW at clinical onset 13.0[8.9–20.3] 14.2[9.6–23.0] 14.2[9.8–23.0] 14.5[9.6–22.8]

WBC change 0.01[-0.72, 2.44] -0.12[-0.92, 5.82] -0.09[-0.92, 5.82] -0.18[-0.92, 2.53]

NEUT% change -0.28[-0.76, 6.00] 0.07[-0.83, 11.81] 0.05[-0.83, 11.81] 0.12[-0.78, 4.06]

LY% change 0.25[-0.82, 5.37] -0.19[-0.86, 11.96] -0.19[-0.86, 11.96] -0.19[-0.86, 7.10]

MO% change 0.17[-0.90, 17.82] 0.25[-1.00, 800.00] 0.33[-1.00, 800.00] 0.18[-1.00, 500.00]

NEUT# change -0.15[-0.92, 10.62] -0.12[-0.94, 35.09] -0.10[-0.94, 35.09] -0.15[-0.94, 4.98]

LY# change 0.25[-0.77, 6.16] -0.27[-0.98, 3.99] -0.24[-0.98, 2.81] -0.35[-0.97, 3.99]

MO# change 0.29[-0.95, 11.27] 0.03[-0.99, 6400.00] 0.14[-0.99, 6400.00] -0.20[-0.96, 73.27]

RBC change -0.18[-0.55, 0.31] -0.13[-0.42, 0.57] -0.13[-0.42, 0.49] -0.15[-0.42, 0.57]

HGB change -0.26[-0.63, 0.18] -0.20[-0.55, 1.40] -0.19[-0.48, 1.40] -0.25[-0.55, 0.33]

HCT change -0.25[-0.63, 0.15] -0.21[-0.50, 0.36] -0.20[-0.50, 0.36] -0.25[-0.50, 0.30]

MCV change -0.09[-0.27, -0.01] -0.08[-0.33, 0.23] -0.07[-0.49, 0.11] -0.10[-0.28, 0.23]

MCH change -0.07[-0.29, 0.03] -0.06[-0.33, 1.43] -0.06[-0.33, 1.43] -0.09[-0.31, 0.25]

RDW change -0.03[-0.21, 0.23] -0.04[-0.39, 0.47] -0.04[-0.39, 0.43] -0.01[-0.37, 0.47]

PLT change 0.46[-0.62, 2.38] 0.20[-0.97, 4.21] 0.18[-0.97, 4.21] 0.23[-0.97, 1.93]

PCT change 0.64[-0.35, 2.55] 0.40[-0.95, 2.33] 0.40[-0.65, 2.33] 0.41[-0.95, 2.00]

(Continued)
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We use four classifiers to classify the NEC dataset. Compared with KNN, MLP and RF

methods, the linear SVM has faster training and classification speed because the linear SVM is

a linear classifier well suited for high-dimensional features, and it also has good generalization

ability. As shown in Fig 6, the linear SVM has AUROC values of 94.22% and 91.85% and

AUPRC values of 97.43% and 85.36% in datasets 1 and 2. In contrast, the AUROC and

AUPRC values of KNN, MLP and RF are lower than those of the linear SVM. Therefore, the

linear SVM has a significant advantage over the other three classifiers in our experiments.

Discussion

Predictive features

This study builds and tests a feature selection and classification algorithm that uses available

data prior to disease onset for automatic diagnostic classification and NEC risk prediction.

Using different ML-based classifiers trained and tested on different datasets, we obtain two

general models with high accuracy and precision. In our multivariate feature selection algo-

rithm, the previously described NEC parameters of higher WBC, signs of peritoneal irritation,

and early clinical onset of NEC are significant weighted predictors of surgical NEC. Higher

neutrophil percentage (NEUT%) at clinical onset, breast milk, and the use of probiotics are sig-

nificant weighted predictors to identify classic NEC [7, 14, 62]. In addition, we also identify

mean corpuscular hemoglobin (MCH) at clinical onset and anemia-RBC transfusion, which

are risk factors for the development of NEC [63–65], as the weighted predictors of surgical

NEC. This suggests that our feature selection method identifies pathophysiologically impor-

tant predictors of NEC diagnosis and prognosis. Previously unreported key variables predict-

ing NEC, such as some parameters in routine blood tests and their variations, should be

brought to the attention of clinicians.

Table 2. (Continued)

Dataset 1 (n = 447) Dataset 2 (n = 296)

FI (n = 151) NEC (n = 296) Medical NEC (n = 205) Surgical NEC (n = 91)

MPV change 0.09[-0.16, 0.25] 0.09[-0.14, 0.34] 0.09[-0.09, 0.34] 0.09[-0.10, 0.30]

PDW change 0.16[-0.18, 0.81] 0.20[-0.25, 0.97] -0.16[-0.45, 0.63] -0.14[-0.41, 0.53]

Abbreviations: BW, birth weight; FPIES, Food protein-induced enterocolitis; GA, gestational age; MV, mechanical ventilation; HMF, human milk fortifier; PPROM,

Preterm premature rupture of membranes; PDA, patent ductus arteriosus; IVH, intraventricular hemorrhage; IQR, interquartile range; RBC, red blood cell.
aAnemia is determined based on the hemoglobin concentration, the days after birth, the respiratory status and clinical manifestations based on the recommendations of

Canadian Pediatric Society; The usual volume of transfusion was 10 to 20 ml kg−1 over 3 to 5 h and feeding volumes are routinely decreased during transfusions.
bSlow, never start or start later than postnatal day 4; Medium, start on postnatal day 3 or 4; Quick, start within postnatal day 2.
cSlow, the daily milk increment is less than 20 ml per kilogram of body weight until reaching full feeding volumes; quick, more than 20 ml per kilogram of body weight.
dlaboratory values change is percentage change of each indicator at clinical onset compared with those at birth.

https://doi.org/10.1371/journal.pone.0273383.t002

Table 3. Hyper-parameters used by RQBSO algorithm.

Parameter value

Ridge alphas 503.15

BSO flip 5

nBees 10

maxIteration 10

localIteration 10

Q-Learning γ 0.1

https://doi.org/10.1371/journal.pone.0273383.t003
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Strengths and limitations

One of the strengths of this study is the extensive collection of perinatal, clinical, and labora-

tory information, including topical issues in NEC in recent years, such as anemia-RBC transfu-

sion and feeding strategies, which allows for a detailed assessment to predict the diagnosis and

severity of NEC. In addition, we propose the RQBSO feature selection algorithm, which uses

an integrated learning strategy that combines machine learning with a swarm optimization

Fig 5. Comparison of ROC and PRC curve of RQBSO and other algorithms. (a, b) correspond to the ROC curve of dataset 1 and dataset 2. The numbers in

parentheses indicate the AUROC value. The x-axis represents sensitivity, or true positive rate (TPR). The y-axis is 1-Specificity, or false positive rate (FPR). (c,

d) represents the PRC curve of dataset 1 and dataset 2. The numbers in parentheses indicate the AUPRC value. The x-axis represents recall. The y-axis is

precision.

https://doi.org/10.1371/journal.pone.0273383.g005
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Table 4. The performance comparison of different feature selection models.

RQBSO mRMR ReliefF GA BSO RFE LASSO Ridge

Dataset 1

Acc (%) 91.07 82.88 82.87 85.43 85.72 86.53 85.67 84.57

Rec (%) 96.94 86.26 88.02 89.86 94.27 89.82 89.39 89.39

Pre (%) 94.31 86.76 85.48 87.55 87.46 89.11 88.22 86.80

F1-Score (%) 92.90 86.36 86.69 88.57 89.03 89.41 88.75 88.00

Dataset 2

Acc (%) 84.37 75.40 76.76 75.53 81.36 75.02 77.19 73.37

Rec (%) 68.93 47.68 50.89 39.82 70.18 43.57 49.64 37.50

Pre (%) 93.33 70.95 68.71 70.05 89.31 65.12 72.25 65.82

F1-Score (%) 72.37 53.97 56.19 45.66 63.05 50.31 55.59 43.82

https://doi.org/10.1371/journal.pone.0273383.t004

Table 5. Feature importance ranking of dataset 1.

Rank Feature Importance score

1 Placenta abnormalities 0.041254

2 PDW at birth 0.041254

3 Type of milk 0.040842

4 LY% change 0.040842

5 Signs of peritoneal irritation 0.040429

6 Feeding volume at NEC onset 0.039604

7 Drowsiness 0.039191

8 NEUT% at clinical onset 0.039191

9 Meconium amniotic fluid 0.038366

10 Probiotics 0.037954

11 Early onset sepsis 0.036716

12 Acidosis 0.036716

13 HCT at clinical onset 0.036304

14 PDA 0.035891

15 Daily milk increment 0.034653

16 WBC change 0.034653

17 Gastric residual 0.034241

18 PS 0.031766

19 Inotropic 0.030941

20 Abdominal distension 0.030528

21 LY# change 0.030116

22 LY# at clinical onset 0.029703

23 MO# at birth 0.028878

24 MO% at birth 0.028053

25 DIC 0.027640

26 MCH at clinical onset 0.025578

27 NEUT# change 0.025165

28 LY% at birth 0.021865

29 Temperature instability 0.021040

30 Bloody stools 0.020627

https://doi.org/10.1371/journal.pone.0273383.t005
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algorithm. This algorithm achieves better feature selection results on both the NEC diagnosis

and risk prediction datasets. The average classification accuracy of RQBSO filtered features is

higher in both datasets. Moreover, most of the features filtered by RQBSO are clinically signifi-

cant, and these important weighted predictive values deserve the attention of clinicians.

The present study has some limitations. Firstly, the number of extracted features is dispro-

portionate to the size of the dataset, which may affect the performance of our ML classifiers,

and increasing the sample size would probably improve performance. Secondly, the Bell stag-

ing criteria used in this study provide a relatively poor description of bowel injury. Although

we exclude possible confounding factors when separating medical NEC from surgical NEC,

applying ML methods to classify datasets with poorly defined non-discrete entities may be

flawed. Finally, the lack of out-of-sample validation and the single-center retrospective design

make our models less applicable. We hope to validate our models with future data from our

NICU or other NICUs.

Conclusion

In this work, we propose a new feature selection framework RQBSO for early diagnosis of

NEC and identification of high-risk infants. To evaluate the effectiveness of our algorithms, we

conduct experiments on two skewed datasets of NEC differential diagnosis and risk prediction.

In the end, we classify the NEC differential diagnosis data with an average recognition accu-

racy of 91.07% and an AUROC value of 94.20%. While the accuracy of the other set is only

84.37%, and the AUROC value is 91.85%. The experimental results show that the method has a

high recognition accuracy in the differential diagnosis and risk prediction of NEC. In addition,

the method screens some new significant weighted predictors that may lead to earlier identifi-

cation and more timely treatment.

In future work, we plan to apply our method to higher-dimensional datasets and perform

deeper parameter tuning to investigate their impact on algorithm performance.

Table 6. Feature importance ranking of dataset 2.

Rank Feature Importance score

1 Anemia-RBC transfusion 0.069979

2 Signs of peritoneal irritation 0.069979

3 Acidosis 0.069279

4 Tachycardia 0.068579

5 WBC change 0.068579

6 LY% at birth 0.066480

7 WBC at clinical onset 0.065780

8 Early onset sepsis 0.061582

9 Apgar 5-min 0.059482

10 PICC 0.052484

11 Total number of RBC transfusions 0.049685

12 MCH at clinical onset 0.049685

13 Postnatal age at clinical onset 0.047586

14 PLT change 0.045486

15 Caffeine 0.044787

16 Para 0.032190

17 NEUT# at clinical onset 0.029391

18 Fever 0.025192

19 MCV at clinical onset 0.023793

https://doi.org/10.1371/journal.pone.0273383.t006
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