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Abstract
Essential proteins are indispensable to the viability and reproduction of an organism. The

identification of essential proteins is necessary not only for understanding the molecular

mechanisms of cellular life but also for disease diagnosis, medical treatments and drug

design. Many computational methods have been proposed for discovering essential pro-

teins, but the precision of the prediction of essential proteins remains to be improved. In this

paper, we propose a new method, LBCC, which is based on the combination of local den-

sity, betweenness centrality (BC) and in-degree centrality of complex (IDC). First, we intro-

duce the common centrality measures; second, we propose the densities Den1(v) and
Den2(v) of a node v to describe its local properties in the network; and finally, the combined

strategy of Den1, Den2, BC and IDC is developed to improve the prediction precision. The

experimental results demonstrate that LBCC outperforms traditional topological measures

for predicting essential proteins, including degree centrality (DC), BC, subgraph centrality

(SC), eigenvector centrality (EC), network centrality (NC), and the local average connectiv-

ity-based method (LAC). LBCC also improves the prediction precision by approximately 10

percent on the YMIPS and YMBD datasets compared to the most recently developed

method, LIDC.

Introduction
Essential proteins are indispensable to the viability or reproduction of an organism and play a
decisive role in cellular life [1]. Deletion of a single essential protein is sufficient for causing
lethality or infertility [2]. Compared to non-essential proteins, essential proteins are more likely
to be conserved in biological evolution [3]. Essential proteins provide insights into the molecu-
lar mechanisms of an organism at the system level, with significant implications for drug
design and disease study [4]. For example, in drug development, essential proteins are excellent
targets for potential new drugs and vaccines to treat and prevent diseases and for improved
diagnostic tools more reliably to detect infections [5].
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There are two types of methods for predicting essential proteins. One is experimental proce-
dures, such as RNA interference [6], single gene knockouts [7], and conditional knockouts [8].
However, these experimental procedures require considerable time and resources, even for
well-studied organisms, and they are not always practical. The other type of method is bioin-
formatics computational approaches that take advantage of the abundance of experimental
data available for protein interaction networks, such as degree centrality (DC) [9], betweenness
centrality (BC) [10], subgraph centrality (SC) [11], eigenvector centrality (EC) [12], network
centrality (NC) [13], and the local average connectivity-based method (LAC) [14]. Obviously,
the latter is faster and less expensive than the former.

In 2015, Luo and Qi [15] proposed a method named LIDC for discovering essential proteins
based on the local interaction density and protein complexes. The experimental results
obtained with the YMIPS dataset demonstrated that the performance of LIDC was superior to
that of nine reference methods (i.e., DC, BC, NC, LID [15], PeC [16], CoEWC [17], WDC [18],
ION [19], and UC [20]).

However, methods based on bioinformatics computational approaches are sensitive to the
local or global topological properties of the network, and the prediction precision for identify-
ing essential proteins requires further improvement. In this paper, we first introduce the densi-
ties Den1(v) and Den2(v) of a node v to describe its local properties in the network. Then, a
novel method called LBCC is proposed, which is combined with Den1, Den2, BC, and IDC,
where the local and global properties of the node are measured by Den1 and Den2 and by BC,
respectively, and the information of the protein complex is measured by IDC, which was first
introduced in [15]. This combination of features has not previously been considered for this
problem.

We performed several experiments on different PPI (protein-protein interaction) networks
of Saccharomyces cerevisiae, YMIPS, YMBD, YHQ and YDIP, which will be described in the
Experimental data section. The experimental results demonstrate that our LBCC method pro-
vides superior prediction performance compared to centrality measures, including DC, BC,
SC, EC, NC, and LAC. In particular, compared to the most recent method, LIDC, which is a
more effective method for predicting essential proteins, LBCC improves the prediction preci-
sion by at least 10 percent on the YMIPS and YMBD datasets.

Methods

Notation
For an undirected simple graph G(V, E) with a set of nodes V and a set of edges E, a node v 2 V
denotes a protein and an edge e(u, v)2E denotes an interaction between two proteins u and v.
Nv denotes the set of nodes containing all the neighbors of node v, and |Nv| denotes the number
of nodes in Nv. Let G[S] denote the subgraph of G induced by the node set S.

Centrality measures
Many researchers have found that it is significative to predict essential proteins by centrality
measures [21, 22]. A PPI network is always represented as an undirected simple graph G(V, E).
Here, we will introduce six classical centrality measures based on network topological
properties.

Degree centrality(DC). The degree centrality of a node v is the number of its neighbor nodes,

DCðvÞ ¼ degðvÞ;
where deg(v) is the number of its neighbor nodes.
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Betweenness centrality(BC). The betweenness centrality of a node v is denoted as the average
fraction of the shortest paths passing through the node v,

BCðvÞ ¼
X

s6¼t 6¼v2V

sstðvÞ
sst

;

where σst is the number of shortest paths between s and t, and σst(v) is the number of such
paths passing through v.

Subgraph centrality(SC). The subgraph centrality of a node v accounts for the participation
of v in all subgraphs of the network,

SCðvÞ ¼
X1

k¼0

mkðvÞ
k!

;

where μk(v) is the number of subgraphs from node v to node v with length k.
Eigenvector centrality(EC). The eigenvector centrality of a node v is the value of the vth com-

ponent of the principal eigenvector of A,

ECðvÞ ¼ amaxðvÞ;
where αmax represents the eigenvector that corresponds to the largest eigenvalue of the adja-
cency matrix A and αmax(v) is the vth component of αmax.

Local average connectivity centrality(LAC). The local average connectivity centrality of a
node v is denoted as the local connectivity of its neighbors,

LACðvÞ ¼
P

u2Nv
degCvðuÞ
jNvj

;

where Cv is the subgraph G[Nv] and deg
Cv(u) is the number of its neighbors in Cv for a node u

2 Nv.
In-degree centrality of complex(IDC). The in-degree centrality of complex of a node v is

denoted as

IDCðvÞ ¼
X

i2ComplexSetðvÞ
IN � DegreeðvÞi;

where ComplexSet(v) represents the set of protein complexes including protein v and IN-
Degree(v)i is represented as the value of DC(v) for the ith protein complex belonging to Com-
plexSet(v).

Local properties of nodes in a PPI network
There are many local properties of nodes in a PPI network, such as the degree centrality (DC)
and local clustering coefficient [23], which is defined as

LCCðvÞ ¼ 2ðjEðHÞj � jNvjÞ
jNvjðjNvj � 1Þ :

In this section, we propose two types of local properties of nodes in a PPI network, Den1(v) and
Den2(v), which are defined as follows.

Den1(v). For a node v, let H denote the subgraph of G[Nv [ {v}]; then, we define

Den1ðvÞ ¼
2jEðHÞj

jVðHÞjðjVðHÞj � 1Þ ;
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which is the proportion of the number of the edges to the number of all possible edges of H.
Den1(v) is somewhat different from LCC(v), and their relationship is

Den1ðvÞ ¼
ðjNvj � 1ÞLCCðvÞ þ 2

ðjNvj þ 1Þ :

Den2(v). For nodes v and u 2 Nv, letMu =
S

u 2 Nv
Nu, and let H denote the subgraph of G

[Mu [ Nv [ {v}]; then, we define

Den2ðvÞ ¼
2jEðHÞj

jVðHÞjðjVðHÞj � 1Þ ;

whereMu is the set of nodes for which the distance to v is 2. Hence, Den2(v) is the density of
the subgraph induced by v and the set of nodes for which the distance to v is 1 or 2. Consider-
ing the graph G shown in Fig 1 as an example, except for the leaf nodes, the values of Den1(v)
and Den2(v) of the other nodes are presented in Table 1.

To evaluate the effects of Den1 and Den2 on the prediction of essential proteins, we per-
formed some experiments on the YMIPS and YMBD datasets, which are described in the next
section. Consider that the values of BC can represent the global properties of nodes. We first
compute the value of BC(v) of each node v in YMIPS and YMBD, and we compute their local
properties Den1(v) and Den2(v). For YMIPS, we find that there are 33 pairs of nodes, in which
each pair has the same value of BC(v), and Den1(v) and Den2(v) can facilitate identifying the
essential proteins in 6 pairs. For YMBD, we also find that there are 39 pairs of nodes, in which

Fig 1. GraphG.

doi:10.1371/journal.pone.0161042.g001

Table 1. The values ofDen1(v) andDen2(v) of the nodes in graphG.

Node 2 3 4 6 9 11 13 14 15 16 17 18

Den1(v) 0.667 0.667 0.500 0.500 0.333 0.667 0.400 0.667 0.667 0.500 0.667 0.667

Den2(v) 0.500 0.333 0.286 0.200 0.165 0.286 0.212 0.218 0.467 0.357 0.500 0.381

doi:10.1371/journal.pone.0161042.t001
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each pair has the same value of BC(v), and Den1(v) and Den2(v) can facilitate locating the
essential proteins in 8 pairs. In Table 2, we list the values of Den1(v), Den2(v) and BC(v) of
these pairs of nodes for YMIPS and YMBD. Hence, we believe that the local properties Den1(v)
and Den2(v) are important for aiding in locating essential proteins.

New centrality measure: LBCC
In this section, we propose a new method, LBCC, by combining Den1, Den2, BC and IDC. The
following basic concepts underlie LBCC:

1. essential proteins tend to form highly connected clusters [24];

2. essential proteins gather in protein complexes [20]; and

3. both local and global properties are important for aiding in locating essential proteins.

Therefore, for a node v of the network, we use IDC(v) to represent its information on pro-
tein complexes and BC(v) to represent its global properties. For the contribution of local

Table 2. The values ofDen1(v), Den2(v) andBC(v) for YMIPS and YMBD.

Dataset Protein Den1(v) Den2(v) BC(v) Essentiality status

YMIPS YNL012W 0.667 0.400 21895 Nonessential

YPR085C 0.667 0.077 21895 Essential

YHR004C 0.333 0.024 13528 Nonessential

YJR112W 0.279 0.027 13528 Essential

YCL031C 0.500 0.119 8765 Essential

YCR059C 0.500 0.007 8765 Nonessential

YDR160W 0.667 0.400 8764 Essential

YNR019W 0.667 0.250 8764 Nonessential

YAL025C 0.667 0.116 4383 Essential

YAL042W 0.667 0.076 4383 Nonessential

YDR380W 0.667 0.667 1 Nonessential

YER009W 0.667 0.500 1 Essential

YMBD YDR180W 0.400 0.099 10670 Essential

YMR312W 0.400 0.409 10670 Nonessential

YMR153W 0.667 0.162 10665 Nonessential

YPR088C 0.762 0.071 10665 Essential

YEL013W 0.400 0.103 6408 Nonessential

YPL169C 0.400 0.084 6408 Essential

YPL204W 0.700 0.311 6405 Essential

YEL036C 0.667 0.467 6405 Nonessential

YER029C 0.500 0.364 4273 Essential

YHR171W 0.500 0.333 4273 Nonessential

YER167W 0.667 0.222 4272 Nonessential

YOL034W 0.667 0.427 4272 Essential

YOR319W 0.667 0.615 2137 Essential

YIL139C 0.667 0.154 2137 Nonessential

YLR342W 0.833 0.137 1068 Nonessential

YHR172W 0.833 0.179 1068 Essential

doi:10.1371/journal.pone.0161042.t002
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properties and highly connected clusters, we use Den1(v) and Den2(v). Because the value ranges
of these measures differ, we apply a log transformation to normalize the data.

Now, we can describe our new measurement LBCC for evaluating the essentiality of a node
v,

LBCCðvÞ ¼ a � logDen1ðvÞ þ b � logDen2ðvÞ þ c � log IDCðvÞ þ d � logBCðvÞ;
where a, b, c, and d are scaling parameters that range from 0 to 10 and represent the impor-
tance of the corresponding item used in the LBCC calculation. We set IDC(v) = 0.001 if a pro-
tein v does not appear in any protein complex.

We perform a large number of experiments to identify essential proteins in the YMIPS data-
set, and we find that the measurement LBCC has the best performance when a, b, c and d are
set to 1, 4, 3 and 1, respectively. To improve the values of these parameters, we also conduct
some experiments using a logistic regression classifier; however, the results are extremely poor
due to the imbalanced datasets, in which the number of nonessential proteins is approximately
three times greater than the number of essential proteins for the four PPI networks.

As shown in Table 2, the values of BC are far greater than those of Den1 and Den2. For IDC,
the majority of its values are between 10 and 100 on the YMIPS dataset. Hence, IDC and BC
are more important than Den1 and Den2 when calculating LBCC.

Results and Discussion

Experimental data
To evaluate the performance of the LBCC method, we used Saccharomyces cerevisiae as the
experimental material because relatively reliable and complete PPI data are available for this
organism. The PPI network data are from the MIPS database (Mammalian Protein-Protein
Interaction Database) [25], the DIP database [26], and other datasets from the website of the
Mark Gerstein Lab (gersteinlab.org).

We selected four different datasets. The first dataset, a MIPS dataset, was marked YMIPS
(S1 Text); the second and third datasets from the Mark Gerstein Lab were marked YMBD (S2
Text) and YHQ (S3 Text), respectively; and the fourth dataset, a DIP dataset, was marked
YDIP (S4 Text). YMIPS included 4546 proteins and 12319 interactions, and its average degree
was approximately 5.42. YMBD, which was selected fromMIPS, BIND and DIP, includes 2559
proteins and 11835 interactions, and its average degree was approximately 9.25. YHQ was con-
structed by Yu et al. [27] comprehensively and reliably and includes 4743 proteins and 23294
interactions in total. The average degree of YHQ was approximately 9.82. YDIP included 5093
proteins and 24743 interactions, and its average degree was approximately 9.72.

The essential proteins (S1 Excel) of Saccharomyces cerevisiae were collected from the follow-
ing databases: MIPS [25], SGD (Saccharomyces Genome Database) [28], DEG (Database of
Essential Genes) [29], and SGDP (Saccharomyces Genome Deletion Project) [2]. Detailed
information on the datasets is presented in Table 3.

Table 3. Information on the four PPI datasets: YMIPS, YMBD, YHQ and YDIP.

Dataset Proteins Interactions Average degree Essential proteins

YMIPS 4546 12319 5.42 1016

YMBD 2559 11835 9.25 763

YHQ 4743 23294 9.82 1108

YDIP 5093 24743 9.72 1167

doi:10.1371/journal.pone.0161042.t003
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The protein complex set (S2 Excel) was directly obtained from [15] and contained 745 pro-
tein complexes (comprising 2167 proteins) from four protein complex datasets: CM270 [25],
CM425 [30], CYC408 and CYC428 [31, 32]. All data and our code are available at website
https://github.com/qindynasty/LBCC.

Evaluation methods
In general, several statistical measures, such as sensitivity (SN), specificity (SP), positive predic-
tive value (PPV), negative predictive value (NPV), F-measure (F), and accuracy (ACC), are
used to determine how effectively the essential proteins are identified by different methods (see
the references [13, 15]). We introduce them in this section to evaluate the effectiveness of the
proposed method LBCC. First, we provide four statistical terms:

• True positives(TP). The essential proteins that are correctly selected as essential.

• False positives(FP). The nonessential proteins that are incorrectly selected as essential.

• True negatives(TN). The nonessential proteins that are correctly selected as nonessential.

• False negatives(FN). The essential proteins that are incorrectly selected as nonessential.

Next, we provide the definitions of six statistical measures:
Sensitivity. Sensitivity is the ratio of the proteins that are correctly selected as essential to the

total number of essential proteins,

SN ¼ TP
TP þ FN

;

Specificity. Specificity is the ratio of the nonessential proteins that are correctly selected as
nonessential to the total number of nonessential proteins,

SP ¼ TN
TN þ FP

;

Positive predictive value. Positive predictive value refers to the ratio of the proteins that are
correctly selected as essential,

PPV ¼ TP
TP þ FP

;

Negative predictive value. Negative predictive value refers to the ratio of the proteins that are
correctly selected as nonessential,

NPV ¼ TN
TN þ FN

;

F-measure. F-measure refers to the harmonic mean of SN and PPV,

F ¼ 2 � SN � PPV
SN þ PPV

;

Accuracy. Accuracy refers to the ratio of the proteins that are correctly selected as essential
and nonessential in all the results,

ACC ¼ TP þ TN
P þ N

;
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in which P represents the number of essential proteins and N represents the number of nones-
sential proteins.

Comparison with other prediction measures
To evaluate the performance of LBCC, we compared LBCC and other prediction measures
using the four datasets described in the Experimental data section. The compared prediction
measures included LIDC, DC, BC, SC, EC, NC, and LAC. The algorithm for LIDC was imple-
mented according to [15], and the other algorithms were implemented using CytoNCA [33], a
plugin of Cytoscape for centrality analysis of PPI networks.

First, we ranked proteins in descending order based on their LBCC values and other predic-
tion measures; second, we selected the top 100, 200, 300, 400, 500, and 600 proteins as essential
proteins; and finally, the number of true essential proteins was determined. The prediction
results of the eight methods for the four different networks are shown in Figs 2–5.

For the YMIPS dataset shown in Fig 2, LIDC, the most recent method, had the best perfor-
mance, with 66, 124, 177, 224, 265, and 314 true essential proteins identified at six levels from
the top 100 to top 600. By comparison, the numbers of true essential proteins predicted by
LBCC were 75, 145, 199, 248, 305, and 343, respectively. Compared to LIDC, LBCC exhibited
superior performance and increased the prediction precision by more than 13, 16, 12, 10, 15
and 9 percent at six levels from the top 100 to top 600.

For the YMBD dataset shown in Fig 3, except for LBCC, the largest numbers of true essen-
tial proteins identified were 43 (BC), 90 (BC), 133 (BC), 174 (BC), 212 (BC), and 258 (NC) at
six levels from the top 100 to top 600. By comparison, LBCC identified 65, 120, 176, 231, 275,

Fig 2. The number of true essential proteins predicted by LBCC and the other seven previously proposedmethods for the YMIPS network.

doi:10.1371/journal.pone.0161042.g002
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Fig 3. The number of true essential proteins predicted by LBCC and the other seven previously proposedmethods for the YMBD network.

doi:10.1371/journal.pone.0161042.g003

Fig 4. The number of true essential proteins predicted by LBCC and the other seven previously proposedmethods for the YHQ network.

doi:10.1371/journal.pone.0161042.g004
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and 315 true essential proteins, improving the prediction precision by more than 51, 33, 32, 32,
29, and 22 percent at six levels from the top 100 to top 600.

For the YHQ dataset shown in Fig 4, BC achieved the best result at the top 100 level, and SC
and EC attained the best results at the top 200 level. At four levels from the top 300 to top 600,
LBCC produced the best results, and the numbers of true essential proteins identified were 169,
241, 296 and 348.

For the YDIP dataset shown in Fig 5, LIDC achieved the best results at the top 100, 200, 300
and 500 levels, and LBCC attained the best results at the top 400 and 600 levels. At six levels,
the numbers of true essential proteins identified by LIDC were 76, 152, 209, 260, 313, and 354.
By comparison, the numbers of true essential proteins identified by LBCC were 74, 135, 205,
262, 308, and 361, respectively. The results predicted by LBCC were similar to those obtained
using LIDC at the top 100, 300 and 500 levels.

Thus, our experiments indicate that LBCC can identify more essential proteins than the
other methods in most cases.

Validation using six statistical methods and precision-recall curves
In this section, we compared LBCC and the other seven prediction measures using the six sta-
tistical methods described in the Evaluation methods section. We ranked the proteins in
descending order based on the values of eight measures and selected the top 20 percent as
essential proteins; the remaining proteins were considered nonessential proteins. The results
are presented in Table 4, and the values of the six statistical methods for LBCC were consis-
tently higher than those for the other methods on the first two networks, indicating that LBCC

Fig 5. The number of true essential proteins predicted by LBCC and the other seven previously proposedmethods for the YDIP network.

doi:10.1371/journal.pone.0161042.g005
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can predict essential proteins more accurately. For the YHQ dataset, the results predicted by
LBCC were identical to those obtained using LIDC. For the YDIP dataset, the results predicted
by LBCC were similar to those obtained using LIDC.

The precision-recall curve is a statistical method used for assessing the stability of the eight
prediction measures. This curve is obtained by plotting

PrecisionðnÞ ¼ TPðnÞ
TPðnÞ þ FPðnÞ ;

RecallðnÞ ¼ TPðnÞ
P

;

where TP(n) is the total number of essential proteins correctly identified as essential proteins

Table 4. Comparative analysis of LBCC and the other seven previously proposedmethods in terms of SN, SP, PPV, NPV, F-measure, and ACCwith
four different datasets.

Dataset Methods SN SP PPV NPV F-measure ACC

YMIPS DC 0.252 0.815 0.282 0.791 0.266 0.689

LAC 0.269 0.820 0.300 0.796 0.284 0.697

SC 0.139 0.782 0.155 0.759 0.146 0.639

EC 0.139 0.782 0.155 0.759 0.146 0.639

BC 0.249 0.814 0.278 0.790 0.263 0.688

NC 0.281 0.824 0.315 0.799 0.297 0.702

LIDC 0.423 0.864 0.473 0.839 0.447 0.766

LBCC 0.430 0.866 0.481 0.841 0.454 0.769

YMBD DC 0.260 0.825 0.387 0.724 0.311 0.657

LAC 0.271 0.830 0.404 0.728 0.325 0.664

SC 0.239 0.816 0.355 0.716 0.285 0.644

EC 0.239 0.816 0.355 0.716 0.285 0.644

BC 0.283 0.835 0.422 0.733 0.339 0.671

NC 0.266 0.828 0.396 0.726 0.318 0.660

LIDC 0.308 0.846 0.459 0.742 0.369 0.685

LBCC 0.372 0.873 0.555 0.766 0.445 0.724

YHQ DC 0.401 0.861 0.468 0.825 0.432 0.754

LAC 0.431 0.870 0.504 0.834 0.465 0.768

SC 0.326 0.838 0.380 0.803 0.351 0.719

EC 0.326 0.838 0.380 0.803 0.351 0.719

BC 0.330 0.840 0.386 0.804 0.356 0.721

NC 0.426 0.869 0.497 0.832 0.459 0.765

LIDC 0.449 0.876 0.524 0.839 0.483 0.776

LBCC 0.449 0.876 0.524 0.839 0.483 0.776

YDIP DC 0.354 0.846 0.406 0.815 0.378 0.733

LAC 0.405 0.861 0.465 0.830 0.433 0.757

SC 0.323 0.837 0.370 0.806 0.345 0.719

EC 0.323 0.837 0.370 0.806 0.345 0.719

BC 0.308 0.832 0.354 0.802 0.330 0.712

NC 0.398 0.859 0.456 0.827 0.425 0.753

LIDC 0.446 0.873 0.511 0.841 0.476 0.775

LBCC 0.446 0.873 0.512 0.841 0.477 0.776

doi:10.1371/journal.pone.0161042.t004
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and FP(n) is the total number of nonessential proteins incorrectly identified as essential pro-
teins among the top n proteins. P is the total number of essential proteins under consideration.

As shown in Fig 6, LBCC and LIDC performed well for the YMIPS network. The break-
even point for the two measures, LIDC and LBCC, at which the curves intersect was 0.46.
Between the recall levels of 0 and 0.46, LBCC performed significantly better than LIDC.

As shown in Fig 7, LBCC performed particularly well for the YMBD network between the
recall levels of 0 and 0.46.

As shown in Fig 8, for the YHQ network, LBCC performed better between the recall levels
of 0.1 and 0.56.

For the YDIP network, as shown in Fig 9, LBCC tended to provide less desirable results
compared with LIDC.

The analysis of the six statistical methods and precision-recall curves indicated that LBCC
not only has better prediction precisions than the other seven methods but it also delivers more
stable performance for the first three networks.

Validation using jackknife methodology
We used the jackknife methodology developed by Holman et al. [34] to assess the generality of
our trained predictor. First, we ranked the proteins in descending order based on their values
obtained using the eight prediction methods. Then, the jackknife curve was plotted according
to the cumulative number of the true essential proteins. As shown in Figs 10–13, the x-axis rep-
resents the proteins ranked in descending order from left to right according to the values com-
puted using the corresponding methods, and the y-axis represents the number of true essential
proteins among the top n proteins, where n is the number along the x-axis.

Fig 6. PR curves of LBCC and the other seven previously proposedmethods for the YMIPS network.

doi:10.1371/journal.pone.0161042.g006
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Fig 8. PR curves of LBCC and the other seven previously proposedmethods for the YHQ network.

doi:10.1371/journal.pone.0161042.g008

Fig 7. PR curves of LBCC and the other seven previously proposedmethods for the YMBD network.

doi:10.1371/journal.pone.0161042.g007
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Fig 9. PR curves of LBCC and the other seven previously proposedmethods for the YDIP network.

doi:10.1371/journal.pone.0161042.g009

Fig 10. Jackknife curves of LBCC and the other seven previously proposedmethods for the YMIPS network.

doi:10.1371/journal.pone.0161042.g010
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Fig 11. Jackknife curves of LBCC and the other seven previously proposedmethods for the YMBD network.

doi:10.1371/journal.pone.0161042.g011

Fig 12. Jackknife curves of LBCC and the other seven previously proposedmethods for the YHQ network.

doi:10.1371/journal.pone.0161042.g012
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As shown in Figs 10–12, the sorted curve of LBCC is significantly better than those of the
other prediction measures for the YMIPS, YMBD and YHQ data. For the YDIP network, as
shown in Fig 13, LBCC exhibited a performance similar to that of LIDC and superior to those
of all the other methods. Hence, the LBCC method is feasible and effective for predicting essen-
tial proteins for the first three networks.

Analysis of the differences between LBCC and other measures
To further determine why LBCC performs well on the four datasets for predicting essential
proteins, we studied the difference between LBCC and the other prediction measures by pre-
dicting a small number of proteins. Let A \ B denote the set of proteins predicted by both
methods A and B, A − B denote the set of proteins predicted by method A but not by method
B, and A [ B denote the set of proteins predicted by method A or B.

We compared the performances of LBCC and the other seven methods in predicting the top
100 proteins ranked by the corresponding methods. The comparison results are presented in
Table 5.

For the YMIPS dataset, as indicated in column |LBCC \M|, the rates of overlap of the pro-
teins predicted by LBCC and the other six methods (DC, LAC, SC, EC, BC, and NC) were less
than 20 percent, and no protein was predicted by LBCC, SC, and EC. The rate of overlap of
proteins predicted by LBCC and LIDC was 35 percent. The fifth column is the number of true
essential proteins in the set LBCC −M, and the sixth column is the number of true essential
proteins in the setM − LBCC. The number of true essential proteins identified by LBCC was
the highest among the prediction methods. In particular, LBCC yielded 50 more true essential
proteins than DC, LAC, SC, EC, BC and NC. We also plotted the subgraph of the top 100

Fig 13. Jackknife curves of LBCC and the other seven previously proposedmethods for the YDIP network.

doi:10.1371/journal.pone.0161042.g013
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proteins predicted by DC and the top 100 proteins predicted by LBCC in Fig 14 and the sub-
graph of the top 100 proteins predicted by SC and the top 100 proteins predicted by LBCC in
Fig 15. The node number of the subgraph is less than 200 if LBCC \ DC 6¼ ; (or LBCC \ SC 6¼
;). In the two subgraphs, the blue nodes and green nodes form a dense network, whereas the
red nodes and yellow nodes form sparse networks in which there are even several isolated
nodes. Hence, the essential proteins identified by LBCC exhibit significant modularity.

For the YMBD dataset, the column |LBCC \M| demonstrates that the rate of overlap of
proteins predicted by LBCC and the other seven methods was not greater than 20 percent. The
fifth and sixth columns show that LBCC predicted 50 more true essential proteins than the
other prediction methods, including LIDC. Similarly, we plotted two subgraphs of LAC [
LBCC and LIDC [ LBCC, shown in Figs 16 and 17, respectively. The blue nodes and green
nodes form two dense networks, whereas the red nodes and yellow nodes form sparse net-
works. Hence, the essential proteins identified by LBCC also exhibit stronger modularity.

For the YHQ dataset, as indicated by column |LBCC \M|, the rates of overlap of the pro-
teins are less than 40 percent, except for LIDC, for which the rate of overlap is 48 percent. The
fifth and sixth columns show that the number of true essential proteins predicted by LBCC is

Table 5. Analysis of the differences between LBCC and the other sevenmethods in predicting proteins for the YMIPS, YMBD, YHQ and YDIP data.

dataset measure |LBCC
T

M| |LBCC −M| true essential proteins in LBCC −M true essential proteins inM − LBCC

YMIPS DC 1 99 74 22

LAC 18 82 66 14

SC 0 100 75 9

EC 0 100 75 9

BC 1 99 74 23

NC 17 83 66 16

LIDC 35 65 51 41

YMBD DC 20 80 62 11

LAC 11 89 62 14

SC 12 88 62 18

EC 12 88 62 18

BC 13 87 59 37

NC 12 88 62 14

LIDC 18 82 62 14

YHQ DC 37 63 7 26

LAC 36 64 7 8

SC 36 64 7 16

EC 36 64 7 16

BC 5 95 12 42

NC 37 63 7 21

LIDC 48 52 5 8

YDIP DC 4 96 70 42

LAC 28 72 53 38

SC 0 100 74 37

EC 0 100 74 37

BC 4 96 70 40

NC 23 77 58 39

LIDC 66 34 21 27

doi:10.1371/journal.pone.0161042.t005
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less than those predicted by the other methods due to the less desirable results at the top 100
level (see Fig 4). We also plotted the two subgraphs for BC [ LBCC and NC [ LBCC, shown in
Figs 18 and 19, respectively. The blue nodes and green nodes form some dense networks,
whereas the red nodes and yellow nodes form four sparse networks. Thus, the essential proteins
predicted by LBCC show stronger modularity.

For the YDIP dataset, the column |LBCC \M| shows that the rate of overlap of the proteins
predicted by LBCC and the other six methods (DC, LAC, SC, EC, BC, and NC) is less than 30
percent. As indicated by the fifth and sixth columns, the number of true essential proteins

Fig 14. The top 199 proteins in the YMIPS network identified by DC [ LBCC. The green nodes and blue nodes are proteins identified by DC; the former
are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes are proteins identified by LBCC; the former are true
essential proteins, and the latter are nonessential proteins. The black nodes are the overlapping proteins.

doi:10.1371/journal.pone.0161042.g014
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Fig 15. The top 200 proteins in the YMIPS network identified by SC [ LBCC. The green nodes and blue nodes are proteins identified by SC;
the former are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes are proteins identified by LBCC;
the former are true essential proteins, and the latter are nonessential proteins.

doi:10.1371/journal.pone.0161042.g015
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Fig 16. The top 189 proteins in the YMBD network identified by LAC [ LBCC. The green nodes and blue nodes are proteins identified by LAC; the
former are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes are proteins identified by LBCC; the former
are true essential proteins, and the latter are nonessential proteins. The black nodes are the overlapping proteins.

doi:10.1371/journal.pone.0161042.g016
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Fig 17. The top 182 proteins in the YMBD network identified by LIDC [ LBCC. The green nodes and blue nodes are proteins identified by LIDC; the
former are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes are proteins identified by LBCC; the former
are true essential proteins, and the latter are nonessential proteins. The black nodes are the overlapping proteins.

doi:10.1371/journal.pone.0161042.g017
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predicted by LBCC is greater than those predicted by the other methods (DC, LAC, SC, EC,
BC, and NC). Compared with LIDC, the rate of overlap is 66 percent, and 6 fewer true essential
proteins are predicted by LBCC compared to LIDC. Similarly, we plotted the two subgraphs
for EC [ LBCC and DC [ LBCC, shown in Figs 20 and 21, respectively. The blue nodes and
green nodes form dense networks, whereas the red nodes and yellow nodes form some sparse
networks. Thus, the essential proteins predicted by LBCC exhibit stronger modularity.

The analysis of the differences between these measures demonstrates that LBCC is signifi-
cantly different from the other measures and is more accurate in terms of the discovery of
essential proteins in most cases.

Fig 18. The top 195 proteins in the YHQ network identified by BC [ LBCC. The green nodes and blue nodes are proteins identified by BC;
the former are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes are proteins identified by
LBCC; the former are true essential proteins, and the latter are nonessential proteins. The black nodes are the overlapping proteins.

doi:10.1371/journal.pone.0161042.g018
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Results on human PPI network
To further evaluate the performance of the proposed method LBCC, we also applied it to iden-
tify essential proteins on a human PPI network. The human PPI network data marked HDIP
were from the DIP database [26], the essential proteins were collected from DEG [29], and the
protein complex set marked HCOM was from CORUM (Comprehensive Resource of Mam-
malian protein complexes) [35]. HDIP consisted of 4647 interactions and 2914 proteins,
including 1887 essential proteins, and HCOM contained 1283 protein complexes.

First, we compared the performances of LBCC and the other seven methods in six levels
from the top 100 to top 600. As shown in Fig 22, almost every method achieved more than 70
percent precision due to the large proportion of essential proteins, and LBCC achieved the best

Fig 19. The top 163 proteins in the YHQ network identified by NC [ LBCC. The green nodes and blue nodes are proteins identified
by NC; the former are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes are proteins
identified by LBCC; the former are true essential proteins, and the latter are nonessential proteins. The black nodes are the overlapping
proteins.

doi:10.1371/journal.pone.0161042.g019
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results at the top 100-400 levels. However, LBCC tended to provide less desirable results com-
pared with LIDC at the top 500 and 600 levels.

Second, we used six statistical methods and precision-recall curves to evaluate the perfor-
mance of LBCC and the other methods. As shown in Table 6, the values of the six statistical
methods for LBCC were slightly lower than for LIDC. From the precision-recall curves shown
in Fig 23, LBCC performed better than the other methods between the recall levels of 0 and
0.22.

Finally, we used the jackknife methodology to assess the generality of LBCC and the other
seven methods. The results are presented in Fig 24, in which LBCC exhibited a performance
similar to that of LIDC before the top 500 and superior to LAC, SC, EC and NC. Hence, the
LBCC method is also effective for predicting essential proteins for the human PPI network
HDIP.

Fig 20. The top 200 proteins in the YDIP network identified by EC [ LBCC. The green nodes and blue nodes are proteins
identified by EC; the former are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes are
proteins identified by LBCC; the former are true essential proteins, and the latter are nonessential proteins.

doi:10.1371/journal.pone.0161042.g020
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Conclusion
The identification of essential proteins is helpful for comprehending the minimal requirements
for cellular life, and many approaches based on topological properties have been proposed for
discovering essential proteins in PPI networks. Most of the topology-based methods only con-
centrate on either local or global characteristics and are also sensitive to the network structure.

In 2015, Luo and Qi [15] proposed the method LIDC based on information on protein com-
plexes. LIDC outperformed classical topological centrality measures. In this paper, we propose
a new method, LBCC, based on the combination of three characteristics of the protein-protein

Fig 21. The top 196 proteins in the YDIP network identified by DC [ LBCC. The green nodes and blue nodes are proteins
identified by DC; the former are true essential proteins, and the latter are nonessential proteins. The red nodes and yellow nodes
are proteins identified by LBCC; the former are true essential proteins, and the latter are nonessential proteins. The black nodes
are the overlapping proteins.

doi:10.1371/journal.pone.0161042.g021
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interaction network, i.e., Den1(v), Den2(v), BC(v) and IDC(v), which represent both local and
global characteristics and information on protein complexes.

We applied LBCC to four PPI networks of Saccharomyces cerevisiae: YMIPS, YMBD, YHQ
and YDIP. We then conducted comprehensive comparisons of LBCC and the other seven pre-
viously proposed methods, including DC, BC, SC, EC, NC, LAC and LIDC, in terms of the
number of true essential proteins identified. At the six levels from the top 100 to top 600,

Fig 22. The number of true essential proteins predicted by LBCC and the other seven previously proposedmethods for the HDIP network.

doi:10.1371/journal.pone.0161042.g022

Table 6. Comparative analysis of LBCC and the other seven previously proposedmethods in terms of SN, SP, PPV, NPV, F-measure, and ACCwith
the HDIP dataset.

Dataset Methods SN SP PPV NPV F-measure ACC

HDIP DC 0.244 0.882 0.792 0.389 0.373 0.469

LAC 0.232 0.860 0.753 0.379 0.355 0.453

SC 0.230 0.856 0.746 0.377 0.352 0.451

EC 0.223 0.843 0.723 0.371 0.341 0.442

BC 0.240 0.873 0.777 0.385 0.366 0.463

NC 0.235 0.866 0.763 0.381 0.360 0.457

LIDC 0.262 0.914 0.849 0.403 0.400 0.492

LBCC 0.245 0.884 0.796 0.389 0.375 0.470

doi:10.1371/journal.pone.0161042.t006
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Fig 23. PR curves of LBCC and the other seven previously proposedmethods for the HDIP network.

doi:10.1371/journal.pone.0161042.g023

Fig 24. Jackknife curves of LBCC and the other seven previously proposedmethods for the HDIP network.

doi:10.1371/journal.pone.0161042.g024
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LBCC outperformed recent prediction methods on the YMIPS and YMBD datasets. In particu-
lar, LBCC improved the prediction precision by more than 10 percent compared to LIDC.
Based on the analysis of the six statistical methods, precision-recall curve and jackknife meth-
odology for the four datasets, the experimental results demonstrate that LBCC is more stable
and general than the recently developed prediction methods in most cases. Moreover, we also
applied LBCC to a human PPI network, HDIP. The experimental results show that LBCC is
also effective for predicting essential proteins for the HDIP network.

Hence, we conclude that LBCC is a more effective method for predicting essential proteins,
occasionally significantly. In future studies, we will integrate additional information, such as
domain information, gene ontology and gene expression data, to predict essential proteins
more effectively and accurately.
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