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Abstract: Liquid food adhesion on containers has increased food waste and pollution, which could be
effectively alleviated with a superhydrophobic surface. In this research, the superhydrophobic coating
was fabricated with edible soybean wax on different substrates by a spraying method. The coated
surface showed excellent superhydrophobicity due to its microstructure formed by self-roughening,
which could repel a variety of viscous liquid food with the apparent contact angle of 159 ± 2◦.
The coated surface was still liquid-repellent after hot water immersion (45 ◦C), abrasion test with
sandpaper, water impact, finger touch and immersion into yogurt. The liquid-repellent coating
with soybean wax, which is natural and green, is promising for application in the food industry to
reduce waste.
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1. Introduction

With the development of the economy, people’s living standards improved, especially in food
demand. In daily life, viscous liquid food (such as yogurt, honey, milk, coffee, et al.) residue remain
adhering to the container after drinking, which has given us a great deal of inconvenience and resulted
in huge waste (up to 15% of liquid food products) [1]. Food adhesion problems could be effectively
alleviated by using a superhydrophobic surface. Superhydrophobic surfaces have become a popular
topic due to their application in oil/water separation [2–4], anti-corrosion [5], drag reduction [6],
reproductive medicine and cryobiology [7] et al. Superhydrophobic surfaces, characterized by high
apparent contact angles (> 150◦) and low contact angle hysteresis (the difference between the advancing
and receding contact angles, which could lead to a low sliding angle), have tremendous practical
applications, including self-cleaning and drag reduction. The non-wetting coatings could eliminate
liquid food residue, avoiding the adhesion of viscous liquid to packaging material [8–14].

Superhydrophobic coatings are fabricated through surface texture and low solid surface energy [15]
or modification of surface microstructure without using low surface-energy reagents [16,17]. Microscale
structure, nanoscale structure and hierarchical structure turned out to be important for surface texture
fabrication. So far, most of the studies to fabricate water-repellent surfaces use nanoparticles combined
with fluorine-containing reagents. Vahabi et al. [18] prepared flexible non-wettable films by creating
coatings of polyurethane and fluorinated silica particles on a substrate, which repelled varieties
of liquids. Pan et al. [19] fabricated superhydrophobic stainless-steel wire meshes by creating
coatings of cross-linked poly(dimethylsiloxane) and fluorodecyl polyhedral oligomeric silsequioxane.
The fluorocarbon materials could decompose to perfluorooctanoic acid (PFOA), whose toxicity is
biocumulative and persistent to humans. Thus, the fluorocarbon materials, classified as contaminants,
are unfit for the preparation of edible non-wettable coatings.
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To make a non-wettable coating on packaging material, the most important factor is safety:
not allowing toxicity when contacting food. A superhydrophobic surface could be prepared by spraying
a mixture of a non-polar compound and solvent [20,21]. Wang et al. [22] prepared water-repellent
coatings using beeswax and carnauba wax. The coatings were non-wettable towards different liquid
food, which was edible and natural. Liu et al. [23] created liquid-repellent coatings using rice bran wax
and candelilla wax by a one step spraying method on polypropylene (PP) substrates, which could be
used for eliminating liquid waste of food containers. Zhang et al. [24] fabricated a superhydrophobic
paper surface with good transparency and stability properties via mixture coating of beeswax and
carnauba wax. The wax mixture was emulsified and coated on a paper surface, followed by annealing at
different temperatures. Submicrometer structure was generated on the base of micrometer spherical wax
particles. Yang et al. [25] prepared three kinds of edible superhydrophobic surfaces by fumigating lard,
food grade paraffin and beeswax on calcined Fe foil. All samples showed excellent superhydrophobicity
and effectively repelled starch slurries and liquid foods without observable residues. The used sample
could be recovered by re-fumigation. These researches have promoted the preparation of edible
non-wettable materials, which should be environmentally friendly and should not contain toxic
chemicals and unapproved additives.

Soybean wax is made from natural soybeans, which are abundant. Thus, the soybean wax is
cheap, natural and biodegradable without environmental pollution, which has great advantages
in terms of health and environmental protection [26,27]. The main ingredient of soybean wax is
triacylglyceride composed of stearic acid. Herein, superhydrophobic coatings were fabricated with
soybean wax by spray coating of a wax suspension in ethanol. This low-cost and simple non-wettable
coating exhibited excellent liquid repelling properties against a variety of non-Newtonian viscous
food liquids or hot water solution on different food packaging materials (glass, paper, plastic and
ceramics). The coating provided excellent resistance to hot water immersion, sandpaper abrasion,
water impact, finger touching and yogurt immersion. Thus, the non-wettable coating with soybean
wax could be used to reduce liquid food residue on different substrates, including glass slide, paper,
plastic and ceramic.

2. Materials & Methods

2.1. Materials

Ethanol was purchased from Tianjin Hengxing Chemical Reagent Manufacturing co, LTD, Tianjin,
China. Soybean wax was purchased from Hubei Xinghe Chemical co, LTD, Hubei, China. Milk, fruit
juice, Coca Cola, honey and black tea were purchased from local supermarkets, Xinxiang, China. Glass
slides, paper, plastic and ceramic were available at local markets, Xinxiang, China.

2.2. Preparation of Soybean Wax Coating

As shown in Figure 1, the soybean wax suspension was prepared thorough mixture of 1 g of
soybean wax and 50 mL ethanol solution followed by heating at 65 °C for 3 min. The hot wax
suspension was sprayed (Flying Boat Glass Co. LTD, Yancheng, China) onto glass slides (Zhejiang
Pride Electric Appliance Co. LTD, Jinhua, China) with a distance of 50 cm. Finally, the coated surface
was dried at room temperature to obtain its superhydrophobic characteristics.

Materials 2020, 13, x FOR PEER REVIEW 2 of 11 

 

(PFOA), whose toxicity is biocumulative and persistent to humans. Thus, the fluorocarbon materials, 
classified as contaminants, are unfit for the preparation of edible non-wettable coatings. 

To make a non-wettable coating on packaging material, the most important factor is safety: not 
allowing toxicity when contacting food. A superhydrophobic surface could be prepared by spraying 
a mixture of a non-polar compound and solvent [20,21]. Wang et al. [22] prepared water-repellent 
coatings using beeswax and carnauba wax. The coatings were non-wettable towards different liquid 
food, which was edible and natural. Liu et al. [23] created liquid-repellent coatings using rice bran 
wax and candelilla wax by a one step spraying method on polypropylene (PP) substrates, which 
could be used for eliminating liquid waste of food containers. Zhang et al. [24] fabricated a 
superhydrophobic paper surface with good transparency and stability properties via mixture coating 
of beeswax and carnauba wax. The wax mixture was emulsified and coated on a paper surface, 
followed by annealing at different temperatures. Submicrometer structure was generated on the base 
of micrometer spherical wax particles. Yang et al. [25] prepared three kinds of edible 
superhydrophobic surfaces by fumigating lard, food grade paraffin and beeswax on calcined Fe foil. 
All samples showed excellent superhydrophobicity and effectively repelled starch slurries and liquid 
foods without observable residues. The used sample could be recovered by re-fumigation. These 
researches have promoted the preparation of edible non-wettable materials, which should be 
environmentally friendly and should not contain toxic chemicals and unapproved additives.  

Soybean wax is made from natural soybeans, which are abundant. Thus, the soybean wax is 
cheap, natural and biodegradable without environmental pollution, which has great advantages in 
terms of health and environmental protection [26,27]. The main ingredient of soybean wax is 
triacylglyceride composed of stearic acid. Herein, superhydrophobic coatings were fabricated with 
soybean wax by spray coating of a wax suspension in ethanol. This low-cost and simple non-wettable 
coating exhibited excellent liquid repelling properties against a variety of non-Newtonian viscous 
food liquids or hot water solution on different food packaging materials (glass, paper, plastic and 
ceramics). The coating provided excellent resistance to hot water immersion, sandpaper abrasion, 
water impact, finger touching and yogurt immersion. Thus, the non-wettable coating with soybean 
wax could be used to reduce liquid food residue on different substrates, including glass slide, paper, 
plastic and ceramic. 

2. Materials & Methods 

2.1. Materials  

Ethanol was purchased from Tianjin Hengxing Chemical Reagent Manufacturing co, LTD, 
Tianjin, China. Soybean wax was purchased from Hubei Xinghe Chemical co, LTD, Hubei, China. 
Milk, fruit juice, Coca Cola, honey and black tea were purchased from local supermarkets, Xinxiang, 
China. Glass slides, paper, plastic and ceramic were available at local markets, Xinxiang, China. 

2.2. Preparation of Soybean Wax Coating 

As shown in Figure 1, the soybean wax suspension was prepared thorough mixture of 1 g of 
soybean wax and 50 mL ethanol solution followed by heating at 65 ℃ for 3 min. The hot wax 
suspension was sprayed (Flying Boat Glass Co. LTD, Yancheng, China) onto glass slides (Zhejiang 
Pride Electric Appliance Co. LTD, Jinhua, China) with a distance of 50 cm. Finally, the coated surface 
was dried at room temperature to obtain its superhydrophobic characteristics. 

 

Figure 1. Illustration for preparation of a non-wettable surface. Figure 1. Illustration for preparation of a non-wettable surface.



Materials 2020, 13, 3308 3 of 11

2.3. Characterization

The surface structure of the superhydrophobic coating was observed by a Quanta 200 scanning
electron microscope (FEI, Hillsboro, OR, USA) operated at an acceleration voltage of 20 kV.
The roughness of the superhydrophobic coating was analyzed by GTK-16-0300 white light
interferometer (BRKR, Billerica, Massachusetts, USA). The wettability of the superhydrophobic
surface was tested with an optical contact angle measuring instrument (Shenzhen testing equipment
CO., LTD, Shenzhen, China, TST-200H). Apparent contact angles of the superhydrophobic coating were
measured with a deionized water droplet (Shenzhen testing equipment CO., LTD, Shenzhen, China) of
10 µL on a video optical contact angle system to measure the resistance of superhydrophobic coating to
different liquid foods at room temperature. The values of the apparent contact angle and the sliding
angle were determined by averaging values measured at 5 different points on each sample surface.

3. Results

3.1. Morphology of the Soybean Wax Coating

Glass is very common in our life and it is widely used as a liquid food packaging material.
After treated with soybean wax in ethanol, the surface was made up of irregular and discernible
nanoscale sheets of waxy crystals, which distributed neatly and tightly (Figure 2a). At higher
magnifications, a flower-like micro-nano roughness structure (Figure 2b) could be observed. The rapid
volatilization of the solvent resulted in the rough structure of the coating.
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Figure 2. (a) SEM image of the soybean wax coating and (b) its higher magnification image.

Futhermore, the roughness of the coating was analyzed by white light interferometer at
room temperature. As shown in Figure 3, the convex hulls showed micron fluctuation structure.
The staggered convex structure and uniform distribution of convex hulls on the surface facilitated its
superhydrophobic characteristics.
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3.2. Influence of Surface Density

Figure 4a shows the influence of surface density (ρ) of soybean wax on the values of apparent
contact angle and sliding angle. The water droplets stick to the coating surface when ρ is smaller than
0.87 mg cm−2. The maximum apparent contact angle of 159◦ and the minimum sliding angle of 7◦

were obtained with ρ of 1.74 mg cm−2. At ρ = 1.74 mg cm−2, the advancing and receding contact angle
were measured as 159◦ and 154◦, respectively, which led to low contact angle hysteresis. The high
apparent contact angle and low contact angle hysteresis were from complete coverage of the coating
and the desired roughness. The increase in surface density increased the thickness of the soybean
wax coating, which could not change the roughness significantly. Thus, the value of apparent contact
angle and sliding angle basically tended to be stable when ρ continued to increase. As shown in
Figure 4b, the pristine glass substrates show a smooth surface. However, the hierarchical microscale
and nanoscale roughness structure on glass surface after soybean wax coating treatment was formed
(Figure 4c), which is the critical points for non-wetting [28]. Consequently, the superhydrophobic
coating with soybean wax was fabricated with sufficiently high surface density of the wax.
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3.3. Repellency to Viscous Liquid Food in Daily Life

The soybean wax coating method could be easily applied on different food packaging materials,
such as glass, paper, plastic and ceramic substrates. Figure 5a shows the photographs of Coca Cola,
black tea, yogurt, honey and water on different soybean wax treated materials. All these materials
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became non-wetting with spherical shape of various liquid food droplets on the coated substrates.
Figure 5b shows the as-coated glass surface had apparent contact angles of 159◦, 157◦, 154◦, 153◦,
156◦ and 152◦, respectively to water, Coca Cola, juice, honey, tea and yogurt. The complex flow
characteristics of non-Newtonian fluids like honey and yogurt resulted in a little bit lower apparent
contact angle than other food liquids. The non-Newtonian fluids could have a certain “memory effect”
and make it difficult to flow. As shown in Video S1, the water droplet falls down on the coating surface
of glass and it bounced back to the air. When the water column quickly hit the coating surface, water
droplets bounced high and rolled down along the surface (Video S2).
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Figure 5. (a) Photographs of Coca Cola, black tea, yogurt, honey and water droplets on different coated
materials and (b) the apparent contact angles and sliding angles of different liquid food on coated glass.

3.4. Heat Resistance

The heat resistance of the coated surface was studied by immersing the treated glass in water
heated by electric-heated thermostatic water bath (Spring Instrument. Co., LTD, Jintan, China) for
10 min. After contacting with hot water from 25 to 50 ◦C, the apparent contact angle was determined
every 5 ◦C. As shown in Figure 6, The coated surface kept superhydrophobic when the water bath
increased from 25 ◦C to 45 ◦C. When the water temperature increased to 50 ◦C, the coated surface lost
its superhydrophobicity with apparent contact angle lower than 150◦. The soybean wax, with the
melting point of 52 ◦C, is a kind of phase change material. The partial disappearance of the rough
structure happened when the temperature was close to 50 ◦C, which reduced the apparent contact
angle of droplet on the surface. More research is needed to improve the robustness of soybean wax
towards hot water above 50◦C, which is an important factor for its practical applications.
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3.5. Robustness and Durability of the Coating

The physical damage of viscous liquid food and external pressure could wear down the food
packaging material. The physical damages of non-wettable coating contacting with viscous liquid is a
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big challenge for large-scale application. Robustness still remains a major challenge for application
of superhydrophobic coating. Thus, the abrasion resistance of the coating was analyzed by placing
the coated glass face down to a sandpaper with 1000 meshes under a weight of 100 g along a ruler
for a distance of 20 cm (Figure 7a,b), which was defined as one test cycle. The change of apparent
contact angle and sliding angle after cycles of abrasion is shown in Figure 7c. The coating was still
superhydrophobic even after 10 cycles of abrasion. Then, the apparent contact angle decreased to less
than 150◦. The photographs of yogurt and water droplets on the coated glass surface after 0, 10 and
12 cycles of abrasion test are shown in Figure 8d–f. After 10 times of abrasion, the yogurt and water
droplets could still maintain spherical shape on the surface. The coated glass was immersed into yogurt
to see its non-wettable property. The yogurt flowed down easily without wetting or contaminating
the surface after 10 times of abrasion (Figure 8b). However, the yogurt adhered to the surface due
to loss of superhydrophobicity after 12 cycles of abrasion (Figure 8c). During the test, the surface
was abraded longitudinally. The physical abrasion led to removal of soybean wax and partial loss of
surface roughness, which were key factors for its superhydrophobicity.
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Figure 8. The coated glass after immersion into yogurt after (a) 0; (b) 10 and (c) 12 cycles of abrasion test;
Photographs of yogurt and water droplets on a coated glass surface after (d) 0; (e) 10 and (f) 12 cycles
of abrasion test.

Apart from sandpaper abrasion, the impact resistance of the soybean wax coated surface was
evaluated by water dropping from a height of 30 cm (Figure 9a). The apparent contact angle and
sliding angle were measured every 10 drops. The change of apparent contact angle and sliding angle
after water impact are shown in Figure 9b. The coating maintained excellent water repellency after
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70 drops with excellent superhydrophobicity. Then, the apparent contact angle decreased to less than
150◦. The impact resistance of the coated surface was crucial for its application in liquid packaging.
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sliding angle after water impact.

The coated surface was pressed with a finger to test its durability (Figure 10a). The direction
of touching is marked with a red line in Figure 10b. The water droplets maintained spherical shape;
they could roll randomly on the touched surface. As shown in Figure 10c, the coated glass was
immersed into yogurt repeatedly. The superhydrophobicity of the treated surface was studied after
immersion (Figure 10d). The apparent contact angle decreased and the sliding angle increased with
the number of immersion times. After immersed into yogurt for 20 times, the coating remained
superhydrophobic. The coated glass was immersed into yogurt for 24 h to study the effect of immersion
time on the superhydrophobicity of the coating. After a 24 h immersion, the apparent contact angle
of the coated surface was still above 150◦, showing excellent liquid-repellent properties. To further
evaluate the durability of the coated surface, the glass treated with soybean wax was exposed to air for
200 days. As shown in Figure 11b, the coating remained superhydrophobic with the apparent contact
angle higher than 150◦. In the meantime, a water droplet could still maintain its spherical shape on
the surface, demonstrating the stability of the coating exposed to air. The soybean wax coating could
maintain stability because of its long chain alkane composition exposed to a corrosive environment.
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Figure 10. (a) The durability test by pressing with a finger; (b) photograph of water droplets after
touching; (c) one-time immersion in yogurt and (d) the change of apparent contact angle and sliding
angle of the treated surface plotted against immersion times in yogurt.
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3.6. Comparison with Other Coatings

It is reported that the edible superhydrophobic coating was fabricated by paraffin wax, beeswax,
microcrystalline wax and carnauba wax, et al. The apparent contact angle and sliding angle of the
coating treated by soybean wax was compared with other waxes reported in the existing literature.
Different from microcrystalline wax and paraffin wax, the soybean wax, beeswax, carnauba wax and
rice bran wax are renewable waxes. As shown in Table 1, the apparent contact angles of the coating
with beeswax, microcrystalline wax, mixture of candelilla wax and rice bran wax were slightly higher
than that of soybean wax, used in our research. The different superhydrophobic properties of waxes
are owed to their different chemical constitution and dissolution-precipitation character in solvent.
The soybean wax has advantages of wide source and low price. Thus, it is promising for application in
the food industry, to reduce waste.

Table 1. The apparent contact angle and sliding angle of the superhydrophobic coatings with
different waxes.

Waxes Apparent Contact Angle (◦) Sliding Angle (◦)

Soybean Wax (This Research) 159 ± 2 7 ± 1
Paraffin Wax [29] 158 ± 3 7 ± 1

Beeswax [29] 162 ± 2 7 ± 1
Microcrystalline Wax [29] 161 ± 2 5 ± 1

Carnauba Wax [29] 150 ± 2 22 ± 2
Mixture of Candelilla Wax and Rice Bran Wax [23] 162 ± 2 1 ± 1

The coating with soybean wax was subjected to abrasion tests with sandpaper, water impact, finger
touch and immersion into yogurt to evaluate its robustness and durability. Zhao et al. [29] immersed
the superhydrophobic coating of paraffin wax into 1M HCl (Sinopharm Chemical Reagent CO. LTD,
Shanghai, China), 1M NaOH (Sinopharm Chemical Reagent CO. LTD, Shanghai, China) and deionized
water made by water purification machine (Ruide Chemical Instrument CO. LTD, Zaozhuang, China),
respectively. After 24 h of immersion, the apparent contact angles of the treated coatings were all
higher than 150◦. Liu et al. [23] created an edible liquid-repellent coating by mixing rice bran wax
and candelilla wax on polypropylene substrates. The apparent contact angle of the coating lost its
superhydrophobic properties after 8 cycles during the sandpaper abrasion test. After 1200 cycles
of 180◦ bending, the coating was still non-wettable without any change in appearance. The edible
coating with soybean wax in our research could endure 10 cycles of abrasion test under the same
pressure. Chen et al. [30] used the solution-dipping method for sequential deposition of a trilayer of
branched poly(ethylenimine), ammonium polyphosphate and fluorinated-decyl polyhedral oligomeric
silsesquioxane. The superhydrophobic coating could maintain its flame-retardant and self-healing
properties even after 1000 cycles of abrasion (under a pressure of 44.8 kPa). However, the non-wettable
coatings made of fluorocarbon materials are not suitable for the application of direct contact with food.
Thus, the edible superhydrophobic coatings need to improve their heat resistance and robustness,
which is also our future research direction.



Materials 2020, 13, 3308 9 of 11

3.7. Application Test

To demonstrate the practicality of the edible superhydrophobic coating of soybean wax, the inside
of a paper cup was coated with soybean wax to test its performance. The cups were filled with various
viscous liquid food, including milky tea, honey and chocolate syrup. As shown in Video S3, the liquid
was poured out from the cup. The high-viscous liquid in the soybean wax treated cup came out easily
with a little residue, demonstrating liquid-repellent properties of the paper cup. In contrast, without
coating treatment, it was hard for the liquid to flow out and significant residues were left stuck to the
original cup. Figure 12 shows the photographs of the remaining viscous liquid after pouring. There is
hardly any liquid left with the coated cup. Thus, the edible non-wettable coating of soybean wax could
repel complex non-Newtonian fluids with little residue.
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4. Conclusions

In this work, an edible superhydrophobic coating was prepared with soybean wax by a one-step
method, which could be widely applied to various packaging materials to eliminate liquid food
residues and save resources. Through a variety of tests, the coating showed excellent stability to repel
high-viscosity non-Newtonian liquid food and even a hot aqueous solution (about 45 ◦C). The coating
maintained its superhydrophobicity after abrasion tests with sandpaper, water impact, finger touch
and immersion into yogurt. The superhydrophobic coating prepared by soybean wax was edible
and robust; it could be widely used to reduce liquid food residues due to its simple, renewable and
low-cost characteristics.
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