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Abstract
This paper presents a real-time fully autonomous prescriptive solution for explainable cyber-fraud detection within the iGam-
ing industry. We demonstrate how our solution facilitates the time-consuming task of player risk and fraud assessment through 
prescriptive analytics. Our tool leverages machine learning algorithms and advancements in the field of eXplainable AI to 
derive smarter predictions empowered by local interpretable explanations in real-time. Our best-performing pipeline was able 
to predict fraudulent behaviour with an average precision of 84.2% and an area under the receiver operating characteristics 
of 0.82 on our dataset. We also addressed the phenomenon of concept-drift and discussed our empirical and data-driven 
strategy for detecting and dealing with this problem. Finally, we cover how local interpretable explanations can help adopt 
a pro-active stance in fighting fraud.
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Introduction

Cyber-fraud is a significant problem which poses severe 
challenges to all world organisations. A recent study by the 
Association of Certified Fraud Examiners [2] report that 
organisations lose an annual 5% of their total revenue to 
fraudulent activity. Anti-fraud systems have been in con-
stant development to counteract fraud. This is especially true 
within the iGaming industry where most gaming regulations 
require operators to comply with stricter anti-fraud meas-
ures. As argued by Banks [3], this industry is still susceptible 

to numerous types of cyber-fraud due to its wide availability 
and easy access [19]. The rise of transactional anonymity is 
a factor which helps facilitate fraud [11]. Although for the 
most part, the types of cyber-fraud remain the same, the 
criminal approach is continuously changing, rendering this 
threat even more severe and active. Despite the latter, as 
reported by McMullan and Rege [19], the industry is still yet 
to fully mature in literature which investigates the problem 
of cyber-fraud.

Previous fraud detection investigations include both unsu-
pervised and anomaly detection techniques. We consider the 
fraudulent activity to be anomalous, and thus, should deviate 
from normal. Yamanishi et al. [36] implemented a multi-
variate unsupervised outlier detection technique on medi-
cal insurance data which flags outliers using the Hellinger 
distance. Burge and Shawe-Taylor [5] also used an unsuper-
vised approach based on the Hellinger distance between two 
recurrent neural networks to predict fraud in telecommuni-
cations. Tian et al. [29] used a non-parametric clustering 
approach for flagging fraudulent behaviours in crowd-sourc-
ing. Cao et al. [6] also use a clustering algorithm to detect 
malicious accounts in online social networks. Christou et al. 
[7] perform fraud detection for online games of chance using 
a clustering approach. Bolton et al. [4] investigated an anom-
aly detection approach for Peer Group Analysis based on the 
t-statistic. For this research, we had access to a dataset which 
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included labelled instances of previously verified fraudulent 
players by fraud analysts. Consequently, we decided to struc-
ture this problem as a binary classification task with the two 
classes being: ‘fraud’ and ‘non-fraud’.

In the iGaming business, the most common types of 
cyber-fraud are money laundering [7], identity theft, and 
bonus abuse. In money laundering cases, criminals attempt 
to mask the legitimacy of their funds by depositing, wager-
ing, and finally withdrawing a percentage of their account; 
thus, creating a complex money trail. In such cases, the gam-
ing operator is not directly faced with a financial hit; how-
ever, ensuring mechanisms are in place to protect against 
such activity is critical. The industry is heavily regulated 
when it comes to money laundering, and gaming organisa-
tions are required to have such measures working. Failure to 
comply will result in a permanent loss of licence to operate, 
and subsequently, a reputation hit. Identity theft occurs when 
criminals gain unauthorised access to a client’s account or 
use stolen payment methods to wager money and bank the 
winnings. The latter is mostly done through a method called 
chip dumping, where two or more players (known as a syndi-
cate) intentionally lose to each other to move the funds from 
one account to another. Even if the operator discovers of the 
original offender, linking all the players within that syndi-
cate together proves to be a rather tedious and challenging 
task. The third type, bonus abuse, also use similar methods 
to exploit promotional content offered by the organisation 
through chip dumping.

Establishing good governance by taking a pro-active 
stance against cyber-fraud is vital to ensure that the industry 
continues to scale and remain a reputable source of enter-
tainment. Most gaming operators rely on manual transaction 
monitoring conducted by a team of fraud analysts. When 
considering that a typical gaming operator records millions 
of daily transactions, it becomes next to impossible to scru-
tinise every transaction effectively. Inevitably, the innovation 
of automated solutions is essential.

Our Contribution

This research makes several contributions to the scientific 
domain. Firstly, we present a literature review of similar 
fraud detection solutions both in the iGaming industry and 
other fields in Sect. 2. We also discuss a pipeline which can 
predict iGaming fraud with a precision of 84.2%, evaluated 
on a real-life dataset. We also present a strategy to detect and 
combat concept-drift, which refers to a changing underly-
ing distribution of the dataset, purely based on data-driven 
methods. This research extends the predictive component of 
the machine learning approach and investigates an applica-
tion for local interpretable explanations to highlight poten-
tial fraud indicators per player. We show how our approach 
results in a prescriptive solution which can predict the 

likelihood of fraud and list the key indicators supporting that 
particular prediction. The latter not only allows for a pro-
active stance against cyber-fraud but also facilitate the next 
steps for the fraud analyst, such as requesting further player 
identification documents or permanently blocking the player.

We structure the rest of the paper as follows. In Sect. 2, 
we provide a literature review of existing similar solutions. 
We discuss our pre-processing approach and modelling 
strategy in Sect. 3. Then, in Sect. 4, we present our results 
on the real-life dataset and respective observations. Finally, 
we summarise our findings and present our conclusions and 
future recommendations in Sect. 5.

Related Work

Several supervised fraud detection studies and solutions 
exist. In most scenarios, labelled datasets for fraud detec-
tion tend to be heavily imbalanced since fraudulent activity 
tends to be rarer than non-fraudulent [9, 21]. In a classifica-
tion fraud detection task, we might have to also deal with 
the class imbalance issue beforehand. Whitrow et al. [35] 
investigated credit-card fraud. They observed that aggregat-
ing transactions over some time (one to three days) helped 
with dealing with the class distribution problem. The authors 
observe that the random forest (RF) algorithm yielded the 
best predictive result when compared to other supervised 
algorithms, like support vector machine (SVM). RF is an 
algorithm which builds several decision trees (DT), called 
an ensemble, and the generates the final prediction by cal-
culating the mode of all decision trees. A DT is a predic-
tive model that maps the training samples into branches and 
leaves to create a tree-like structure. Dhankhad et al. [9] 
suggest the grouping of transactions as a means to com-
bat class imbalance along with the utilisation of network-
based features. A network-based feature describes some 
time-dependent variable on a customer, used to generate a 
‘suspiciousness score’. The authors also recommend using 
precision, recall, and F1-score as the performance evalu-
ation metrics for tasks with class imbalance. They noted 
the best performance when they under-sampled the majority 
class (i.e. non-fraud) as a class balancing strategy. A stack-
ing classifier using a meta logistic regression (LR) estima-
tor, RF, and eXtreme Gradient Boosting (XGB) achieved 
the best overall results. LR derives conditional probabilities 
based on a logistic funtion. XGB forms part of the gradient 
boosting type algorithms. Like RF, gradient boosting models 
are also ensemble techniques since they construct several 
weak classifiers in the form of decision trees. The outputs 
of these weak learners are then generalised using gradient 
descent optimisation. Phua et al. [24] also investigated the 
problem of skewed data using public insurance fraud detec-
tion dataset. The authors suggest using a stacking classifier 
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of bagged algorithms based on the C4.5 technique to deal 
with handling class imbalance. Sahin et al. [27] used a DT 
with cost-sensitive learning as an application to credit card 
fraud detection and argue that cost-sensitive learning is the 
best way to combat class imbalance based on their empiri-
cal results.

Li et al. [15] compare a Naïve Bayes (NB) classifier, 
LR, and an artificial neural network (ANN) on credit card 
fraud detection. This study observes that on a balanced data-
set, the LR model outperformed the other two; however, 
on an imbalanced dataset, the NB algorithm achieved the 
best overall performance. Monedero et al. [22] investigated 
energy consumption fraud using three models based on Pear-
son correlation, Bayesian networks, and DT. The authors 
then merge the results of all three models to obtain a final 
list of potentially fraudulent customers. Coma-Puig et al. [8] 
later extended the latter and presented an empirical analysis 
of several machine learning techniques. The authors evalu-
ated the algorithms on their Area Under the receiver operat-
ing characteristics (AUROC) after 4-fold cross-validation. 
The authors found gradient boosting (GB), RF, and Ada-
Boost with an NB as its base estimator to be the best-per-
forming algorithms. Akhilomen [1] and Kim and Kim [12] 
also investigate credit card fraud detection using different 
ANN architectures. Other supervised techniques investigated 
include a self-organising map (SOM) [23] and combining 
recency-frequency-monetary (RFM) variables and social 
network analysis in an RF [31].

Besides the issue of class imbalance, fraudulent activ-
ity is also continuously changing, and fraudsters are always 
discovering newer approaches to remain undetected. In 
machine learning, we refer to this phenomenon as con-
cept-drift, where the underlying statistical distribution of 
the data morphs over time; thus, rendering the predictive 
model to become less accurate by time [34]. Dealing with 
concept drift requires that the model is kept up-to-date 
with the latest behavioural trends by performing regular 
model re-training, i.e. incremental learning. Based on the 
speed of the data morphism, referred to as the drift rate by 
Somasundaram and Reddy [28], we can determine the nec-
essary frequency of learning to keep the model relevant. 
In their study, Somasundaram and Reddy [28] demonstrate 
how using incremental learning and cost-sensitive estima-
tors can help deal with both class imbalance and concept 
drift issues. Wang et al. [33] also describe online learning 
as another viable solution for dealing with concept drift. In 
online learning, the incoming data samples simultaneously 
update the learning algorithm as it flows into the model.

More recently, researchers are also investigating the topic 
of explainability to machine learning modelling. Most arti-
ficial intelligence (AI) algorithms are black-box machines, 
meaning that we cannot easily see how the model gener-
ates predictions. Even though we measure performance, 

ultimately, we blindly trust these algorithms and their pre-
dictions. The emerging field of eXplainable AI (XAI) is 
interested in extracting the knowledge and rationale behind 
a model’s particular prediction or set of predictions. The 
ability to explain a specific prediction is vital, especially 
when such a prediction motivates or directly invokes another 
action or reaction [26]. XAI systems would not just help 
to instil trust in an AI but also act as a medium to under-
stand better what the model believes to be the causal fac-
tors of a specific problem. XAI also provides a glimpse of 
how the model will behave in the future. A model can be 
either explained globally or locally. A global XAI system 
attempts to explain to the entire model while a local expla-
nation works by generating the rationale behind every indi-
vidual sample and subsequent prediction [25]. One of the 
most recent advancements in local explanations is the local 
interpretable model-agnostic explanation (LIME) technique, 
introduced in Ribeiro et al. [26]. Given an incoming sample 
for prediction, LIME approximates local linear artificial data 
points (in the neighbourhood of the incoming sample) and 
performs data perturbation to determine how every feature 
influences the model’s prediction. This process results in 
prediction explanations consisting of the influential features 
represented as a mathematical equality.

Lundberg and Lee [17] also tackled the problem of pre-
diction interpretability by presenting SHapley Additive 
exPlanations (SHAP). Similarly to LIME, SHAP also yields 
local explanations. Inspired by game theory, SHAP also 
determines the contribution of every feature to the model’s 
prediction per incoming sample. One of the advantages of 
LIME and SHAP is their model agnosticism property, mean-
ing that both techniques can work in conjunction with any 
model. Despite XAI still being in its infancy stage, research-
ers have already investigated its benefits in relation to the 
medical domain [10, 16, 20, 30, 32], mass surveillance [10], 
knowledge graphs [14], and image-based predictive mainte-
nance [13]. Marino et al. [18] also investigated XAI as part 
of an anomaly detection approach for intrusion detection. To 
the best of our knowledge, XAI has never been explored as 
an application for cyber-fraud detection, particularly in the 
iGaming industry.

Materials and Methods

Data Preparation

Our Risk and Fraud team perform numerous risk assess-
ments daily. Thus, we had access to a historical record 
of previously confirmed fraudulent cases. We extracted 
several data points on these players as well as other players 
not part of the fraudulent list, resulting in a binary clas-
sification dataset (‘non-fraud’ and ‘fraud’). Our dataset 
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consisted of 451,123 players which included a total of 
13,591 confirmed fraudsters, with the remaining players 
(437,532) not being previously flagged for fraud. Further, 
we filtered out those non-fraud players who had no activ-
ity recorded, bringing down the total number of players 
to 197,733 (184,142 of which not previously flagged as 
fraud). Besides reducing noise, this process also acted as 
an under-sampling strategy and helped improve our class 
imbalance issue slightly. Our fraud class represents 6.87% 
of the entire dataset. We monitored over 1000 dimensions 
which we later reduced to 25 features based on the follow-
ing attributes (we further discuss this process in Sect. 3.3): 

1.	 Multi-session behavioural aggregates
2.	 Gaming patterns
3.	 Session identification and geolocation
4.	 Demographics
5.	 Payment information

Experimental Setup

For this study, we used Python 3.7 with the Anaconda 
distribution as our primary development language. We 
conducted our experiments using Jupyter Notebooks on a 
16GB RAM, 64-bit Unix system. To combat over-fitting, 
we used Stratified k-Fold cross-validation to consider 
every sample once for validation and k − 1 times for model 
training.

Data Pre‑processing

We observed that some of our features had missing values, 
mostly attributed to no player activity concerning that spe-
cific data point. To deal with this issue, we imputed all miss-
ing values using the median. We justify using the median 
instead of the mean due to most of our features being highly 
skewed. We attribute high skewness to differences in behav-
iour between one player and another as well as the presence 
of outlier samples. Scaling the dataset without properly han-
dling this characteristic yielded sub-par results in scaling. As 
part of our scaling strategy, we categorised our features into 
three groups: Boolean’s, scalars, and highly-skewed scalars. 
For Boolean features, we ensured that they only had either a 
value of 1 or 0. For the scalar category, we scaled the feature 
values using Eq. 1. Equation 1 allows us to scale a feature 
within its respective inter-quartile range. This approach is 
also robust to outliers. In the case of highly skewed fea-
tures, we found that scaling using this approach alone did 
not produce satisfactory results. Therefore, we first applied 
a logarithmic transformation on the absolute value of the 
highly-skewed features before using Eq. 1.

where x� is the transformed value, xi is the value of feature

x, Q1(x) is the lower quartile of x, Q2(x) is the median of x,

Q3(x) is the upper quartile of x.

As previously mentioned, our dataset was highly dimen-
sional with over 1000 features. Besides adding complexity in 
the model, a high number of features results in an increased 
risk of over-fitting. We performed a 3-step feature selection 
strategy. Firstly, we removed all single-valued features since 
such a feature does not contribute any value to our solution. 
Secondly, we removed multi-collinear features based on a 
Pearson correlation coefficient threshold of 0.7, since val-
ues greater than 0.7 can be considered as highly correlated. 
Multi-collinear features tend to increase model complex-
ity without supplementing value to the model, and in some 
cases, also harms predictive performance. This step drasti-
cally reduced our dimensionality. Finally, we trained a base 
LightGBM (LGB) model for several iterations to extract fea-
ture importance. LGB is another model part of the gradient 
boosting family, similar to XGB. We removed those features 
which do not contribute to a 99% cumulative importance. 
This strategy dropped our number of features down to 25.

Motivated by literature, we also attempted to understand 
whether our observed fraudulent behaviour is prone to 
concept-drift. We split our dataset into several bins, includ-
ing 1-year, 6-months, 4-months, 1-month, and 1-week. We 
used the Mann–Whitney U test to assess whether the fea-
tures from one bin appear to be from a different distribution 
when compared to the same feature from another bin. We 
visualised the percentage of ‘significant features’, per bin. 
Furthermore, we also set up an experiment to investigate 
causal inference between bins using an algorithm based on 
Bayesian structural time series. The algorithm compares 
the observed behaviour after the event against the expected 
behaviour and infers the statistical significance of a causal 
impact. The algorithm uses the Bayesian-based model for 
the expected behaviour by predicting posterior behaviour if 
the event did not occur. For us, the event was simply the end 
of a particular bin and the commencement of another (i.e. 
starting of a new year).

Predictive Modelling

Motivated by the literature in Sect. 2, we evaluated the pre-
dictive performance of RF, LGB, DT, and LR on our dataset. 
We used Stratified 10-fold cross-validation to minimise the 
risk of over-fitting and preserve the class distribution and 
compare the models on their respective AUROC (the mod-
el’s ability to distinguish between both classes), precision 
(the ratio of correct positive predictions to the total positive 
predictions), Recall (the fraction of positive cases correctly 

(1)xτ =
xi − Q2(x)

Q3(x) − Q1(x)
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predicted), and F1-score (the harmonic mean of precision 
and recall) averages and variances. For the best-performing 
pipeline, we also evaluated the model’s false-alarm rate 
(using Eq. 2). We also experimented with over-sampling 
the minority class using Synthetic Minority Over-sampling 
TEchnique (SMOTE) to balance both classes further. We 
evaluated all models using their default hyper-parameters 
(from the scikit-learn Python package). We further per-
formed hyper-parameter tuning using Bayesian optimisation 
and distributed Tree of Parzen Estimators (TPE) of the best 
performing model:

where FR is the false-alarm rate, FP is the false positives,

TN is the true negatives.

Following training and tuning of our best model, we also 
investigated the concept-drift phenomenon from the perspec-
tive of predictive performance decay. With this experiment, 
we wanted to quantify our drift rate based on an empirical 
and data-driven approach. We set up an experiment to simu-
late production and assess how the data-drift evolves. We 
selected a testing size of x of 3-months and an interval of y 

(2)FR =
FP

FP + TN

of 1-month. We start the experiment by setting our test set 
equal to the latest x of our data with the remaining months 
forming part of the training. We repeated the experiment 
until the training set only included the oldest x. After every 
iteration, we removed the most recent month based on y 
from our dataset and repeated the experiment. At every itera-
tion, we recorded the performance metrics. We selected x 
and y based on previous analysis. We further illustrate this 
simulation in Fig. 1. We also used the Mann–Whitney U test 
again to map the statistical significance between the change 
in the percentage of significant features against the change 
in predictive performance. This algorithm has a time-com-
plexity of O(n2) and was executed on a total of 3450 binned 
observations, which took 668 ms to complete.

Local Interpretable Explanations

The final part of our pipeline was to extract explanations for 
every individual prediction. We used locally faithful expla-
nations to determine which features had the most significant 
contribution for that particular instance and quantify that 
same contribution. These explanations are represented as 
feature conditions in the form of mathematical inequalities, 
and every condition has an attributed relative strength (posi-
tive if the contribution was towards the positive class and 
vice-versa). Our approach was to extract the top 5 features 
driving the prediction and extract their respective conditions. 
We filtered out those conditions which had a negative rela-
tive strength, primarily because our interest lies in explain-
ing which features are indicative of potentially fraudulent 
behaviour—answering the question: why does our model 
think that this player is fraudulent?

Results and Discussion

As discussed in "Predictive Modelling", we evaluated the 
LGB, RF, DT, and LR techniques on multi-session data 
using stratified 10-fold cross-validation. We show the 
obtained averaged results in Table 1.

We demonstrate that the LGB achieved the best perfor-
mance. The LGB algorithm outperformed all of the other 
evaluated algorithms on the AUROC, recall, and F1-score. 
Considering the precision, we note the best result from 

Fig. 1   Schematic of the simulation experiment to quantify the drift-
rate

Table 1   Performance results of 
the evaluated techniques

The bold numbers refer to the best in that column

Model AUROC Precision Recall F1 Time (s)

LGB 0.818 ± 0.054 0.842 ± 0.063 0.644 ± 0.115 0.722 ± 0.044 28.310
RF 0.799 ± 0.042 0.877 ± 0.054 0.602 ± 0.083 0.713 ± 0.075 64.730
DT 0.809 ± 0.042 0.620 ± 0.068 0.641 ± 0.085 0.630 ± 0.076 25.861
LR 0.732 ± 0.069 0.808 ± 0.082 0.471 ± 0.137 0.591 ± 0.129 135.326
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the RF, which also obtained the most consistent (in terms 
of variance) results across all metrics. Both DT and LR 
obtained mediocre results when compared to the RF and 
LGB techniques. In our use-case, we prioritised precision. 
This inherently excludes DT from any future analysis given 
that this technique yielded the lowest precision value from 
the group. Although the LR achieved rather good precision 
values, overall, the RF and LGB shadowed it on all metrics. 
We selected LGB as our best-performing pipeline, mainly 
for two reasons: better AUROC and a better F1. Although 
RF obtained the best precision values, the LGB approach 
seems to have yielded a more robust model overall. With a 
slightly higher AUROC and F1-score, LGB appears the most 
balanced model out of the two. Further, LGB resulted in an 
average fraud false-alarm rate of 0.402%. For all algorithms, 
we tried over-sampling with SMOTE; however, we did not 
observe any performance improvements. As aforementioned, 

we performed automated TPE hyper-parameter tuning on 
LGB which considered rounded uniform ‘num_leaves’, log 
uniform ‘learning_rate’, rounded log uniform ‘min_data_
in_leaf’, uniform ‘bagging_fraction’, and uniform ‘feature_
fraction’. We set our hyper-parameter process to perform 50 
evaluations, which took about 2 h to complete. The number 
of evaluations is directly proportional to the execution time 
and quality of the hyper-parameters.

Quantifying the Drift‑Rate

As our first attempt to quantify the drift-rate, we used the 
Mann–Whitney U test to investigate feature distribution 
morphism. We tested the latter for different buckets, start-
ing from yearly bins to monthly. We observed that for the 
broader bins, the majority of the features (60–70% of the fea-
tures) did show distribution-drifts. This behaviour appears 
to be tamed when considering the monthly bins, albeit still 
fluctuating (refer to Fig. 2).

From month to month, we expect around 10–40% of 
the features to suffer drift. We also note that the highest 
percentage drift recorded came from bin 37 to 38, which 
represented early 2020. Since this time coincided with the 
COVID-19 outbreak, we started to correlate such drifts 
with this event. To further investigate this behaviour, 
we visualised the distribution-drift for weekly bins. We 
observed similar behaviour to that of the monthly bins, 
and thus, excluded the weekly bins and investigated fur-
ther using the monthly bins. One added benefit of this 
data-drift detection strategy is the added coverage of how 
the data is changing. By monitoring distribution mor-
phism of every individual feature, we were able not just 
to understand the quantitative severity of the drift but 
also investigate which features are drifting. Following, 
we investigated the causal impact on the underlying dis-
tribution of the data by two events: the start of the year 
2020 and the start of the COVID-19 pandemic (February/
March 2020). After both events, we can observe a negative 
cumulative effect on the data distribution. However, with 
a level of significance of 0.05, both results are not statisti-
cally significant. We show the causal impact of COVID-19 
in Fig. 3, which is also representative of what we observed 
for the 2020 causal impact. Although there is not enough 
statistical evidence for us to attribute such drift to a par-
ticular event, we definitely cannot argue that concept-drift 
is not present in our dataset. Without training the model 
on any 2020 data, we noticed poor results (around 50% 
precision and 1% recall).

We can also confirm the presence of data-drift through 
the simulation experiment. Similarly to our previous 
results, Fig. 4 shows a sharp drop in recall at around the 
9th (November/December 2019) and 8th (February/March 
2020) iterations. The deeper we go into 2020, the worse the 

Fig. 2   Percentage of features exhibiting distribution-drift using 
monthly bins

Fig. 3   Causal impact of the start of COVID-19 on the data distribu-
tion
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observed recall. Based on these results, we appear to have 
a drift-rate of approximately 1-month. Hence, we need to 
perform model re-training at least every month.

Prescriptive Analytics Using XAI

Following the process as discussed in Sect. 3.5, we ended 
up with a list of explanations attributed to every individual 
prediction. We visualised these explanations accordingly. 
We show an example of such visualisations in Fig. 5. In this 
particular instance, the model correctly predicted this fraud-
ulent player with a probability of 0.98. The model picked 
up a country mismatch at login (the strongest indicator) and 
irregular patterns in the bet counts and number of payments 
as the leading indicators of potentially fraudulent behaviour.

Further, we can understand that the model flagged the 
login mismatch and betting behaviour because they were 
> 0, while the total payments were ≤ 0 (based on the scale-
transformed values). This process took approximately 2 
seconds per instance. Through XAI, we are essentially 
prescribing courses-of-action to our fraud analysts, saving 
them time and optimising their workflow. XAI serves as 
padding between our model and the fraud analysts. Using 
XAI allows us also to minimise the adverse effects of 
incorrect predictions. The main drawback of a wrong pre-
diction is eating away time which the fraud analyst could 
have used to investigate other cases. With the addition of 
XAI, we are drastically reducing this time by letting the 
fraud analysts know precisely where to look. Furthermore, 
these explanations are aiding the fraud analysts in uncover-
ing emerging fraudulent behaviours and discovering other 
fraudulent patterns, which are not straightforward or mani-
fested. Ultimately, our application of XAI methodology to 
generate prescriptive predictions equips our fraud analysts 
with the necessary tools to get a leg up on the fraudulent 
activity.

Conclusions

In this research, we investigated the effectiveness of 
machine learning techniques to flag fraudulent behaviour 
in the iGaming industry. We demonstrated how one could 
leverage existing XAI algorithms to explain individual 
predictions for prescriptive solutions and extract addi-
tional knowledge on the causation of cyber-fraud. We had 
access to a labelled (‘fraud’ and ‘non-fraud’) dataset with 
a sample size of 197,733, where our fraudulent instances 
represented 6.87% of the entire dataset. We tackled this 
problem as a binary classification task. We compared 
pipelines based on the RF, LGB, DT, and LR techniques, 
evaluated using stratified 10-fold cross-validation. We 
show that the LGB algorithm achieved an AUROC of 
0.818 (± 0.054), a precision of 0.842 (± 0.063), a recall 
of 0.644 (± 0.115), and an F1-score of 0.722 (± 0.044), 
outperforming the other evaluated models.

Further, we tuned the hyper-parameters of the LGB 
model using Bayesian optimisation methods. We also 
addressed the phenomenon of concept-drift through an 
empirical and data-driven strategy which confirmed the 
presence of data-drift. We concluded that the drift-rate 
was around the 1-month mark, suggesting a monthly re-
training for the model to remain reliably updated. Using 
this approach, we were also able to understand how the 
players’ behaviour drifts. We also extended the predic-
tive component of our work by leveraging the emerging 
field of XAI to generate prescriptive solutions through 
locally faithful explainable predictions. One limitation of 
this research is the manually labelled dataset, which might 
have introduced bias and human-error in our analysis. 
Nonetheless, given that the same team that labelled this 
data will be using our solution, the effect of this limitation 
is diminished. In our future work, we will be investigating 
the relevance of online learning to combat the concept-
drift problem further.

Fig. 4   Recall performance decay per iteration using monthly bins

Fig. 5   An example of an explainable prediction
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