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Background and Purpose: Outcome prediction after mechanical thrombectomy (MT)

in patients with acute ischemic stroke (AIS) and large vessel occlusion (LVO) is commonly

performed by focusing on favorable outcome (modified Rankin Scale, mRS 0–2) after 3

months but poor outcome representing severe disability and mortality (mRS 5 and 6)

might be of equal importance for clinical decision-making.

Methods: We retrospectively analyzed patients with AIS and LVO undergoing MT from

2009 to 2018. Prognostic variables were grouped in baseline clinical (A), MRI-derived

variables including mismatch [apparent diffusion coefficient (ADC) and time-to-maximum

(Tmax) lesion volume] (B), and variables reflecting speed and extent of reperfusion (C)

[modified treatment in cerebral ischemia (mTICI) score and time from onset to mTICI].

Three different scenarios were analyzed: (1) baseline clinical parameters only, (2) baseline

clinical and MRI-derived parameters, and (3) all baseline clinical, imaging-derived, and

reperfusion-associated parameters. For each scenario, we assessed prediction for

favorable and poor outcome with seven different machine learning algorithms.

Results: In 210 patients, prediction of favorable outcome was improved after including

speed and extent of recanalization [highest area under the curve (AUC) 0.73] compared

to using baseline clinical variables only (highest AUC 0.67). Prediction of poor outcome

remained stable by using baseline clinical variables only (highest AUC 0.71) and did

not improve further by additional variables. Prediction of favorable and poor outcomes

was not improved by adding MR-mismatch variables. Most important baseline clinical

variables for both outcomes were age, National Institutes of Health Stroke Scale, and

premorbid mRS.
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Conclusions: Our results suggest that a prediction of poor outcome after AIS and

MT could be made based on clinical baseline variables only. Speed and extent of MT

did improve prediction for a favorable outcome but is not relevant for poor outcome.

An MR mismatch with small ischemic core and larger penumbral tissue showed no

predictive importance.

Keywords: stroke, mechanical thrombectomy, outcome prediction, machine learning, MRI, perfusion imaging,

mismatch

INTRODUCTION

Mechanical thrombectomy (MT) is the most effective treatment
for patients with acute ischemic stroke (AIS) due to a large
vessel occlusion of the anterior circulation (1). While the
average treatment effect and outcome benefit across the entire
group of patients is large, outcome still differs significantly for
individual patients (1). Multiple prognostic variables and their
combination render individual outcome prognosis after MT
difficult. For example, in a group of patients with successful and
fast reperfusion, ∼60% still had an unfavorable outcome (mRS
3–6 after 3 months) (2). At present, the relative importance
and combination of single prognostic variables for individual
outcome prediction is still a matter of debate.

One way to address this problem is to utilize artificial
intelligence, in particular machine learning (ML) approaches.
These models are potentially superior to conventional linear
or logistic regression models as they excel at finding complex
and non-linear relationships across a multitude of prognostic
variables. Specially, artificial neural networks and methods of
tree-boosting are promising tools in this regard (3). Recent
advances have made it possible to uncover which individual
prognostic variables are most important in such models (4, 5)
based on a feature importance analysis.

Applying this methodology to outcome prediction after MT,
multiple prognostic variables can be used representing the
clinical course of stroke patients: baseline clinical variables (1),
MRI variables including perfusion and infarct core (6), and
finally, variables assessing the speed and extent of reperfusion (7).

The outcome and potential benefit of MT are usually assessed
after 3 months with the modified Rankin Scale (mRS) in a
dichotomized analysis: 0–2 is defined as favorable outcome
and the remaining 3–6 as unfavorable outcome. Patients with
a predicted favorable outcome will undoubtedly undergo MT.
However, the remaining group of patients with unfavorable
outcome is highly heterogeneous, ranging from outcomes of mRS
of 3 (moderate disability) to 6 (death).

Abbreviations: MT, mechanical thrombectomy; AIS, acute ischemic stroke;

LVO, large vessel occlusion; mRS, modified Rankin Scale; DWI, diffusion

weighted imaging; MRI, magnetic resonance imaging; Tmax, time-to-maximum;

mTICI, modified treatment in cerebral ischemia; NIHSS, National Institutes of

Health Stroke Scale; GLM, generalized linear model; SVMC, Support Vector

Machine Classifier; NB, Naive Bayes; MLP, Multilayer Perceptron; AUC, area-

under-the-curve; ROC, receiver-operating-characteristic; SHAP, Shapley Additive

Explanations; VIF, variance inflation factor.

Therefore, it may also be reasonable to find prognostic factors
for a poor outcome (8) (severe disability or death after 3 months,
with an mRS score of 5 or 6). In those patients, withholding
treatment could be discussed.

Therefore, in the presented work we used ML to
predict outcome after MT directly comparing two different
dichotomization paradigms: for favorable (mRS 0–2 vs. 3–6) and
poor outcome (mRS 5 and 6 vs. 1–4) with multiple prognostic
variables grouped in three sets: baseline clinical, MRI–derived,
and MT-associated variables.

METHODS

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

The study protocol for this retrospective analysis of our
prospectively established stroke database was approved by the
ethics committee of Heidelberg University and patient-informed
consent was waived.

Patients
We identified patients with AIS due to an occlusion of the middle
cerebral artery in the M1 or M2 segment or the distal terminus
of the internal carotid artery who were treated with MT between
03/2009 and 09/2018; 95/210 patients were treated between 2010
and 2013, and the remaining 116/210 between 2014 and 2018.
Between these two groups, there was no significant outcome
difference after 3 months (Mann–Whitney test, p= 0.83).

Patients were treated at a single center (University Hospital
Heidelberg). The attending neurologist and interventional
neuroradiologist decided on treatment on a case-by-case basis.
Only patients with a completed MRI protocol and outcome
assessment at 3 months were included.

Baseline clinical and imaging parameters are given in Table 1.
Individual patient outcome was the score on the mRS (9)
at 3 months assessed by a standardized interview (unblinded
investigator per phone call or a personal letter to the patient). The
mTICI was used to grade recanalization on final angiographic
images (10). A score of mTICI 2b or better on final angiogram
was regarded as successful reperfusion.

MRI Protocol
In a routine clinical setting, MR images were acquired on 3
Tesla MRI systems (Magnetom Verio, TIM Trio and Magnetom
Prisma; Siemens Healthcare, Erlangen, Germany). Imaging
protocol included diffusion-weighted, FLAIR, susceptibility
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TABLE 1 | Prognostic variables (features).

All patients

(n = 210)

Favorable outcome

(n = 83/210)

Poor outcome

(n = 49/210)

Set A: Baseline clinical variables

Time from stroke onset to MR-imaging

(time in minutes)

Median/IQR 260 (126–569) 257 (123–552) 219 (109–526)

Wake up stroke % 85 (40%) 31 (37%) 21 (43%)

Age (years) Median/IQR 72 (59–78) 69 (53–75) 76 (68–81)

Sex Male/female 92/118 39/44 21/28

Diabetes % 37 (18%) 7 (8%) 14 (29%)

Hypertonia % 131 (62%) 47 (57%) 37 (76%)

Coronary heart disease % 36 (17%) 11 (13%) 12 (24%)

Arrhythmia/atrial fibrillation % 77 (37%) 22 (27%) 24 (49%)

Hyperlipidemia % 62 (30%) 23 (28%) 16 (33%)

NIHSS scale at admission (0–42) Median/IQR 16 (12–20) 15 (10–20) 20 (15–30)

mRS pre-stroke (0–5) Median/IQR 0 (0–1) 0 (0–1) 1 (0–2)

i.v. Thrombolysis % 132 (63%) 58 (70%) 29 (59%)

Set B: Magnetic resonance imaging derived

variables

ADC lesion volume (ml) Median/IQR 14 (8–30) 16 (7–32) 14 (9–27)

Tmax lesion volume

(ml)

Median/IQR 78 (39–140) 73 (36–121) 105 (60–168)

Mismatch ratio (Tmax lesion volume/ADC lesion volume) Median/IQR 4.6 (2.3–8.4) 4.2 (2.1–8.4) 5.3 (2.9–13.3)

Occlusion distal carotid artery % 12 (6%) 7 (8%) 2 (4%)

Occlusion carotid terminus % 33 (16%) 14 (17%) 7 (14%)

Occlusion M1 segment middle cerebral artery % 131 (62%) 49 (59%) 32 (65%)

Occlusion M2 segment middle cerebral artery % 36 (17%) 14 (17%) 7 (14%)

Set C: Thrombectomy associated variables

Final mTICI score (TICI 3 and 2b) % 154 (73%) 73 (88%) 26 (53%)

Time from stroke onset to final mTICI score Median/IQR 492 (330–787) 526 (319–853) 434 (319–721)

Prognostic variables were grouped in three distinct sets: Baseline clinical variables (A), MRI-derived mismatch variables (B), and mechanical thrombectomy-associated variables (C).

Variables are given for all patients and the two subgroups of patients with favorable outcome (mRS 0–2) and with poor outcome (mRS 5 and 6) after 3 months.

weighted and T2-weighted sequences, non-contrast time-of-
flight, and contrast-enhanced angiography as well as dynamic
susceptibility contrast perfusion-weighted imaging. The imaging
protocol has been published previously and is included in the
Supplementary Material (11).

Image Post-processing
All image analysis was performed blinded to clinical outcome.
Diffusion-weighted imaging (DWI) and perfusion MRI images
were post-processed with Olea Sphere R© (Olea Medical R©, La
Ciotat, France). ADC maps were automatically calculated from
DWI images with different b-values. For perfusion imaging,
automatic motion correction was applied. The arterial input
function (AIF) was detected automatically. In two cases, the
automatically detected AIF was manually corrected. Tmax
maps were calculated using a block-circulant singular-value
decomposition (cSVD) deconvolution algorithm. Diffusion
lesion volumes [ADC value threshold of ≤620 × 10−6 mm2/s
(12)] and Tmax lesion volumes [Tmax threshold ≥ 6 s (13)]
were segmented semiautomatically and manually corrected for
artifacts by a neuroradiologist (MM) with more than 6 years of
experience in stroke imaging.

ML Framework
For the training of the ML models, we utilized a publicly
available ML framework for predictive modeling. The program
code is available on Github (https://github.com/prediction2020/
explainable-predictive-models). Details on the technical
implementation have been described in open-access publications
previously (5).

Definition of Prognostic Paradigms
We defined two distinct prognostic paradigms: For the first
paradigm I, all patients included in the study were dichotomized
in favorable outcome with an mRS of 0, 1, or 2 at 3 months
vs. the remaining with mRS 3–6. For the second paradigm II,
again all patients were included and dichotomized but in poor
outcome, defined as mRS 5 or 6 at 3 months vs. the remaining
with mRS 0–4. The dichotomized mRS was used as a label for the
ML analysis.

Prognostic Variables for Input Feature
Definition
We grouped prognostic variables in three distinct sets (Table 1):
Baseline clinical variables (A), MRI-derived variables (B), and
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thrombectomy-related variables (C). The mTICI score as a
measure for the success of reperfusion was dichotomized for the
final analysis (mTICI 2b/3 vs. 0–2a). The prognostic variables
included in the three sets were used as input features for the
ML analysis. Mismatch ratio was not included as an independent
feature because it is derived from the ADC and TMax lesion
volumes and would be redundant information. Target mismatch
was defined according to the EXTEND-IA study (6) with an
infarct core of <70ml on ADC maps, a ratio of Tmax Lesion
volume to ADC lesion volume of 1.2 or higher and an absolute
mismatch volume of 10ml or more.

We defined three distinct prediction scenarios with
the different sets of prognostic variables: Prediction with
baseline clinical variables only (A), with baseline clinical
and MRI variables combined (A+B), and finally with all
baseline clinical, MRI and thrombectomy-associated variables
combined (A+B+C).

For each of the three scenarios, we trained models for both
prognostic dichotomization paradigms I and II with favorable
(mRS≤ 2) and poor outcome (mRS 5 or death), respectively. This
yielded six different scenarios in total (see Figure 1).

Multicollinearity was estimated using the variance inflation
factor (VIF) (5).

Applied Algorithms
We utilized all seven available ML algorithms from the
framework to provide a comprehensive coverage of various ML
methods. The more traditional techniques were represented by
three algorithms: A generalized linear model (GLM), which for
dichotomous outcomes is equivalent to a plain logistic regression,
and two regularized variants, a Lasso algorithm with L1
regularization and an ElasticNet with L1 and L2 regularization.

Further, ML algorithms included tree boosting (Catboost
implementation), a Support Vector Machine Classifier (SVMC),
Naive Bayes (NB), and a Multilayer Perceptron (MLP).

Model Training and Validation
The data comprising the given clinical parameters and outcomes
were randomly split into training and test sets in a corresponding
4:1 ratio. Due to slight imbalance with respect to the outcome
measures (127/210 patients with favorable outcome in paradigm
I and 49/210 patients with poor outcome in paradigm II), random
sub-sampling of the majority class was employed for the training
sets. Test sets were stratified to follow the original imbalanced
ratio to represent real distribution of our patient outcomes
in model testing. In total, there were only 11 missing values
in the data set. Missing values were imputed by mean/mode
imputation. Non-categorical features—both in training and test
sets—were standardized to zero-mean and unit variance based on
training set statistics. Models were trained and best parameters
were selected using 10-fold cross validation over an extensive
grid of hyperparameters for each model. Parameter ranges were
initially taken from the public repository referenced under the
heading “ML framework”, and then refined taking run times of
experiments into consideration. The used ranges are included
in Supplementary Material. The whole process was repeated

200 times (shuffles) to account for dependence on the random
procedure of train and test splits.

Performance Assessment
For performance measures, we report results as the median
over the test sets of the 200 shuffles. Model performance
was primarily assessed by area-under-the-curve (AUC)
measure resulting from receiver-operating-characteristic (ROC)
analysis. Accuracy, balanced class accuracy, precision, recall,
f1 score, negative predictive value, and specificity measures for
each model are included in the Supplementary Material.
Statistical significance of the difference between model
performances on the respective variable sets was determined
by the Wilcoxon signed-rank test at a confidence level
of 5%.

Explainability Assessment
We used SHapley Additive exPlanations (SHAP) scores to rate
the importance of included clinical features for all seven models.
More detailed explanation of the technique can be found in
(14). The absolute values of importance scores on test sets
were scaled to unit norm to yield comparable measures for
all models, and then rescaled to the range of [0, 1] so that
importance scores for a certain model sum to 1. Finally, mean
and standard deviation across the 200 shuffles for stability
and robustness were calculated and reported as the final
importance rating.

RESULTS

Patients
In total, 236 patients met the inclusion criteria, and 26 patients
were excluded due to motion artifacts on MRI images or because
no accurate AIF could be obtained, resulting in the final number
of 210 patients. Median mismatch ratio was 4.6 (2.3–8.4). In
154 patients (73%), successful reperfusion (TICI 3 or 2b) could
be achieved. Median time to TICI was 492min. In prediction
paradigm I, 83/210 patients (39%) had a favorable outcome (mRS
0–2). In prediction paradigm II, 49/210 patients (23%) had a poor
outcome (mRS 5–6).

In this study, 168/210 patients (80%) had a target MRI
mismatch [according to the EXTEND-IA study criteria (6)];
5/210 patients (2%) had no ischemic core and 11/210 patients
(5%) without target mismatch had a small ischemic core of 10ml
or less.

In the multicollinearity analysis, VIF values were below
5 for all scenarios using the predictive variable sets A and
A+B. For the two scenarios I A+B+C and II A+B+C, time
from stroke onset to final TICI and time from onset to
MRI raised to values ∼9.9, indicating stronger multicollinearity
for these features. We did not recognize a harmful level of
multicollinearity in any of the variable sets; thus, no features
were eliminated.

Prediction Models
The specific AUC results for the total of six prediction
scenarios, each examined with seven algorithms are presented
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FIGURE 1 | Prediction paradigms and resulting scenarios. For each paradigm, all patients included in the study were dichotomized: Paradigm I for favorable outcome

with mRS 0–2 at 3 months (vs. the remaining 3–6) and paradigm II for poor outcome with mRS 5 and 6 (vs. the remaining 0–4). For the prediction scenarios, three

sets of prediction variables A, B, and C were consecutively added. For an overview of prediction variables included in the sets, see Table 1. The combination of each

of the three prediction variable sets and two prediction paradigms yielded six distinct scenarios.
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TABLE 2 | Models for favorable outcome (paradigm I).

Scenario GLM Lasso ElasticNet Catboost MLP SVMC Naive bayes

I A 0.65 0.65 0.6 0.67 0.67 0.6 0.65

I A+B 0.62* 0.64* 0.6 0.64* 0.64* 0.57 0.63*

I A+B+C 0.71*+ 0.71*+ 0.68*+ 0.73*+ 0.7*+ 0.67*+ 0.69*+

The prediction variable sets (Table 1) were used to predict a favorable outcome (mRS dichotomized as 0–2 vs. 3–6). The addition of thrombectomy-associated variables (set C)

leads to a noticeable improvement of all machine learning models. Highest AUC results for each variable set are marked in bold. Confidence intervals for all models are included in the

Supplementary Material. Statistically significant difference in model performance between variable sets are marked with * and+ to signal difference from A and from A+B, respectively.

Significance was determined by a value of p lower than 0.05, resulting from the Wilcoxon signed-rank test.

TABLE 3 | Models for poor outcome (paradigm II).

Scenario GLM Lasso ElasticNet Catboost MLP SVMC Naive bayes

II A 0.67 0.7 0.64 0.7 0.71 0.59 0.69

II A+B 0.65* 0.7 0.62* 0.7 0.69 0.57 0.65*

II A+B+C 0.68+ 0.71 0.65+ 0.73*+ 0.7 0.65*+ 0.66*

The prediction variable sets (Table 1) were used to predict poor outcome (mRS dichotomized as 5 and 6 vs. 0–4). In contrast to the favorable outcome paradigm, the addition of

thrombectomy-associated variables (set C) did not lead to relevant improvements in the performance of machine learning models. Only the Catboost model profited slightly in a clinically

relevant AUC range. Highest AUC results for each variable set are marked in bold. Confidence intervals for all models are included in the Supplementary Material. Statistically significant

difference in model performance between variable sets are marked with * and + to signal difference from A and from A+B, respectively. Significance was determined by a value of p

lower than 0.05, resulting from the Wilcoxon signed-rank test.

in Table 2 for paradigm I with favorable outcome and in
Table 3 for paradigm II with poor outcome, respectively. The
results for the additional performance measures are given in
Supplementary Material.

For the first scenario with baseline clinical variables only (I
A and II A), prediction was slightly better for poor outcome
(II A) than for favorable outcome (I A). The smallest difference
in AUC between I A and II A was 0.02 for GLM and the
largest 0.05 for Lasso logistic regression. Only SVMC showed
comparable results.

Adding MRI-derived parameters (scenario I A+B and II
A+B) did not change the prediction performance for both
paradigms. This was consistent for all algorithms in both
scenarios I A+B and II A+B.

Finally, adding thrombectomy-associated parameters—extent
and speed of recanalization—(I A+B+C and II A+B+C)
improved the prediction performance noticeably across
many algorithms for the favorable outcome paradigm (I
A+B+C). Prediction for the poor outcome paradigm with
all variables (II A+B+C) remained approximately stable;
only the Catboost and SVMC algorithm showed a slight
improvement (AUC increase of 0.03, 0.08, respectively, compared
to II A).

To summarize, prediction for the poor outcome paradigm
II remained comparable on a relatively high level across
all three prediction scenarios (II A, II A+B, II A+B+C).
Contrariwise, prediction for the favorable outcome paradigm I
improved noticeably when thrombectomy-associated parameters
were added (I A+B+C). The final performance for the last
scenario with all predictive variables included (I A+B+C
and II A+B+C) was comparable for both the favorable and
poor paradigms.

Feature Importance Ranking
Feature importance values for each scenario and each algorithm
are displayed in Figures 2, 3.

For the favorable outcome paradigm I (Figure 2), the most
relevant variables across all algorithms for the first scenario with
the baseline clinical variables only (I A) were age, pre-strokemRS,
National Institutes of Health Stroke Scale (NIHSS) at admission,
and time from stroke onset to MRI. Adding MRI-derived
mismatch parameters and the site of occlusion (I A+B), the Tmax
volume for hypoperfused tissue was of higher relevance, while
the ADC volume was of moderate importance. However, this was
only visible in somemodels, among them the tree boostingmodel
(the best performing model in the favorable outcome paradigm
I). For models with all variables combined (I A+B+C), the
mTICI score became the most dominant parameter in all models.
Also, time from stroke onset to final TICI score was assigned high
importance by the majority of models.

For the poor outcome prediction paradigm (Figure 3), we
found a similar pattern. Age, premorbid mRS, and the baseline
NIHSS were the most relevant features in the model with baseline
variables only (II A). However, i.v. thrombolysis and risk factors
such as diabetes played a smaller role compared to the favorable
outcome paradigm (I A). For the models with additional MR-
mismatch parameters (II A+B), both ADC and Tmax volume
were of less importance than in the favorable outcome paradigm
(I A+B). In the third scenario with all variables included (II
A+B+C), the baseline variables from the first scenario (II A)
remained important. Additionally, the mTICI score was relevant
in most models, however not as relevant as compared to the
favorable outcome prediction (I A+B+C).

To summarize, for the prediction of either good or poor
outcome, age, premorbid mRS, and baseline NIHSS were
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FIGURE 2 | Favorable outcome mRS 0–2 (Prediction paradigm I). Feature importance for outcome paradigm I (favorable outcome) and II (poor outcome). The figures

give an overview of the importance of the predictive variables included in the six different scenarios. Feature importance is given as a scaled SHAP score from 0 to 1.

Values closer to 1 indicate higher importance for prediction.

important, with mTICI score as an additional relevant feature
from the third scenario. ADC and Tmax volume were more
important for the favorable than for the poor outcome paradigm.
Information about i.v. thrombolysis was only important for the
favorable outcome paradigm.

DISCUSSION

In this study, we examinedML-based outcome predictionmodels
for patients with stroke who underwent MT. We compared
prediction of poor outcome (mRS 5 or 6 vs. 0–4) and favorable
outcome (mRS 0–2 vs. 3–6) measured at 3 months post stroke.
These prediction paradigms have direct implications for clinical
decision-making by predicting an outcome of no or only slight
disability on the one hand and severe disability or death on
the other. In particular, the definition of favorable outcome is
generally accepted and was applied in large prospective studies.

We chose different combinations of prognostic variables that
were deliberately limited to those most commonly used in
stroke practice and literature (1, 6, 7) and most accessible
in clinical decision-making, especially under time constraints
as encountered in clinical practice. We found considerable
differences between the two outcome paradigms.

Our main finding suggests that prediction of poor outcome
may possibly be based on clinical baseline variables only and set
a rather high benchmark in the first prediction scenario. The
predictive performance did not improve by adding target MR-
mismatch and recanalization-related parameters. In contrast,
prediction of favorable outcome did improve significantly by
adding speed and extent of recanalization compared to using
baseline clinical variables only.

In contrast to previous studies, the main strength of the
presented work is the direct comparison of two different outcome
prediction paradigms. The choice of how to dichotomize mRS
for outcome prediction has clinical relevance: The standard
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FIGURE 3 | Poor outcome mRS 5 and 6 (Prediction paradigm II). Feature importance for outcome paradigm I (favorable outcome) and II (poor outcome). The figures

give an overview of the importance of the predictive variables included in the six different scenarios. Feature importance is given as a scaled SHAP score from 0 to 1.

Values closer to 1 indicate higher importance for prediction.

dichotomization with 0–2 vs. 3–6 as used in the large
randomized clinical trials puts an emphasis on patients with
favorable outcomes. Dichotomizing mRS 0–4 vs. 5–6 focuses on
patients with a very high degree of dependency or mortality
after MT.

Our exploratory analysis revealed that patients with expected
poor outcome could already be captured by clinical baseline
variables before thrombectomy. The prediction scenario
with baseline clinical variables only was already close to
the final performance when mismatch and recanalization
information was added. In those patients, withholding
MT based on the clinical baseline variables could be the
consequence; however, these implications should be verified
in larger, prospective studies (8) and within new clinical
data sets.

This was in contrast to the prediction of favorable outcome,
where the prediction with baseline clinical variables only

was lower but could be considerably improved by adding
information about the speed and extent of reperfusion. However,
because of the retrospective and thus exploratory nature of
our study, our results should be interpreted with caution
with regards to clinical treatment decisions. Nonetheless, they
warrant further exploration in prospective studies to confirm our
findings. Within such prospective data, the proposed paradigms
could then be used to estimate individualized chances for
either poor or favorable outcome before and after therapy.
A similar approach using two models for an individualized
prognosis of the same outcome variable is proposed by
Debs et al. (15).

This performance pattern was accompanied by
complimentary information from the feature importance
analysis: For poor outcome, age, stroke severity (NIHSS) and
degree of disability before stroke (premorbid mRS before stroke),
and the time from stroke onset to imaging were the most
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important baseline variables. For favorable outcome, the most
important predictive variables were also age, NIHSS at onset,
and the mRS before stroke, but additionally, the speed and extent
of recanalization (mTICI score and the time from stroke onset
to the final mTICI score) were paramount. NIHSS was a more
important predictor for final outcome than the ischemic lesion
volume before therapy. This could be due to lesion location in
eloquent brain regions where a smaller infarct causes comparably
more severe clinical symptoms. Also, the final ischemic lesion
volume after therapy might improve prediction but was not
available to be included in our models.

Across all models, the maximum predictive value was an
AUC of 0.73 for both favorable and poor outcome with regards
to model performance and feature rankings. Our findings
are comparable to previous studies applying ML algorithms:
Hammam et al. (16) found a similar prediction for favorable
outcome for patients with MT which did not considerably
improve by adding MR-mismatch and other imaging-derived
parameters. Other studies applied ML for outcome prediction
with baseline CT imaging: Brugnara et al. (17) found an AUC
of 0.85 for the prediction of favorable outcome only after adding
information about infarct size after thrombectomy. Ramos et al.
(18) did evaluate prediction for poor outcome with a multitude
of clinical baseline parameters and CT-derived imaging features
in a much larger cohort. Not including mismatch variables,
their highest AUC was 0.81. Van Os et al. similarly showed a
considerable improvement for prediction by adding treatment-
associated variables in a study including CT imaging (19).

Interestingly, prediction for either poor or favorable outcome
did not improve by including MR-mismatch variables. These
results need to be interpreted together with the characteristics
of the cohort: Most patients included had a target mismatch as
defined in the inclusion criteria for the EXTEND-IA study (6)
with an infarct core of <70ml on ADC maps and a comparably
larger volume of hypoperfused tissue on Tmax maps with a
mismatch volume ratio of 1.2 or higher. While the treatment
effect of MT is maintained even in patients with larger infarct
cores (20), individual patients with a target mismatch still have
poor outcome. Therefore, it is intriguing that poor outcome
prediction in our study was possible based on clinical baseline
variables only: For those patients, the potential predictive value of
MR mismatch variables could be already encoded in the clinical
baseline information. A similar conclusion can be drawn for
patients with favorable outcome: improved prediction was much
more dependent on speed and the extent of recanalization than
onMRmismatch. However, this does not preclude the possibility
that a target mismatch is still a valid selection criterion for
patients undergoingMT. Our sample does not allow a conclusion
about the potential predictive value of patients without MR
mismatch. Prediction models could be improved by including
patients who underwent MT without a target mismatch profile
and larger infarct cores (21).

Despite these findings, the overall performance of the ML
models tested in our study could be improved. Considering
the potential power of ML algorithms to extract patterns, our
findings suggest that important variables for outcome prediction
might not be included in today’s clinical decision-making. It

is conceivable that there are so far unknown or undetectable
variables. This warrants further studies including more and new
prediction variables and biomarkers as well as direct integration
of multimodal imaging and clinical information.

A deep learning model including raw imaging data and not
derived variables might extract further, previously unknown
predictive information. For example, these models might be able
to account for inherent errors in the definition of infarct core (22)
or individual susceptibility of brain tissue (21).

Finally, our results show that the predictive value can differ
significantly between two different dichotomization paradigms
or different “cutoffs” (mRS 0–2 vs. 3–6 and mRS 5/6 vs. 0–4).
Unnecessary dichotomization of themRS can be suboptimal (23).
Researchers and clinicians should be aware that there are relevant
differences between dichotomization paradigms. Defining more
accurate outcome or premorbidity scores might improve future
prediction models.

Our study has some limitations. It is based on a relatively
small and retrospective patient cohort. Thus, our results must be
understood as an exploratory analysis for future research.

Our data reach back to 2009. This might have influenced
outcome due to improvements in thrombectomy technique
and accelerated workflows. However, there was no significant
outcome difference between patients treated 2009–2013
vs. 2014–2018.

CONCLUSION

Our results suggest that a prediction of poor outcome (mRS of 5
or 6) after MT can be based on clinical baseline variables only.
Speed and extent of thrombectomy did not seem to influence
poor outcome but were important for favorable outcome (mRS
0-2). The predictive value of a target MR mismatch with smaller
infarct core and larger penumbra was not relevant and could
be already captured by clinical baseline variables. However, our
sample does not allow a conclusion about the predictive value in
patients without target MR mismatch.
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