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Symmetric 1,3-diketones with fluorine or fluorinated substituents on the prochiral carbon remain to be established. Herein, we have
developed a novel prochiral fluorinated oxindanyl 1,3-diketone and successfully applied these substrates in carbene-catalyzed
asymmetric desymmetrization. Accordingly, a versatile strategy for asymmetric generation of organofluorines with fluorine or
fluorinated methyl groups has been developed. Multiple stereogenic centers were selectively constructed with satisfactory
outcomes. Structurally diverse enantioenriched organofluorines were generated with excellent results in terms of yields,
diastereoselectivities, and enantioselectivities. Notably, exchanging fluorinated methyl groups to fluorine for this prochiral
1,3-diketones leads to switchable stereoselectivity. Mechanistic aspects and origin of stereoselectivity were studied by DFT
calculations. Notably, some of the prepared organofluorines demonstrated competitive antibacterial activities.

1. Introduction

Asymmetric desymmetrization represents one of the most
facile and efficient methods for the generation of enantioen-
riched organic compounds, especially with multiple stereo-
genic centers, from meso or prochiral raw materials [1–4].
In this area, catalytic desymmetrization of prochiral 1,3-dike-
tones has been investigated widely, including asymmetric
reduction, intramolecular adol-type reactions, and others

[5–21]. Furthermore, this desymmetric strategy as the key
step has shown wide application in diverse natural product
synthesis associated with diverse promising biological activi-
ties [22, 23]. Owing to privileged structural characters of pro-
chiral 1,3-diketones, such as containing unique and versatile
carbonyl groups, and easily introducing substituents, further
development of novel diverse prochiral diketones and their
desymmetric strategies is still of high importance. Organic
molecules with fluorine or fluorinated substituents can
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significantly change their physical, chemical, and biological
properties [24–29]. For example, fluorocortisone, the first
fluorine-containing pharmaceutical, possesses remarkable
glucocorticoid activity that exceeds the activities of the parent
hormones by a factor of 10 [30]. Although fluorine is the
13th most common element in the earth’s crust, it mainly
exists as inorganic salts. Indeed, the number of biogenic
organofluorines is extremely limited (around 20) [31].
Therefore, organofluorine synthesis and application have

received tremendous attention in organic chemistry and
achieved great advances [32–36]. Currently, a large number
of pharmaceuticals and agrochemicals involve at least one
fluorine atom. Surprisingly, symmetric 1,3-diketones with
fluorine or fluorinated substituents on the prochiral carbon
are largely overlooked and remain to be established
(Figure 1(a)).

Notably, prochiral 1,3-diketones possess several privi-
leged advantages, including the following: (i) The acidic
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Figure 1: Asymmetric desymmetrization of cyclic 1,3-diketone with fluorine functionalized groups: (a) our design on introducing fluorine or
fluorinated substituents into symmetric 1,3-diketones; (b) this work: NHC-catalyzed asymmetric desymmetrization of fluorine functionalized
1,3-diketones; (c) biologically active molecules with multiple stereogenic centers containing fluorine-containing quaternary stereocenter;
(d) naturally occurring and biologically active spirocyclohexane oxindoles.
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prochiral carbon can be easily functionalized by deproton-
ation with various commercially available fluorination
reagents (F, CF3, CF2H, CH2F, etc.) [37–42]. Catalytic asym-
metric desymmetrization of these substrates ensures a
versatile method for the synthesis of enantioenriched orga-
nofluorines. Actually, it is challenging to be compatible with
fluorine and fluorinated substituents in one asymmetric reac-
tion due to their distinct properties. (ii) Asymmetrically
modifying one of the two ketone carbonyl groups leads to
the formation of fluorine-containing multiple stereogenic
centers. Notably, the synthesis of such great challenging
motifs has been largely underdeveloped, although they have
already appeared in several invaluable pharmaceuticals
(Figure 1(c)) [36].

Given the significant success of asymmetric N-heterocy-
clic carbene (NHC) catalysis [43–52] and privileged struc-
tural characters of prochiral 1,3-diketones, based on our
ongoing interest in organocatalysis [53–57], we envisioned

that a versatile method for the synthesis of enantioenriched
organofluorines with multiple stereogenic centers might be
established based on NHC-catalyzed asymmetric desymme-
trization of novel prochiral fluorinated or fluoromethylated
oxindolyl 1,3-ketones. Notably, asymmetric synthesis of
spirocycle compounds has attracted a lot of synthetic atten-
tion [58–61]. Among them, spiro compounds containing
oxindole moieties are proven among the important scaffolds
in natural products and bioactive molecules exemplified by
those in Figure 1(d) [61, 62]. These easily available prochiral
1,3-diketones could react with unsaturated acyl triazolium
intermediates [63–65] obtained from bromoenals with
NHC to construct spiropolycyclic organofluorines with five
stereogenic centers, including three quaternary stereocenters.
While one requirement would be to achieve intermolecular
domino desymmetrization, the connection of the reactive site
(carbonyl group) to a sterically hindered quaternary carbon
center may impede this process. Furthermore, the ability to

Table 1: Optimized conditions[a].
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Entry[a] NHC·HX Base Solvent Yield (%)[b] dr[c] ee[d]

1 A K2CO3 Toluene 11 — —

2 A Cs2CO3 Toluene <10 — —

3 A Na2CO3 Toluene <10 — —

4 A NaHCO3 Toluene <10 — —

5 A DBU Toluene <10 — —

6 A KOAc Toluene 80 >20 : 1 >99
7 A NaOAc Toluene 82 >20 : 1 >99
8 A Et3N Toluene 19 — —

9 B NaOAc Toluene 88 >20 : 1 >99
10 C NaOAc Toluene 84 >20 : 1 >99
11 D NaOAc Toluene 81 >20 : 1 98

12 E NaOAc Toluene 80 >20 : 1 89

13 B NaOAc DCM 81 >20 : 1 >99
14 B NaOAc THF <10 — —

15 B NaOAc Mesitylene 93 >20 : 1 >99
16 B NaOAc o-Xylene 90 >20 : 1 >99
17[e] B NaOAc Mesitylene 78 >20 : 1 >99
[a]Standard condition: 1a (0.1mmol), 2a (1.2 equiv), NHC·HX (10mol%), solvent (0.1M), 30°C, 24 h. [b]Yield of the product after column chromatography.
[c]Determined via 1H NMR spectroscopy. [d]Determined by chiral HPLC, %ee = ðR‐SÞ/ðR + SÞ ∗ 100. [e]5 mol% catalyst, 60 h.
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achieve satisfactory diastereoselectivity and enantioselectiv-
ity would remain important. Importantly, organocatalyzed
generation of enantioenriched organofluorines prevents
heavy metal residues, considerably increasing the potential
utilities. We herein have developed a novel prochiral fluori-
nated oxindanyl 1,3-diketone and successfully applied these
substrates in carbene-catalyzed asymmetric desymmetriza-
tion. Accordingly, a versatile and practical strategy for
asymmetric generation of organofluorines with fluorine or
fluorinated methyl groups (CF3, CF2H, or CH2F) has been
developed. Multiple stereogenic centers were selectively con-
structed with satisfactory outcomes. It may be mentioned
that enantioselective synthesis of tricyclic β-lactones by
NHC-catalyzed desymmetrization of cyclic 1,3-diketones
has been demonstrated recently by Shee and coworkers [66].

2. Results

We initially attempted this synthetic approach with pro-
chiral trifluoromethylated oxindolyl 1,3-diketone 1a and
(Z)-2-bromo-3-phenylacrylaldehyde 2a under NHC orga-
nocatalysis. Trifluoromethylated spiropolycyclic compound
3a was obtained in 11% yield when sterically hindered
aminoindanol-derived triazolium precatalyst A was employed
in the presence of K2CO3 in toluene at room temperature
(Table 1, entry 1). Subsequently, several bases were screened,
and sodium acetate was the best base, giving the product 3a
in good yield (82%) with >20 : 1 dr and >99% ee (entries
2-8). Several NHC catalysts were next investigated, with
NHC precatalyst B, with a Br atom on the indane moiety,
proving to be the better choice to deliver the product 3a in
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8e, 89% yield, > 99% ee, > 20:1 dr

Figure 3: Scope of reactions.
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high yield without any loss in dr or ee (entries 9–12). The yield
could be further improved to 93% by using mesitylene as the
solvent (entries 13-16). 5mol% catalyst ensured this transfor-
mation to give the product in 78% yield (entry 17).

Under optimal conditions (Table 1, entry 15), the scope
of this desymmetrization domino reaction was examined
(Figure 2). For trifluoromethylated oxindolyl 1,3-diketones,
several substituents at the 4-, 5-, 6-, and 7-positons on the
oxindole ring were well tolerated to form 3a–3f in good to
excellent yields (81-93%) with excellent diastereoselectivities
(>20 : 1 dr values) and enantioselectivities (>99% ee values).
Substrates with N-benzyl, N-allyl, and N-isopropyl groups
reacted efficiently to form products 3g–3i in 83%–93% yields
and without any erosion of dr values and ee values. For the
indane motif, substrate 1 with a naphthalene unit gave 3j in
83% yield with >20 : 1 dr and >99% ee. Introducing two sym-
metrical chloride atoms to the indane ring did not influence
the efficiency, furnishing the product 3k in 86% yield with
>20 : 1 dr and >99% ee. Subsequently, the generality of 2-
bromoenals was evaluated. For 2-bromoenals associated with

electron-donating or electron-withdrawing groups on the
aromatic ring, the reactions worked efficiently to afford the
products 3l-3w in good to excellent yields with good to excel-
lent diastereoselectivities and excellent enantioselectivities.
Bromoenals with a naphthalene or heteroaryl unit (such as
2-furyl and 2-thienyl) were also compatible with the reac-
tion. Unfortunately, β-alkyl-substituted enals failed to
deliver the product in our reaction.

To further investigate the scope and limitations of this
organocatalytic strategy, other fluorinatedmethyl groups, such
as difluoromethyl, and monofluoromethyl groups were intro-
duced into the prochiral substrates (Figure 3). Notably, for
these substrates, the release of CO2 could not be completely
avoided under the reaction conditions and in the purification
step that followed. Thus, one more decarbonation operation
was performed for these substrates. Delightingly, all reactions
proceeded smoothly, forming the products 6 and 8 with
acceptable results. On the other hand, the intermediate under-
went ring opening with a nucleophile, such as methanol, deliv-
ering products 5 and 7, respectively. We consider that
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asymmetric synthesis of important organofluorines containing
CF2H and CFH2 has been overlooked to date [34, 67–69]. Our
novel strategy for asymmetric synthesis of these organofluor-
ines by carbene-catalyzed desymmetrization is effective.

After successfully documenting the synthesis of fluoro-
methylated molecules with five stereogenic centers under
NHC organocatalysis, the generality of this desymmetriza-
tion strategy was further explored to construct fluorinated
molecules (Figure 4). Different from the above-obtained
products 3, 5, 6, 7, and 8, which featured the more sterically
hindered fluorinated methyl groups, the resulting product
10 featured the relatively small fluorine atom and showed
the opposite absolute configuration under the identical reac-
tion conditions. In all the cases, the desymmetrization cas-
cade process proceeded smoothly by using just 2mol%
carbene catalyst, delivering spirocyclohexene products in
86-93% yields with 2.6 : 1-11 : 1 dr and 90-99% ee values.

Under 10mol% of NHC precatalyst B catalysis, the reac-
tion worked efficiently on a gram scale to generate 3 g in 88%
yield with >20 : 1 dr and >99% ee (Figure 5(a)). To demon-
strate the practicality of the present strategy, further synthetic
transformation of the resulting product was performed as
shown in Figure 2. The substrates 1a with CF3 and 9a with
F underwent intramolecular desymmetrical cyclisation,
followed by decarbonation to generate the corresponding
products 11 and 12 in good yields with excellent dr and
ee values, respectively. Impressively, our method reported
here is also effective to prepare enantioenriched trifluoro-
methylthiolated compounds, leading to product 14 with
excellent yields, dr and ee values (Figure 5(c)). Ring open-
ing of the product 3a was achieved by treatment with
nucleophiles such as methanol and benzylamine at room
temperature and led to the formation of amides 15a and
15b in excellent outcomes. More importantly, for the
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alcohols with promising biological activities, such as choles-
terol, fluphenazine, and adapalene-derived alcohol, the
ring-opened products 15c-e were formed in good yields with
excellent dr and ee (or de) values. The treatment of 10a with
methanol under basic conditions followed by oxygen inser-
tion converted the carbonyl moiety into a carboxylic moiety,
leading to product 17 in good yield with the retention of dr
and ee.

DFT calculations were conducted to explore the possible
pathway. As shown in Figure 6, the carbonyl carbon of reac-
tant 1a is susceptible to nucleophilic attack by the carbene
carbon of the actual NHC catalyst via transition state TS1,
which is followed by an acetic acid-mediated [1, 2]-proton
transfer via transition state TS2 for the formation of Breslow
intermediate M2. The third step is a bromide removal pro-
cess via transition state TS3. Deprotonation can then be
mediated by bromide ion, coupled with protonation by acetic
acid via transition state TS4. The fifth step involves diastereo-
selective transition state TS5SS (or TS5RR) for Cβ–C1 bond
formation between intermediate M4 and deprotonated achi-
ral 1,3-diketone 2a-, which is followed by an intramolecular
[2 + 2] cycloaddition to complete the six-membered ring clo-
sure via transition state TS6SS. The two letters after the
names of the stationary points represent the chirality of the

molecules associated with the centrally chiral C1 and Cβ
atoms. The last step is the dissociation of catalyst NHC from
the main product PSS via transition state TS7SS. The Gibbs
free energy barriers of the seven steps via transition states
TS1-7 are 4.3, 6.3, 1.7, 18.2, 9.5 (or 12.6 for RR-configured
isomer), 8.8, and 5.4 kcal/mol, respectively.

To further examine the origin of enantioselectivity, quan-
titative Bader atoms-in-molecules analyses were carried out.
The energy barrier of transition state TS5RR is 3.1 kcal/mol
higher than that of transition state TS5SS, whereas the energy
barrier of the transition state TS5RR′ is 2.2 kcal/mol lower
than that of transition state TS5SS′ (Figure 7(a)), meaning
that the enantioselectivity can be switched by exchanging
the -CF3 substituent with -F. As shown in Figures 3(b) and
3(c), there are no C-H…F hydrogen bond [70] and (long pair)
LP…π interaction in the TS5RR (RR-configured transition
state), which is due to the long distance between the -CF3 sub-
stituent and NHC catalyst in the RR-configuration. This is
why TS5SS is more stable than TS5RR. While the -CF3 sub-
stituent is replaced by the small -F group, although there is
still not C-H…F interaction, the C-H…O hydrogen bond
interactions between the substrate and NHC catalyst in
TS5RR′ become significantly stronger than those of C-H…O
and C-H…F hydrogen bond interactions in transition state
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TS5SS′, which is the key factor in strengthening the stability of
the RR-configured transition state TS5RR′ and leads to the
switchable stereoselectivity for the reaction. Noteworthily, 20
possible conformations for TS5SS, TS5RR, TS5SS′, and
TS5RR′ were proposed and optimized to ensure that the con-
formation with the lowest energy was selected. The calculated
results were provided in Figure S1 of the SI.

To show the practical value of the resulting enantioen-
riched fluorinated and fluoromethylated molecules, their
antibacterial activities were initially examined by using
Xanthomonas oryzae, Xanthomonas axonopodis, and Ral-
stonia solanacearum as target bacteria [71–73]. These bac-
teria are widespread plant pathogens that can cause
serious plant diseases and huge economic losses in agricul-
tural production [74]. Some of the chiral organofluorines
from the current study exhibited superior antibacterial
activities, as shown in Table 2. For example, compounds
10a and 8b showed higher inhibitory rates against Xoo than
the commercial bacteriocide bismerthiazol when used at
50μg/mL. Similarly, compounds 6b and 16 showed inhibi-

tory rates against Xal that were similar to thiodiazole-copper.
Under the same conditions, compounds 12 and 15a showed
better inhibitory rates against Rs than thiodiazole-copper.
These promising results indicated that the organofluorines
produced in the current study have potential use as
agrochemicals.

3. Discussion

In summary, asymmetric desymmetrization of a novel pro-
chiral 1,3-diketone with a fluorine or fluorinated methyl
group has been demonstrated under NHC organocatalysis.
Accordingly, a versatile and practical strategy for the con-
struction of diverse organofluorines featuring fluorine or
fluoromethyl groups (CF3, CF2H, or CH2F) has been success-
fully developed by the current strategy. Notably, products fea-
turing five stereogenic centers, including three quaternary
centers and two rings, have been efficiently constructed in this
transformation. Mechanism studies and DFT calculations
demonstrated that the first C-C bond formation is the
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stereoselectivity-determining step as well as C-H…O and
C-H…F interactions are the key factors to control and even
switch the enantioselectivity of the reaction by exchanging
the fluoromethyl substituents. The initial test indicated that
some of the obtained enantioenriched organofluorines
showed competitive antibacterial activities. Further investi-
gations and exploration of this catalytic process and the
resulting enantioenriched organofluorines are underway in
our laboratory.

4. Materials and Methods

4.1. General Procedure for the Synthesis of Organofluorine 3.
To an oven-dried screw-capped test tube equipped with a
magnetic stir bar, the prochiral 1,3-diketones 1 (0.1mmol),
2-bromoenals 2 (0.12mmol), triazolium salt NHC B
(5.0mg, 10mol %), NaOAc (12.3mg, 1.5 equiv), and 4Å
MS (50mg) were added. To this mixture was added anhy-
drous mesitylene (0.1M). After completion of the reaction,
purification of the crude residue gave the desired product 3.
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