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a b s t r a c t

From early 2020, a novel coronavirus disease pneumonia has shown a global ‘‘pandemic’’ trend at an
extremely fast speed. Due to the magnitude of its harm, it has become a major global public health
event. In the face of dramatic increase in the number of patients with COVID-19, the need for quick
diagnosis of suspected cases has become particularly critical. Therefore, this paper constructs a fuzzy
classifier, which aims to detect infected subjects by observing and analyzing the CT images of suspected
patients. Firstly, a deep learning algorithm is used to extract the low-level features of CT images in the
COVID-CT dataset. Subsequently, we analyze the extracted feature information with attribute reduction
algorithm to obtain features with high recognition. Then, some key features are selected as the input
for the fuzzy diagnosis model to the training model. Finally, several images in the dataset are used as
the test set to test the trained fuzzy classifier. The obtained accuracy rate is 94.2%, and the F1-score
is 93.8%. Experimental results show that, compared with the deep learning diagnosis methods widely
used in medical image analysis, the proposed fuzzy model improves the accuracy and efficiency of
diagnosis, which consequently helps to curb the spread of COVID-19.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The coronavirus disease 2019 (COVID-19) that broke out
orldwide at the beginning of 2020, has become a global health
risis. Its rapid spread has severely threatened our lives and
ealth. According to Worldometers world real-time statistics,
s of 7:01 Beijing time on December 31, 2021, the cumulative
umber of confirmed worldwide cases of COVID-19 exceeded
86.72 million, reaching 286,724,405. The cumulative number of
eaths was 5.445 million, reaching 5,445,126 [1].
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COVID-19 is a highly contagious epidemic. Early detection of
cases and treatment in isolation is helpful to control the pace
of epidemic on a global scale. Reverse transcription polymerase
chain reaction (RT-PCR) is the most common method to detect
the nucleic acid of COVID-19. Positive nucleic acid detection by
real-time fluorescent RT-PCR is a criterion for the diagnosis of
COVID-19 [2]. However, this nucleic acid detection method is
affected by environmental factors such as specimen sampling, de-
tection process, and detection reagent. In most cases, this method
has some false positives and the waiting time for results is too
long. Through the summary of the cases, it is found that imaging
features of the patients with COVID-19 can also be treated as a di-
agnostic criterion. As a convenient and advanced medical imaging
technique, CT plays a key guiding role in the diagnosis of COVID-
19. CT images of early patients show multiple small speckles and
interstitial changes, which further develop into multiple ground
glass shadows and infiltrating shadows in both lungs. If the dis-
ease becomes uncontrolled and severe, lung consolidation may
occur. Therefore, the above CT signs can be used to distinguish
whether there is a novel coronavirus infection [3].

Since the outbreak of novel coronavirus, several researchers
are working on how to quickly diagnose cases. Some of con-
tributors publicly posted a large data set of CT images collected
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rom various hospitals on COVID-19 cases, which has solved a
ajor problem for researchers and has greatly supported the
tudy methods with data source. For example, Eduardo et al. [4]
pened the SARS-Cov-2 CT-SCAN dataset, including 1252 images
f patients with positive COVID-19 infection and 1230 images of
atients without COVID-19 infection but with other pulmonary
iseases. There are 2482 scans in two parts. Zhao et al. [5]
onstructed an open source COVID-CT dataset, which included
49 images that were positive for COVID-19 and 397 images that
ere negative for COVID-19. Some contributors have put forward
any effective medical classification strategies by studying vari-
us classification algorithms. For example, Li et al. [6] used three
linical features to predict the severity of patients with severe
OVID-19 infection. The authors screened the electronic archives
f nearly 3000 patients to create a prediction model based on the
GBoost machine learning algorithm, which can provide a clinical
ath to identify critical cases from severe cases and predict the
isk of death. Hu et al. [7] put forward a weakly supervised
eep learning method to realize detection and classification of
OVID-19 and non-COVID-19, which reduced the time required
or manual labeling of CT images. Chen et al. [8] used a powerful
edical image segmentation system UNet ++ to detect COVID-19.
irst, the original CT image is input into the trained model. After
rocessing, the prediction box outputs the suspected lesions. The
ffective regions are then further extracted, and the unnecessary
nes are filtered out to reduce false positives. Finally, the effective
egions extracted are classified to reduce the rate of missed
iagnoses in COVID-19 patients. Shan et al. [9] improved V-Net
nd proposed a lung tissue segmentation system VB-Net based
n deep learning. The system uses a human-in-loop strategy to
ssist radiologists in segmenting the COVID-19 infected areas to
elineate training samples manually and quickly. The data pro-
essed by human are handed over to machine learning, and the
achine feeds back learning results to human for proofreading to
ontinuously improve the accuracy rate.
In recent years, artificial intelligence has developed rapidly,

nd intelligent medical technology based on deep learning has
ade great achievements in the field of medical image process-

ng [10,11]. However, training an ideal deep learning model not
nly requires huge data-driven analysis tasks, but also consumes
lot of time and memory resources. Therefore, in response to this
roblem, this paper proposes a deep fuzzy model for analyzing
nd detecting CT images of people infected with COVID-19. In
ummary, we have made the following contributions:

(1) A method of feature extraction from CT images using clas-
sical deep learning framework is proposed. The COVID-19
and non-COVID-19 CT images are analyzed by using the
classical deep learning framework to extract the underlying
features of the images. Due to the high-dimensional char-
acteristics of CT images, the extracted low-level features
usually contain a lot of redundant information and cannot
be classified directly. Therefore, it is necessary to use at-
tribute reduction algorithm to reduce the dimensionality
of dense features.

(2) A fuzzy diagnosis model is proposed, which is trained
by the processed features of CT images. The model pa-
rameters are adjusted continuously to optimize the model
performance, to get better diagnosis effect on COVID-19.

(3) The experimental results show that the proposed method
is feasible. Compared with the diagnostic method used in
literature [5], the classification accuracy of COVID-19 is
found to be improved by 5% with the proposed strategy.

The structure of this paper is as follows. Section 2 discusses
edical classification technology and fuzzy decision system in

etail. Section 3 focuses on feature extraction of CT images used

2

in this paper and construction of the fuzzy diagnosis models.
In Section 4, the final experimental results are reported and
analyzed by verifying the proposed model on the public dataset.
Finally, the outcome of this paper is summarized, and the future
work is highlighted.

2. Related work

2.1. Image classification

Image classification is a basic task of computer vision. With
the popularity of deep learning, it has become more and more
mature. The main realization process is to first obtain the medical
image of diagnosed objects through medical imaging equipment.
These images are then fed into the trained model. Finally, a
diagnostic variable indicating a certain disease or severity level
is obtained through analysis [12,13]. Medical image classification
is performed using all kinds of medical images, such as com-
puter tomography (CT), magnetic resonance imaging (MRI), X-ray,
and ultrasound imaging (UI). Traditional medical classification
methods mainly include support vector machine [14], random
forest [15], logistic regression analysis [16], and artificial neural
networks, [17].

Recently, several scholars have proposed different solutions
for medical classification tasks. For example, Chang et al. [18]
used SVM to classify breast tumors based on texture features.
The classification ability of SVM is basically equivalent to that of
a neural network model, but the training time required is much
shorter. With the great potential of deep learning being tapped,
researchers have turned their research focus to deep learning.
The limitation of medical image classification based on traditional
neural network method is that the features extracted by artificial
design usually have good adaptability for a certain type of disease.
For pathological image classification methods that contain diverse
changes, deep learning-based methods can learn more general-
ized feature representation, to adapt to the detection of diverse
pathological images in actual diagnosis and treatment scenarios.
Therefore, using deep learning to classify medical images has
gradually become a research hotspot. Carneiro et al. [19] used
the CNN pre-trained by ImageNet to classify tumor based on the
multi-view of mammography and segmented microcalcification
and mass regions, thereby assessing the risk of breast cancer
development in patients. Tajbakhsh et al. [20] used massive-
training artificial neural networks (MTANNs) and CNN to detect
lung nodules in lung CT images to distinguish between benign
and malignant lung nodules. The experimental results show that
only when less training data is used, the performance of MTANN
is higher than that of CNN. Ayhan et al. [21] used ReNet50, a
CNN deep network structure, to classify fundus images. Before
classification, the traditional data enhancement method is used
to expand the dataset, thus improving the classification accuracy.
Roy et al. [22] proposed a new deep network that can simulta-
neously predict the severity score of the disease associated with
the input box and provide the location of pathological artifacts
under weak supervision. The transformer model proposed by
Shome et al. [23] effectively distinguishes COVID-19 from normal
Chest X-rays. More recently, Shankar et al. [24] proposed the
BMO-CRNN model for detecting and classifying the presence of
COVID-19 from Chest X-ray images.

2.2. Fuzzy decision system

Fuzzy inference system (FIS) is an inference method based
on fuzzy rules, which is used to model uncertain and imprecise
information. When the knowledge is uncertain, the fuzzy system

can use the if-then fuzzy rules to express the knowledge. At
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resent, fuzzy systems have shown unique advantages in the
ields of medical diagnosis, decision analysis, pattern recogni-
ion, and automatic control [25]. For example, for the selection
f industrial sites, Rikalovic et al. [26] combined a geographic
nformation system for generating location selection with a hier-
rchical neuro-fuzzy method for site classification and proposed
novel intelligent decision support system. Experiments prove

hat the proposed method provides accurate results for industrial
ite classification. Sousa et al. [27] proposed a decision support
ystem based on fuzzy clustering, fuzzy modeling, and fuzzy
ingerprints, which provided the corresponding treatment plan
ccording to specific situation of each critical patient and im-
roved the prognosis of patients in the Intensive Care Unit (ICU).
iu et al. [28] proposed a fuzzy decision evaluation model for
urriculum performance evaluation. Firstly, the fuzzy evaluation
alue is obtained by combining fuzzy semantic variables with
uzzy operation, and then the priority result is obtained by using
uzzy sequence method. Finally, the students are compared and
nalyzed by using triangular fuzzy graph. Based on decision do-
ain theory, Song et al. [29] proposed a hesitant fuzzy decision

ield theory. The validity of this method is proved by applying
t to the problem of route selection in the Northwest Passage of
rctic. Xiao et al. [30] established a fuzzy decision model based
n the principle of fuzzy maximum membership by combining
heories and methods related to fuzzy decision making. This
odel explores how to transform qualitative analysis of disease
iagnosis into quantitative analysis more satisfactorily, to further
liminate doctors’ subjective diagnosis factors and better improve
iagnosis efficiency. Casalino et al. [31] proposed a hierarchical
uzzy reasoning system (HFIS) for predicting the risk level of
ardiovascular disease, which uses non-invasive technologies to
ollect vital signs to obtain fuzzy rules for reasoning. By com-
aring FIS and HFIS, it is observed that the HFIS has higher
lassification performance. Khomeiny et al. [32] used the Mandani
uzzy method to construct a fuzzy reasoning system that provides
eachers with scoring suggestions. The system took students’
est scores and students’ behavior scores as input, and output
uggestions by combining fuzzy rules obtained from artificial
ummaries.

.3. Feature extraction and selection

In computer vision and image processing, feature extraction
s the basis for subsequent learning and generalization steps.
eature selection selects the most representative features with
ood classification performance from original extracted features
o achieve the purpose of dimensionality reduction. Image feature
xtraction and selection, as a key link of image classification
nd recognition, has been applied to several fields related to
ntelligent systems, such as data mining, anomaly detection, and
ioinformatics, which have attracted more and more attention
rom scholars at home and abroad.

To reduce the computational cost of feature extraction, Ab-
ulhussain et al. [33] put forward a new system to calculate
ransformation features of images or video frames, which rep-
esented the local visual content of images and video frames
ith these features. The authors compare their proposed method
ith the traditional extraction method using standard image
echnology. Compared with the traditional algorithm, their algo-
ithm greatly reduces the computational cost. Chahid et al. [34]
roposed a method of feature extraction, which is based on
uantization of position weight matrix to carry out multi-class
lassification to improve the interpretation of biomedical signals.
his method verifies the effectiveness on recognition of surface
MG signals of eight different gestures. Martins et al. [35] used
eature extraction methods to obtain data that could indicate
3

the incidence of lymphoma to obtain higher lesion classification
results. Fractal features were extracted from a RGB model, lab-
oratory model, and color channel, and then the fractal features
were spliced into feature vectors. Finally, the authors used the
Hermite polynomial classifier to evaluate the performance of
their method, which provided good result.

Feature selection technology is mainly divided into filter-
based, wrapper-based, and embedded technology. Bennasar et al.
[36] proposed two nonlinear feature selection methods, i.e., joint
mutual information maximization and normalized joint mutual
information maximization used to solve the problem of over-
estimation of feature importance. The authors compared the
proposed methods using 11 publicly available data sets and 5
competing methods. The results show that this method makes
the best trade-off between accuracy and stability. The wrapping
method selects several features each time according to the ob-
jective function, until the best subset is selected. Morphological
features do not show obvious value in identifying autism spec-
trum disorder (ASD). Zheng et al. [37] used similarity to structure
multi-feature-based networks (MFN), and then submitted it to
a SVM classifier to classify different individuals. The experi-
ments showed that MFN significantly improves the accuracy of
distinguishing autism spectrum disorder from typically develop-
ing controls (TDC). The embedding method first uses machine
learning algorithms (such as lasso regression) and models for
training to obtain the weight coefficients of each feature, and the
features are selected according to the coefficients from largest to
smallest. Kang et al. [38] have designed a new tumor classification
method—least absolute shrinkage and selection operators and
generalized multi-class support vector machines (rL-GensVM),
which use the relaxed Lasso to select genes on the training set. rL-
GensVM was used as the classifier. Finally, the experiment shows
that the method selects fewer feature genes, and the classification
accuracy rate is higher.

3. Materials and methods

Our main goal is to improve the accuracy of COVID-19 diagno-
sis to control the rate of transmission. In this section, we discuss
the materials used in this paper and our proposed method. The
dataset used for our model is first described. Then the method of
feature extraction and the whole process of feature extraction are
introduced. Finally, a fuzzy classifier for diagnosing COVID-19 is
constructed. The framework of our method is shown in Fig. 1.

3.1. Materials

During the outbreak of COVID-19, the daily COVID-19 image
data from major hospitals was quite huge. However, due to the
complexity and diversity of data, it took a lot of time to sort
it out. Thus, only few complete and comprehensive COVID-19
image datasets were made available to researchers. The protec-
tion of patient privacy was also a factor for data protection. As
the epidemic developed more and more serious, people’s atten-
tion to the virus increased. All kinds of information and data
about the epidemic are being constantly updated. At present,
there are a small number of public COVID-19 image datasets
that support the latest progress of artificial intelligence technol-
ogy. The image modalities mainly include CT and X-ray, such as
MosmedData [39], COVID-19-CT-CXR [40], COVID-19 Radiogra-
phy Database [41], and SARS-CoV-2 CT-Scan DataSet [4].

The experimental data in this paper has been used from the
COVID-CT-Dataset (https://github.com/UCSD-AI4H/COVID-CT), an
open-source CT image dataset by Zhao et al. [5]. The source of
image is mainly the COVID-19 related publications in journals
such as NEJM, JAMA, Lancet, medRxiv, and bioRxiv. The authors

https://github.com/UCSD-AI4H/COVID-CT
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Fig. 1. Framework of the proposed COVID-19 deep fuzzy model.
s

sed Pymupdf to extract the underlying structural information
rom the preprint PDF files located for all the embedded images.
he CT images of the dataset are not CT DICOM images in the
rue sense, but the author of this dataset has proved through
xperiments that it does not affect the final diagnosis results. This
ataset contains 349 CT images from 143 patients with COVID-
9, and 397 images with negative COVID-19. The size of the
ataset is not uniform, with an average height of 491, a maximum
eight of 1853, and a minimum height of 153. The average width,
aximum width, and minimum width are respectively 383, 1485,
nd 124. Fig. 2 shows some examples of a CT image of this dataset.
e randomly select 500 CT images from the dataset for training

he fuzzy classifier, including 300 COVID-19 CT images and 200
on-COVID-19 images. The test set comprises randomly selected
0 COVID-19 images and 60 non-COVID-19 images from the
emaining dataset to verify the validity of the proposed model.

.2. Methods

.2.1. Feature extraction
Assuming that we are given any image, the feature extrac-

ion method can extract useful information, such as the number,
ector, and symbol of image of the ‘‘non-image’’ representation.
his process is feature extraction. The extracted ‘‘non-image’’
epresentations or descriptions are features, which are used to
istinguish objects of different classes. To identify the category
f the images, it is required that selection of features can not
nly describe the images better, but more importantly, it is able
o distinguish images of different categories. In the process of
istinguishing between COVID-19 and non-COVID-19 images, we
erform feature extraction on images of these two categories.
he entire extraction process is divided into two steps: extraction
f the low-level features, feature dimensionality, and attribution
eduction.

Extraction of Low-level Features: Traditional feature extraction
ncludes scale invariant feature transformation (SIFT) [42], his-
ogram of oriented gradient (HOG) [43], and local binary pattern
LBP) [44]. SIFT constructs features by finding key points in dif-
erent scale spaces and by calculating the direction of key points.
OG composes features by calculating and counting histogram of
radient direction of the local area of an image. LBP describes
4

the local texture features of an image, which has remarkable
advantages of rotation invariance and gray invariance. With the
development of deep learning, feature extraction through neural
network has been widely used. Traditional feature extraction
methods are generally designed artificially after a large amount of
prior knowledge, while CNN based feature extraction is obtained
by autonomous learning of neural networks [45]. It is better than
SIFT, HOG and other features that rely on prior knowledge. To
extract more expressive features, we use the CNN structure to
extract features of the COVID-19 CT images. There are different
kinds of CNN architectures used for classification. AlexNet, that
won the 2012 image recognition contest, has been adopted as
the feature extraction framework [46]. Compared with LeNet,
AlexNet solved the over-fitting problem and proposed the idea
of making the strides smaller than the size of the pooling kernel.
Compared with the subsequent deep learning algorithms, it is the
basis for the evolution of all subsequent neural networks. The
idea of making the strides smaller than the size of pooling kernel
is proposed, so that the output of pooling layer obtained has
overlap and coverage, which improves the richness of features
and reduces the loss of information. Therefore, AlexNet is selected
as the feature extraction framework [47]. AlexNet is composed of
5 convolutional layers for feature extraction and 3 fully connected
layers for classification. For the process of extracting features,
only the first five convolutional layers are needed. Convolution
operation is used for feature abstraction and extraction, which
signifies the distinctive difference between CNN and the tra-
ditional feature extraction algorithms. The pooling operation is
used after the convolution operation for feature fusion and di-
mensionality reduction. AlexNet uses maximum pooling to avoid
the blurring effect of average pooling, thereby retaining the most
prominent features. The parameters of each layer are shown in
Table 1, and the network structure is shown in Fig. 3. The input
image is of dimensions 227 × 227×3. 256 feature maps with a
size of 6 × 6 are obtained using the following equation.

L0 = F (CT , θ) , (1)

where, F (·) represents feature extraction operation and θ repre-
ents the parameters of the network. CT is the input image.
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Table 1
Specific parameters of each layer.
Layer name Input size Kernel size Stride Pad In_Chl Out_Chl Output size

Conv1 227 × 227 × 3 11 × 11 4 0 3 96 55 × 55 × 96
Maxpool1 55 × 55 × 96 3 × 3 2 0 96 96 27 × 27 × 96
Conv2 27 × 27 × 96 5 × 5 1 2 96 256 27 × 27 × 256
Maxpool2 27 × 27 × 256 3 × 3 2 0 256 256 13 × 13 × 256
Conv3 13 × 13 × 256 3 × 3 1 1 256 384 13 × 13 × 384
Conv4 13 × 13 × 384 3 × 3 1 1 384 384 13 × 13 × 384
Conv5 13 × 13 × 384 3 × 3 1 1 384 256 13 × 13 × 256
Maxpool5 13 × 13 × 256 3 × 3 2 0 256 256 6 × 6 × 256
Feature Dimensionality and Attribution Reduction: Each two-
imensional feature maps are obtained through the feature ex-
raction network. First, it is transformed into a one-dimensional
eature vector. Then, we multiply this one-dimensional vector
y its transpose to get the modulus of this vector. Through this
ransformation, we finally obtain 256 feature values from the
mage. Since the features obtained at this time belong to low-
evel features of the image, they usually contain a lot of redundant
nformation. Therefore, we need to reduce dense features. The
eterogeneous feature subset selection algorithm based on neigh-
orhood rough set of 256 features is used to screen out three
eatures with the strongest expression effect [48] using

= N (L0, R) (2)

where, N (·) represents the subset selection algorithm and R
represents the reduction rules. The purpose of this algorithm is
to minimize the overlapping area between the classes of a given
classification task by searching feature subspace. This is to im-
prove the efficiency of the classification task of COVID-19 based
on the selected characteristics. The specific implementation idea
is as follows: First, we set the appropriate degree of dependency.
The importance of each feature is judged according to depen-
dence. The attribute with the highest importance is selected using
forward calculation each time. Then, after removing the selected
optimal attributes, the sub-optimal attribute is selected from
the remaining attributes, and so on. Finally, the calculation is
stopped until the importance of each of remaining attributes is
lower than the predefined threshold. According to this method,
the experiment selects the three most important features from
the 256 low-level features, which constitute the three feature
attributes used for training the fuzzy classifier.
5

3.2.2. Constructing fuzzy decision system
Generally, a complete fuzzy decision system is mainly com-

posed of three parts: fuzzification mechanism, fuzzy rule base,
and defuzzification mechanism. The reasoning is completed by
combining these three parts. The specific implementation ideas
are summarized as follows: First, the precise input value is con-
verted into a fuzzy value that can be processed by the fuzzy
system through fuzzification. Then, by combining fuzzy rules in
the fuzzy rule library, the fuzzy inference method is used to
obtain the inference result. The result obtained at this time is
fuzzy, so a defuzzification mechanism is used to convert the fuzzy
value into a classical value.

(a) Fuzzy: The three features (Feature 1, Feature 2, Feature 3)
obtained by feature extraction are expressed as wi (i = 1,
2, 3). They are used as input variables of the fuzzy system.
The essence of fuzzification is to fuzzify the given wi(i =

1, 2, 3), into a fuzzy set w̃l. The commonly used fuzzifica-
tion methods mainly include fuzzy single value method,
triangular membership function method, and Gaussian
membership function method. In light of the principle of
fuzzy control, the fuzzy set representing the membership
function must be a convex fuzzy set. In other words, un-
der certain conditions, the membership degree of fuzzy
concepts should have a certain degree of stability. By an-
alyzing the selected system feature input value, it can
be seen that when the maximum membership function
point corresponding to the feature value extends to both
sides, its membership degree is monotonically decreasing.
Moreover, the triangle membership function can include
every state of input and output. Therefore, this paper uses
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Fig. 3. Network structure used in feature extraction.
the triangular membership function for the fuzzification
operation. The specific form is given by

µW̃ (w) =

{
0, |w − wi| > α
α − |w − wi|

α
, |w − wi| ≤ α

(α > 0). (3)

Here, w represents the given input value and w̃l is the fuzzy
set obtained after the fuzzification operation.

(b) Establishing Fuzzy Rules: A complete fuzzy inference system
is inseparable from the function of fuzzy rules. Fuzzy rules
are usually divided into single-dimensional fuzzy rules and
multi-dimensional fuzzy rules. Since there are multiple
input variables in this paper, and it is necessary to judge
the degree of suffering from COVID-19 based on the dis-
tribution of multiple feature values, this paper adopts the
multidimensional fuzzy rules.
By analyzing the distribution of input variables, we divide
the linguistic variables corresponding to features 1, 2, and
3 into NS (negative small), NB (negative big), O (zero), PS
(positive small), and PB (positive big). The range of the tri-
angle membership function corresponding to each level is
different. Fig. 3 shows the distribution of the membership
functions for Features 1–3.
To achieve a better reasoning effect, 125 fuzzy rules are set
to restrict the reasoning process according to the number
of division levels of the input variables. The specific fuzzy
rules are given by

125 fuzzy rules⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (Feature1 is NS) and (Feature2 is NS) and
(Feature3 is NS) , then (u is NB)

if (Feature1 is NS) and (Feature2 is NS) and
(Feature3 is O) , then (u is NS)

if (Feature1 is NS) and (Feature2 is NS) and
(Feature3 is PS) , then (u is NB)

...

if (Feature1 is PS) and (Feature2 is NB) and
(Feature3 is PB) , then (u is PB)

...

if (Feature1 is PB) and (Feature2 is PB) and
(Feature3 is O) , then (u is PS)

if (Feature1 is PB) and (Feature2 is PB) and
(Feature3 is PS) , then (u is PS)

if (Feature1 is PB) and (Feature2 is PB) and
(Feature3 is PB) , then (u is PS)

(c) Defuzzification Mechanism: This work uses a Mamdani fuzzy
inference system. It is the standard model of fuzzy systems.
Since the fuzzy processing of the Mamdani fuzzy inference
system is performed independently of each component, its
parameter setting is simple and clear. The input and output
of the system are accurate quantities, so it can be directly
applied in actual engineering. So, the output obtained after
6

each rule inference is the distributed membership function
of the variable or a discrete fuzzy set. Therefore, after
synthesizing the results of multiple rules, the fuzzy set of
each output variable needs to be defuzzified. Commonly
used defuzzification methods include maximum member-
ship degree method, center of gravity method, and center
average method. The center of gravity method can take
advantage of all the fuzzy information obtained by infer-
ence and can ensure that the accurate value is obtained by
processing. Therefore, we use the center of gravity method
to defuzzify the inference results (see Fig. 4).

4. Experimental results and analysis

To improve the effectiveness of the proposed method and test
the performance of the fuzzy diagnosis system, we have exten-
sively evaluated several commonly used deep learning networks
and compared the effects of the two methods. In the next sec-
tions, we first introduce the experimental environment and pa-
rameter settings, and finally analyze and discuss the experimental
results.

4.1. Experimental environment and parameter setting

This experiment includes two parts: feature extraction and
fuzzy system training. The experimental environment of feature
extraction is based on PyTorch in Windows 10 Home Edition
64-bit system. Hardware includes Intel(R) Core (TM) i5-8300 h
CPU processor, NVIDIA GeForce GTX 1060 GPU. The network
structure used is AlexNet. The experimental environment of the
fuzzy system diagnosis module is a PC with Inter Core 318 TM I5-
7500 CPU, 3.40 GHz clock frequency and 64 GB memory, which
is implemented on MATLAB 2017.

(1) Size selection: When the COVID-9 image is cropped, the
characteristics of the lung infection may be lost. But if it is
not cropped, the data set size remains inconsistent, and it is
difficult to train with deep learning. To ensure the integrity
of lungs in the images and make the data meet to the input
requirements of the model in this paper, we unify the data
size into 227 × 227 through resize operation and set the
bit depth of the image to 24. Therefore, the final input size
of the model comes out to be 227 × 227 × 3.

(2) Loss function and optimization function: The cross-entropy
loss function is commonly used in classification models,
which can learn the difference from the model and the
training distribution. Compared with other losses, the
cross-entropy calculation loss can converge to a better local
minimum point, thereby improving the accuracy. ReLU
(Rectified Linear Unit) is used as activation function. ReLU
solves the problem of derivative with activation function,
so it helps to alleviate the disappearance of gradient. To
a certain extent, it can also alleviate gradient explosions,



L. Song, X. Liu, S. Chen et al. Applied Soft Computing 122 (2022) 108883
Fig. 4. The distribution of membership function of each feature.

thereby speeding up training. The optimization function
used is the Adam optimizer [49], which is used to replace
stochastic gradient descent in the deep learning model.

(3) Others: When AlexNet is trained for feature extraction, the
batch size is taken as 16, the epoch is equal to 1000, and
the learning rate is set to 0.0001.

4.2. Analysis about feature extraction

To prove the feature extracted by AlexNet in favor of im-
proving the classification accuracy of the proposed fuzzy model,
we discuss and analyze the feature values obtained from the
output and the visualization of feature extraction process from
two different levels.

Each of the 256 eigenvalues about the image has its own value,
and there is an indispensable connection between them. We have
randomly selected 10 images in the training set, of which 5 are
COVID-19 CT images and 5 are non-COVID-19 CT images. We have
performed numerical statistics on the 256 eigenvalues obtained
from these 10 images, and analyzed their average, median, stan-
dard deviation, numerical range, minimum, and maximum values.
7

Table 2
Statistical results for features of COVID-19 images.
Number COV-1 COV-2 COV-3 COV-4 COV-5

Average 0.0553 0.0359 0.0561 0.0501 0.0449
Median 0.0067 0.0027 0.1038 0.0975 0.0072
Standard deviation 0.1194 0.1180 0.1087 0.1037 0.0974
Numerical range 0.9633 1.1978 0.8605 0.8307 0.7827
Minimum 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 0.9633 1.1978 0.8605 0.8307 0.7827

Table 3
Statistical results for features of non-COVID-19 images.
Number NCOV1 NCOV2 NCOV3 NCOV4 NCOV5

Average 0.3327 0.2120 0.0893 0.2776 0.0712
Median 0.1201 0.6450 0.0289 0.0869 0.0177
Standard deviation 0.4944 0.4463 0.2129 0.5151 0.1757
Numerical range 3.6407 4.4046 2.4700 4.2698 1.5744
Minimum 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 3.6407 4.4046 2.4700 4.2698 1.5744

Tables 2 and 3 respectively show the statistical results obtained
after these experiments. It can be seen from the Tables that there
is a big difference between the two in the average value. The
image of COVID-19 is about 0.05 or below, while the image of
non-COVID-19 is larger, all above 0.05. The median of the features
for COVID-19 is small, generally below 0.01; the median of the
features for non-COVID-19 is above 0.01. The standard deviation
of the features of COVID-19 is generally around 0.01; the median
of the features of non-COVID-19 is above 0.1, mainly around 0.5.
For the maximum value, the eigenvalue of COVID-19 generally
fluctuates around 0.1. The eigenvalues of non-COVID-19 are all
above 1, which is more than 10 times higher. The maximum value
of COVID-19 generally fluctuates around 0.1. The minimum value
of both is 0, so the eigenvalue of the latter has a much larger
numerical span than the eigenvalue of the former. Through the
statistics of the feature values, it is found that the feature values
of the two categories of images are very different. The two types
of images can be completely separated based on this information.
Therefore, it shows that the method of extracting features used in
this paper is reliable and beneficial for subsequent classification.

To show the process of feature extraction more clearly, we
visualize the feature map obtained after each convolutional layer
of the model. We selected one CT image of COVID and Non-COVID
from Fig. 2 for analysis, and the images obtained are as shown
in Fig. 5. Since feature extraction has five convolution layers in
the AlexNet, feature maps of different dimensions are obtained
after each convolution layer. The number of channels in the first
convolution is 96. Each channel extracts a feature according to
a certain property of the image, so a total of 96 feature maps
of 55 × 55 is obtained. These 96 features are tiled together in
a row of 12 to obtain the feature map for Conv1. The channel
number of the second layer convolution is 256. The 256 feature
maps of 27 × 27 are then tiled together in a row of 16 to obtain
the feature map for Conv2. According to this step, we obtain the
feature maps for Conv3, Conv4, and Conv5, respectively. Low-
level features are extracted to high-level features from the feature
map of Conv1 to that of Conv5. At the beginning, the texture of
the entire image can be clearly seen. By comparing second feature
map in (a) and (b) feature map of Conv1, we find that there
are significantly more white edges in the middle of the lungs in
the COVID-19 CT image. The model pays attention to different
characteristics between different types of images in the process
of extracting features to obtain correct feature values to improve

model performance.
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Fig. 5. The feature map obtained by each convolution layer.
.3. Experimental results and discussion

Throughout the training process of deep fuzzy system, we
djust the parameters through multiple trainings, and then get
stable diagnostic effect. When we train to epoch = 16, the

ccuracy rate reaches about 94%. Then we train for many times
nd found that the accuracy rate stabilizes, and the final effect is
4.17%. Fig. 6 is the training curve. We use this proposed model
o evaluate the performance of specific tasks through repeated
erification. The results obtained on the test set are summarized
n Table 4, which includes the confusion matrix for each test
mage and the performance of this model. From the confusion
atrix, we can see that the fuzzy system is able to diagnose all

he 60 COVID-CT images with new coronary pneumonia correctly,
ith the classification accuracy rate of 100%. About the 60 CT

mages that do not suffer from new coronary pneumonia, 53
f them are correctly diagnosed and 7 are judged to be COVID,
nd the classification accuracy rate was 88.33%. Four indicators
ave been used to evaluate the model, which include accuracy
ACC), precision (PRC), recall (REC), and F1-score. Accuracy is
sed to measure the percentage of diagnostic predictions that
re completely factual. Precision is the proportion of true posi-
ives contrast predicted positives. The recall reflects the ratio of
ositive samples being correctly predicted. The higher the recall
s, the stronger is the ability of correct diagnosis. The F1-score
s the harmonic average of the precision and recall. For all the

our indicators, a higher value signifies a better performance.

8

By applying the selected test set to the trained fuzzy diagnosis
model, the accuracy is found to be 94.17%, the precision to be
100%, the recall rate to be 88.33%, and the F1-score to be 93.80%.
The four evaluation indicators are calculated using

ACC =
TP + TN

TP + FP + FN + TN
(4)

PRC =
TP

TP + FP
(5)

REC =
TP

TP + FN
(6)

F1 =
2PRC ∗ REC
PRC + REC

. (7)

Among these, TP is the number of patients without disease in
both the real and the predicted results. FP is the number of true
outcomes for the disease with prediction of no disease. TN is the
number of cases the disease in actual and predicted results. FN is
the number of true outcomes for which there is no disease and
the predicted outcome for which there is disease.

Among the four indicators, the accuracy reaches 100%, and
the recall is the lowest. Under ideal circumstances, we hope that
both PRC and REC are as high as possible, but in fact these two
are contradictory under certain circumstances. The accuracy of
100% means that the model can ensure that when a positive
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Fig. 6. The training curve of Mamdani fuzzy inference system.

Table 4
The result of testing the fuzzy model on the test set.
Predict True

Non-COVID-19 COVID-19

Non-COVID-19 53 0
COVID-19 7 60

Metrics Result (%)

Accuracy 94.17
Precision 100.00
Recall 88.33
F1-score 93.80

sample is detected, the probability of a positive occurrence is
high. But it cannot guarantee that when a negative sample is
detected, the diagnosis must be negative. On the contrary, a high
recall rate means fewer missed. It can ensure that when the
model detects negative samples, the probability of a negative
occurrence is high. But it cannot guarantee that when a positive
sample is detected, it must be diagnosed as positive. That is,
the precision rate measures the accuracy of a model to make a
positive judgment, while the recall rate measures the accuracy
of a model to make a negative judgment. In the actual medical
diagnosis system, we hope to sacrifice the recall rate to improve
accuracy. If a person who is not ill is wrongly detected as ill, it can
be further ruled out through follow-up inspections. If a person
who is ill is detected as not ill, it will delay the opportunity for
treatment and may cause serious consequences. Therefore, this
model just satisfies this criterion.

Given the small size of the dataset, deep networks are dif-
icult to train in this case and may explode or disappear in
radients. Therefore, the AlexNet model is prone to overfitting,
hich reduces the generalization ability of the model. If the deep
etwork cannot be trained effectively, the convolutional layer
annot extract useful features, thus reducing the classification
ccuracy of the model. Table 5 shows the structural comparison of
ach classical network model. We compared four common clas-
ification networks, AlexNet [46], VGG-16 [50], GoogLeNet [51],
nd ResNet-152 [52] as regards to the network structure, network
arameters, and computing power consumed by the model. It
an be seen that compared with the others, AlexNet has fewer
etwork layers and convolutional layers, which is in line with
he data scale. From the perspective of the model parameters, the
arameters of AlexNet are more than half less than VGG, which is
quivalent to parameters of ResNet-152. In terms of the amount
f computing power required for training, AlexNet is the least,
nd ResNet-152 is more than ten times of that. Finally, we choose
he most suitable AlexNet for feature extraction.
9

Table 5
Structure comparison of classical network models.
Model AlexNet VGG-16 GoogLeNet ResNet-152

Layer number 8 16 22 152
Layer number of convolutions 5 13 21 151
Parameter numbers/Million 60M 138M 6.9M 60M
Floating point operations/billion 1.5B 15.3B 2B 11.3B

In the experiments, we have also compared the general deep
learning model and the fuzzy model proposed in this paper
from classification indicators. The experimental results are shown
in Table 6. Three types of deep learning diagnostic models are
chosen viz., VGG-16 [50], ResNet-50 [52], EfficientNet-b1 [53],
DenseNet-121 [54], DenseNet-169 [54], and DenseNet-169 (TL
+ CSSL). Both DenseNet and ResNet-50 are large-scale networks
that improve accuracy by deepening the network layer. But as
the network deepens, the problem that arises is that the gradient
disappears, especially if the data volume is small. Compared with
the three types of deep networks, the fuzzy diagnosis system
has improved accuracy by 18%, 15% and 17%, respectively. To
solve the problems mentioned above, the network added training
strategy of transfer learning. It helps to learn the target task by
using the large image set and its class labels in the source task.
The benefits of transfer learning can be significant in some cases.
Densenet-169 (TL + CSSL) is the result of Densenet-169 being
re-trained on ImageNet by transfer learning (TL) [55] and then
ine-tuning with contrastive self-supervised learning (CSSL) using
he COVID-CT dataset [56]. DenseNet-169 (TL + CSSL) is the best
erformer among several deep learning frameworks, which is
bout 10% higher than DenseNet-169 trained from scratch. How-
ver, there is still room for improvement in accuracy compared
o the fuzzy diagnostic systems. In addition, we also compared
he proposed model with existing research on the detection of
OVID-19 diagnosis in CT images through deep neural networks.
he CNN-based CAD system uses a multi-layer method to ex-
ract the most unique features of the pattern [57]. The feature
xtraction process usually requires a lot of labor and time. DRE-
et integrates the pre-trained ResNet50 with the Feature Pyramid
etwork, and inputs it into multi-layer perception for image-level
rediction [58].
Based on the same dataset, we found that the proposed model

s superior to the other three models in terms of accuracy,
1 score, and AUC. To further verify the generalization of the
odel, we performed same validation on SARS-COV-2 CT-SCAN
ataset [4]. Deep learning requires a large data for training to re-
train over-fitting. These data are more favorable for fuzzy mod-
ls. Compared with the best model in deep learning, DenseNet-
69 (TL + CSSL), our model has an accuracy improvement of
ore than 5%. The training time is also greatly reduced. Thus,

t is confirmed through experiments that a model with this
erformance has greater clinical value. The deep fuzzy system
ased on artificial intelligence can quickly identify the micro-
copic information and key features of lesions. By screening and
xtracting characteristic information of the disease from massive
ata to make disease diagnosis, the ability of CT in the early
iagnosis of COVID-19 and its differential diagnosis ability from
ther pneumonia can be improved. In this way, the prognosis
f patients can be improved. The incidence of critical cases and
ortality can be reduced, and the corresponding treatment can
e done early in clinical practice.

. Conclusion

Novel coronavirus is the first new coronavirus strain discov-
red in 2019. Its transmission speed is beyond our imagination.
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Table 6
Results of fuzzy model are compared with those of other models.
Model Positive training data Accuracy (%) F1-scoe (%) AUC (%)

VGG-16 [50] COVID-CT-349 76.0 76.0 82.0
ResNet-50 [51] COVID-CT-349 77.4 74.6 86.5
EfficientNet-b1 [53] COVID-CT-349 79.0 79.0 84.0
DenseNet-121 [54] COVID-CT-349 79.0 79.0 88.0
DenseNet-169 [54] COVID-CT-349 79.5 76.0 90.1
DenseNet-169 (TL+CSSL) COVID-CT-349 89.1 89.6 98.1
Self-supervised learning of transfer learning [59] COVID-CT-349 86.0 85.0 91.0
CNN-based CAD system [57] 60 infected patients of CT COVID-19 90.3 87.1 97.6
DRE-Net [58] 88 infected patients of CT COVID-19 86.0 87.0 95.0
CovNNet [60] 121 CXR image 87.1 – –
Fuzzy model (Ours) SARS-CoV-2 CT-scan [4] 91.7 91.3 96.4
Fuzzy model (Ours) COVID-CT-349 94.2 93.8 97.4
It has the characteristics of long survival time and wide trans-
mission routes. To safeguard world public health security, we
have explored available knowledge in the field to develop new
models for enhancing the capacity of response to epidemics.
We have designed a fuzzy model for COVID-19 diagnosis in this
study. COVID-19 is quickly classified by using the open COVID-
CT-Dataset, which has practicability for research. Our model can
accurately diagnose the COVID-19 and non-COVID-19 cases, and
the time required is also less. Therefore, the problem about short-
age of medical resources has been alleviated, the speed of diag-
nosis has been accelerated, and more treatment time has been
unearthed for patients with COVID-19. Experimental results show
that the proposed model has higher classification accuracy and
F1-score. Compared with the general deep learning models and
related state-of-the-art methods, the proposed model has signif-
icantly improved speed and accuracy.

Although medical image processing technology has reached a
uite mature level, there are still a lot of challenges and problems
o be explored for precise prevention of large-scale epidemics.
he proposed fuzzy model for the diagnosis of COVID-19 is rel-
tively simple in terms of function, although it increases the
reatment time for patient’s diagnosis. Methods, however, remain
o be investigated to classify the severity of infection in patients
s well as the classification of the infected areas. The authors are
urrently engaged in this direction.
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