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Abstract: 2,5-Bis-[8-(4,8-dimethyl-nona-3,7-dienyl)-5,7-dihydroxy-8-methyl-3-keto-1,2,7,8-teraahydro-
6H-pyran[a]isoindol-2-yl]-pentanoic acid (FGFC1) is a marine pyran-isoindolone derivative isolated
from a rare marine microorganism Stachybotrys longispora FG216, which showed moderate antithrom-
botic(fibrinolytic) activity. To further enhance its antithrombotic effect, a series of new FGFC1
derivatives (F1–F7) were synthesized via chemical modification at C-2 and C-2′ phenol groups
moieties and C-1” carboxyl group. Their fibrinolytic activities in vitro were evaluated. Among the
derivatives, F1–F4 and F6 showed significant fibrinolytic activities with EC50 of 59.7, 87.1, 66.6, 82.8,
and 42.3 µM, respectively, via enhancement of urokinase activity. Notably, derivative F6 presented
the most remarkable fibrinolytic activity (2.72-fold than that of FGFC1). Furthermore, the cytotoxicity
of derivative F6 was tested as well as expression of Fas/Apo-1 and IL-1 on HeLa cells. The results
showed that, compared to FGFC1, derivative F6 possessed moderate cytotoxicity and apoptotic effect
on HeLa cells (statistical significance p > 0.1), making F6 a potential antithrombotic agent towards
clinical application.

Keywords: pyran-isoindolone derivatives; antithrombotic agents; fibrinolytic activity; Pro-uPA-
catalyzed plasminogen; modification

1. Introduction

Nowadays, non-transmissible chronic diseases have become fundamental medical
problems [1] including cardiovascular, neurological, rheumatologic, diabetic, etc. Among
them, cardiovascular disease is one leading cause of death in non-transmissible disease.
The World Health Organization reported that approximately 18 million people died from
cardiovascular disease each year [2]. Moreover, cardiovascular disease originated mostly
from thrombosis [3], such as arterial and venous thrombosis, atherosclerosis, heart attacks,
strokes and peripheral vascular diseases, whose death rate was close to that of cancer in
recent years [4]. It is estimated that more than 1 million people die from cardiovascular
disease every year in the United States [5]. Due to genetics and environmental influence,
thrombosis has become recurrent and the age of onset has become younger [6], which
seriously threaten human beings’ health worldwide [7,8].
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To date, there are three generations of drugs that have been used for the treatments
of thrombosis. The first generation of thrombolytic agent is an antigenic bacterial prod-
uct with non-specificity and thrombolytic activities, including streptokinase (SK) [9] and
urokinase (UK) [10]. They can transform plasminogen into active plasmin, which is com-
bined with fibrin for promoting the dissolution of the thrombus. However, they result
in bleeding diathesis [11]. The second-generation features improved fibrin specificity,
containing tissue plasminogen activator (t-PA) [12], single-chain urokinase plasminogen
activator (rscu-PA) [13] and acetylated plasminogen streptokinase activator complex (AP-
SAC) [14]. The drugs can activate fibrin-associated plasminogen, causing plasminogen or
α2-antiplasmindepletion or systemic fibrinogen disintegration. Nevertheless, it is limited
due to its short half-life and serious anaphylactic reaction [15]. The third generation can
lengthen half-life, increase resistance to plasma protease inhibitors, and bind to fibrin, more
selectively including TNK-PA [16], STAR, r-PA [17], etc. [18]. However, they also have the
drawback of bleeding risks [19]. Therefore, the exploration of small-molecule drugs with
antithrombotic activities has received increasing attention owing to their great potential and
security in the safety of thrombus. Currently, many small-molecule antithrombotic agents
have been reported, including warfarin, apixaban, edoxaba, rivaroxaban, dabigatran, the
vitamin K antagonists, etc. [20–23].

At present, the discovery of most drugs originates from chemical modifications of nat-
ural products [24–29]. Thus, chemists are devoted to synthesizing various new compounds
using diverse natural products as substrates. Moreover, they found that those compounds
have better biological activity than natural products [30,31].

Previously, a marine pyran-isoindolone derivative, 2,5-bis-[8-(4,8-dimethyl-nona-
3,7-dienyl)-5,7-dihydroxy-8-methyl-3-keto-1,2,7,8-tetrahydro-6H-pyran [a]isoindol-2-yl]-
pentanoic acid (FGFC1, Scheme 1), was isolated from a rare marine microorganism Stachy-
botrys longispora FG216 (CCTCC No M2012272) in our laboratory [32]. In our previous
report, FGFC1 exhibited fibrinolytic activity in vitro and in vivo [33]. However, fibrinolytic
activity and stability of FGFC1 have limited its further investigation as a thrombolytic
candidate for therapeutic effects [34–37]. Phenolic hydroxyl moieties (C2-OH/C2′-OH) and
carboxyl fragment (C1”-COOH) are important functional groups in FGFC1. Our previous
works showed that liphatic and benzyl derivatives possessed significant potency [38,39].
Therefore, pyran-isoindolone derivatives F1–F7 were synthesized using compound FGFC1
as a starting material via chemical modification at C-2 and C-2′ phenol groups moieties and
C-1” carboxyl group (Scheme 1). Furthermore, their fibrinolytic activities were also evaluated.
The results indicated that F6 possessed the most remarkable fibrinolytic activity. Then, its
cytotoxicity was tested as well as Fas/Apo-1 and IL-1 on HeLa cells with satisfactory results.

Scheme 1. Synthesis of compounds F1–F7. Reagents and conditions: (a) RX (X = I, Br), K2CO3,
acetone or N,N-dimethylacetamide, reflux, 2–3 h, yield 50–75%.
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2. Results and Discussion
2.1. Chemistry

FGFC1 had two types of acidic functional groups: phenolic phenol groups moieties
(C2-OH/C2′-OH) and carboxyl fragment (C1”-COOH). Whether FGFC1 was oral or in-
jected, its acidic groups would cause unnecessary irritation at the site of administration.
Thus, the acidity of FGFC1 should be alleviated but its stable antithrombotic activity needs
to be maintained, which could be completed through chemical modification including
esterification and etherification. Nucleophilic oxygen anions at C-2, C2′ and C-1” in FGFC1
reacted with various substituted halo-(iodo or bromo) hydrocarbon compounds in the
presence of K2CO3 to prepare new FGFC1 derivatives, with phenolic ether groups at C-2
and C2′, and aliphatic ester groups at C-1”. The hydrophobic modification reaction of
FGFC1 performed on C-2 and C-2′ phenol groups moieties and C-1”carboxyl group is
shown in Scheme 1. FGFC1 was treated with iodomethane, bromoethane, and bromo-
propane in the presence of K2CO3 in acetone to yield derivatives F1–F3, with the isolated
yields ranging from 62% to 75%. Moreover, FGFC1 was treated with 4-bromobenzonitrile,
4-(trifluoromethoxy)benzyl bromide, 4-bromobenzyl bromide, and 2-bromobenzyl bromide
in the presence of K2CO3 in N,N-dimethylacetamide to yield derivatives F4–F7, with the
isolated yields ranging from 50% to 70%. Finally, molecular structures of the synthesized
FGFC1 derivatives (F1–F7) were fully characterized in the Supplementary Materials.

2.2. Fibrinolytic Activities of FGFC1 and F1–F7 In Vitro

To evaluate the antithrombotic effect, all the synthesized FGFC1 derivatives were
tested for their fibrinolytic activities in vitro. Fibrinolytic activity of each compound was
expressed as 50% effective concentration (EC50), and FGFC1 was used as a positive control.
The reciprocal activation of pro-uPA catalyzed plasminogen, which was measured based
on urokinase activity by a chromogenic substrate S-2444. EC50 was calculated with the
slope of kinetic curve of enzymatic reaction based on the reciprocal activation of pro-uPA
and plasminogen (Figures 1 and 2) [40]. The results are shown in Table 1. The effect of
introducing different hydrophobic moieties/groups to C-2, C-2′ and C-1′ ′ positions of
FGFC1 was investigated by replacement of the protons on C2-OH/C2′-OH moieties and
C1′ ′-COOH position, with methyl, ethyl, propyl, and bromo-substituted benzyl halide
groups to yield derivatives F1–F7 (purity > 98% by HPLC analysis), which presented
different urokinase activities and reciprocal activation of Pro-uPA-catalyzed plasminogen
in vitro.

The synthesized FGFC1 derivatives included aliphatic F1–F3 and benzyl F4–F7 com-
pounds. For derivatives F1–F3, aliphatic (methyl, ethyl and n-propyl) groups were in-
troduced to C-2, C-2′ and C-1” positions in FGFC1. The EC50 values showed that the
fibrinolytic activity of derivatives F1–F3 had a tendency as follows: with the increasing
of aliphatic chain length, the EC50 gliding down initially from 59.7 µM (F1) to 87.1 µM
(F2) and then climbing slowly to 66.6 µM (F3). Interestingly, all of the aliphatic derivatives
F1–F3 were more active (1.3–2.0 fold) than FGFC1. This result suggested that substituted
C-2, C-2′ and C-1” alkyl moieties could confer increased fibrinolytic activity. Methyl-
substituted derivatives F1 had the most potent fibrinolytic activity with EC50 value of
59.7 µM. However, the kinetic curves of derivatives F1–F3 (Figure 2) indicated the fib-
rinolytic activity in vitro was not an absolutely dose-dependent. Especially at high con-
centration (4.0 mg/mL), it presented a relatively flat trend, indicating the unsatisfactory
performance of aliphatic substituted derivatives F1–F3 at 4.0 mg/mL.
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Figure 1. The effect of derivatives F1–F7 on the fibrinolytic activities of the reciprocal activation of
Pro-uPA-catalyzed plasminogen.
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Figure 2. The biological effect of F6 on HeLa cells, cytotoxicity (A), expression of Fas/Apo-1 (B), and
expression of IL-1 (C) were determined in plasma, with FGFC1 as the reference.

Table 1. Fibrinolytic activities of FGFC1 and derivatives F1–F7 in vitro a.

Compounds R EC50/µM

FGFC1 H 115.0

F1 CH3 59.7

F2 87.1

F3 66.6

F4 82.8

F5 133.3

F6 42.3

F7 119.6

a All values are the mean of two independent experiments.
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For benzyl derivatives F4–F7, F4 (EC50 = 82.8 µM) and F6 (EC50 = 42.3 µM) at the
4-position of benzyl scaffold were beneficial to fibrinolytic activity. 4-Br-containing F6
possessed excellent fibrinolytic activity with an EC50 value of 42.3 µM (2.72-fold than
FGFC1). Derivative F5, where a trifluoromethoxy group was introduced into the para
position of benzene ring, markedly decreased the fibrinolytic activity. Shifting Br atom from
para to ortho position to produce 3-Br-containing F7 resulted in retained fibrinolytic activity
(EC50 = 119.6 µM for F7 vs. EC50 = 115.0 µM for FGFC1). The remarkably different EC50 of
F6 (42.3 µM) and F7 (119.6 µM) implied that the bromo groups at para and ortho positions
may bring them different urokinase-activating efficiencies. The kinetic curves of derivatives
F1–F7 showed that benzyl derivatives F4–F7 possessed a dose- and time-dependent manner
(Figure 1) and better fibrinolytic activity than aliphatic derivatives F1–F3. The curves of
aliphatic derivatives F1–F3 were concave functions; moreover, no distinct fluctuation was
observed in the first 60 min. However, those of benzyl derivatives F4–F7 were convex, with
a rapid upward trend in the same span of time. These results showed that, by introducing
aromatic rings, the fibrinolytic activity could be increased rapidly in the early stage and the
fibrinolytic activity could be adjusted by changing the substitution groups, especially on
F6 and F7. Notably, F6 possessed more effective and faster fibrinolytic activity than FGFC1,
which was worthy of in-depth research and exploration.

2.3. Cytotoxicity, Expression of Fas/Apo-1 and IL-1 of F6 on HeLa Cells

The cytotoxicity of FGFC1 and derivative F6 on HeLa cell lines was screened by
MTT assay [41,42]. Figure 2A showed that FGFC1 and derivative F6 possessed moderate
cytotoxicity on HeLa cell lines. The introduction of substituted benzyl halide to the C-2,
C-2′ and C-1” position of FGFC1 decreased cytotoxicity, which increased with increasing
concentration (0.25, 0.5, 1.0 mg/mL). Moreover, to evaluate the possible apoptosis of HeLa
cells induced by F6, Fas/APO-1 (a type of cell-surface NGF/TNF receptor in cancer cell)
assay was carried out (Figure 2B) [43–45]. To evaluate the immunogenic (inflammation)
property, interleukin (IL-1) levels of derivative F6 was also tested by the IL-1 assays
(Figure 2C) [46]. The expression level of Fas was remarkably higher than that of the blank,
but it was less than that of FGFC1 (Figure 2B). This meant that the ability of F6 to induce
apoptosis was weaker than that of FGFC1. The expression level of IL-1 was obviously
higher than that of blank, but it was less than that of FGFC1 (Figure 2C). This suggested
that the inflammatory response of F6 was weaker than that of FGFC1. According to
Figures 2B and 2C, the negative effect of F6 on tissue cell was weaker than that of FGFC1.

3. Experiment
3.1. Materials

All chemicals were analytical grade. Reagents and materials were obtained from
commercial suppliers and used without further purification. FGFC1 was isolated from S.
longispora FG216. Silica gel (200–300 mesh) for column chromatography was purchased
from Qingdao Makall Group Co., Ltd. Pro-uPA, BSA (bovine serum albumin), plasminogen
and plasmin were purchased from Sigma Aldrich (China). The chromogenic pyro-glutamyl-
glycyl-L-arginine-p-nitroanilide S-2444 was purchased from BioMed. Tris-HCl buffer
(100 mmol/L, NaCl, pH 7.4) and an enzyme-labeled (microplate reader) instrument (SH-
1000, CORONA, Ibarakiken, Japan) were used throughout the fibrinolytic activity in vitro.
Fas/Apo-1 Elisa kit and IL-1 Elisa kit were purchased from Shanghai Fusheng Industrial
Co., Ltd. (China). Human cervical cancer cells (HeLa) were purchased from Shanghai Cell
Bank of Chinese Academy of Sciences.

3.2. Chemistry

The syntheses of the derivatives were described in Supplementary Materials. Column
chromatography (CC): silica gel (200–300 mesh; Qingdao Makall Group Co., Ltd.; Qingdao,
China). All reactions were monitored using thin-layer chromatography (TLC) on silica
gel plates.
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Nuclear magnetic resonance spectra were recorded on a Bruker DRX 500 MHz NMR
spectrometer. Mass spectra (MS) were recorded on an Advantage Max LCQ Thermo-
Finnigan mass spectrometer. General procedure for preparation and original spectra of
derivatives F1–F7 are available in Supporting Information.

3.3. Fibrinolytic Activity in Vitro

The fibrinolytic activities of compounds FGFC1 and derivatives F1–F7 were evaluated
by plasmin method. Tris-HCl buffer solution (100 mmol/L, NaCl, pH 7.4), plasminogen
(plg), BSA, and S-2444 were used as substrates. Derivatives F1–F7 dissolved in 0.05 mol/L
Tris-HCl buffer containing NaCl (100 mmol/L) at pH 7.4 and the BSA used as a sub-
strate.The concentrations of plg, BSA and S-2444 were 1.5 µMol/L, 5 µMol/L and 4 nmol/L,
respectively. They were prepared in a 96-well microplate. After the predetermined sample
solutions (compounds FGFC1 and F1–F7) were added, pro-uPA (20 µMol/L) was added
into the 96-well microplate. The microplate was then cultivated at 37 ◦C for 60 min. The con-
tinuous variation trend of absorbance was determined for evaluation of fibrinolytic activity
on the slope of the plots of A405 nm within 150 min. In the blank group, an equal volume
of Tris-HCl solution was used as a blank control. All sample solutions were prepared by
adding a small amount of DMSO (<5%, v/v) solution to dissolve the derivatives.

3.4. Cytotoxicity, Expression of Fas/Apo-1 and IL-1 of Derivative F6 on HeLa Cells
3.4.1. Cell Lines

HeLa (human cervical carcinoma) cells were incubated in medium (10% fetal bovine
serum, 1% penicillin, 1% streptomycin) at 37 ◦C with 95% air and 5% CO2. Cells were
passaged every 2–3 d and select exponential growth cells were used for further experiments.

3.4.2. MTT Assay

The cell growth inhibitory activity of FGFC1 and derivative F6 on HeLa cell lines were
determined by the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide)
assay as we previously reported [41,42]. In addition, an equal volume of DMEM medium
was added to the blank group.

3.4.3. Fas/Apo-1 Assay on HeLa Cells

Fas/Apo-1 assay was carried out according to the manufacturer’s protocol [43–45]. A
blank control group was set up. It was not added with the samples (FGFC1 and derivative
F6) and the enzyme standard reagent, and the other steps were the same. The standard
curve group and the sample group were tested. On the 96-well plate, the standard curve
group was supplemented with 50 µL of the standard. The sample group tested was firstly
added with a sample (FGFC1 and derivative F6) dilution of 40 µL, and then 10 µL of the
sample was added (the final dilution of the sample was 5 times). After that, the plate was
incubated at 37 ◦C for 30 min. Then, 50 µL chromogenic reagent A and 50 µL chromogenic
reagent B per well were added, and the chromogenic reaction took place. Ultimately,
the reaction was terminated by the addition of 50 µL stop solution per well and mixed
thoroughly. After the addition of stop solution to reaction wells, the absorbance was
recorded at OD 450 nm on an Enzyme-Labeled (microplate reader) Instrument after 15 min.

3.4.4. IL-1 Assay on HeLa Cells

The cell culture method on the 96-well plate is in accordance with that in the MTT
assay. The Elisa kit assay based on IL-1 of HeLa cells was consistent with the Fas/Apo-1
Elisa kit assay [46].

4. Conclusions

In conclusion, a series of new FGFC1 derivatives (F1–F7) were synthesized by chemical
modification at C-2 and C-2′ phenol groups moieties and C-1” carboxyl group. Derivatives
F1–F4 and F6 displayed significant fibrinolytic activities with EC50 of 59.7, 87.1, 66.6, 82.8
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and 42.3 µM respectively, via enhancement of urokinase activity. Among them, derivative
F6 presented the most remarkable fibrinolytic activity (2.72-fold than that of FGFC1). The
evaluation data showed that derivative F6 possessed moderate cytotoxicity and apoptotic
effect on HeLa cells in the Fas/Apo-1 assay and did not cause obvious inflammation (statis-
tical significance p > 0.1), making derivative F6 a potential antithrombotic agent towards clinical
application. Moreover, the results suggest a simple and efficient method to enhance/optimize
the anti-thrombotic activity of FGFC-1 via “one-pot” hydrophobic modification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19040218/s1. Part 1: General procedure for preparation of derivatives F1–F7 [1,2]; Part 2:
NRM Spectra.
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