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Heart Rate and Heart Rate 
Variability correlate with clinical 
Reasoning performance and Self-
Reported Measures of cognitive 
Load
Soroosh Solhjoo1, Mark c. Haigney2, elexis McBee3, Jeroen J. G. van Merrienboer4, 
Lambert Schuwirth5, Anthony R. Artino Jr.2, Alexis Battista2, temple A. Ratcliffe6, 
Howard D. Lee7 & Steven J. Durning2

cognitive load is a key mediator of cognitive processing that may impact clinical reasoning 
performance. the purpose of this study was to gather biologic validity evidence for correlates of 
different types of self-reported cognitive load, and to explore the association of self-reported cognitive 
load and physiologic measures with clinical reasoning performance. We hypothesized that increased 
cognitive load would manifest evidence of elevated sympathetic tone and would be associated with 
lower clinical reasoning performance scores. fifteen medical students wore Holter monitors and 
watched three videos depicting medical encounters before completing a post-encounter form and 
standard measures of cognitive load. correlation analysis was used to investigate the relationship 
between cardiac measures (mean heart rate, heart rate variability and Qt interval variability) and self-
reported measures of cognitive load, and their association with clinical reasoning performance scores. 
Despite the low number of participants, strong positive correlations were found between measures of 
intrinsic cognitive load and heart rate variability. performance was negatively correlated with mean 
heart rate, as well as single-item cognitive load measures. our data signify a possible role for using 
physiologic monitoring for identifying individuals experiencing high cognitive load and those at risk for 
performing poorly during clinical reasoning tasks.

Diagnostic accuracy and the precise development of a management plan are imperative to improving patient 
safety1–3. Clinical reasoning can be defined as the cognitive steps (e.g. information gathering, problem representa-
tion, generating and refining diagnostic hypotheses) leading up to and arriving at a diagnosis and a management 
plan4–6. Assessing the clinical reasoning performance, however, is challenging due to the limitations of the assess-
ment methods, many of which do not incorporate the complexity and contextual nature of clinical reasoning as a 
construct7. Given the notion that clinical reasoning is at the heart of what it means to be a clinician8, it is essential 
that we enhance our understanding of clinical reasoning and how it can be assessed.

Cognitive load theory can be a useful explanatory theoretical lens for better understanding of when clinical 
reasoning is successful and when it goes wrong. Cognitive load theory posits that working memory is limited 
in both capacity and duration (i.e., only a few elements of information can be processed at any given time, and 
under realistic circumstances, are held in working memory for less than twenty seconds)9,10. Cognitive load refers 
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to one’s mental effort to complete a task, and it is primarily driven by element interactivity; that is, the num-
ber of cognitive elements that are simultaneously processed in working memory. In education studies, cognitive 
load theory posits three types of cognitive load which are affected differently by instruction and consequently 
have different implications for learning and performance: intrinsic load, determined by the task’s complexity and 
the learner’s prior knowledge; germane load, the cognitive load of construction and automation of schemata in 
long-term memory; and extraneous load, generated by the manner in which information is presented to learners 
interfering with schema acquisition and automation11–15.

Some researchers have criticized16,17 cognitive load theory as being difficult to falsify experimentally. Indeed, 
several studies tested hypotheses concerning the overall cognitive load and then interpreted their results in terms 
of intrinsic, extraneous and germane cognitive loads. This is problematic; hypotheses should be prespecified in 
terms of the different types of cognitive load15,18. There is no a priori reason that explanatory theoretical con-
structs cannot be applied to create a deeper understanding of complex phenomena and provide a foundation for 
the formulation of more concrete hypotheses19,20.

Assessing the impact of cognitive Load on clinical Reasoning
Several studies have provided evidence on the reliability and the validity of self-reported measures of cognitive 
load15,18. Clinical reasoning performance may be negatively associated with high cognitive load21. Further, high 
cognitive load may contribute to context specificity; e.g., seeing two patients with the same chief complaint, 
symptoms and findings and yet coming to different diagnoses22. Nonetheless, self-reported measures of perceived 
cognitive load may provide an incomplete picture of cognitive load23. Part of the problem is that individuals may 
be unaware of when their cognitive load exceeds capacity21. This is particularly salient when the excessive cogni-
tive load happens in the “here and now” – during the busy daily clinical practice. It is reasonable to assume that 
when excessive cognitive load occurs, the clinician does not have cognitive resources left to reflect on the balance 
between cognitive load and capacity. Thus, especially in those situations, self-reports are logically of limited prac-
tical value.

By contrast, physiologic measurements are less likely to be influenced by the limitations of an individual’s 
ability to self-assess cognitive load. In particular, cardiovascular measures may be suitable indices of cognitive 
load due to their reliability and the feasibility of continuous recording24. One well-established cardiovascular 
measure is heart rate variability. Changes in heart rate variability indicate modulation of the autonomic nervous 
system mainly in response to changes in blood pressure and mental stress25. Importantly, the performance of 
subjects under stress may be positively or negatively impacted by the autonomic nervous system, and so, poorly 
controlled autonomic tone may contribute to poor performance and be a target for intervention. The connection 
between heart rate variability and cognitive function has been the subject of several studies26–30. Although heart 
rate variability is commonly used as an index of autonomic nervous system activity, it remains unclear whether it 
is sufficiently sensitive to variations in cognitive load in education scenarios. For example, in an exploratory study 
of computer-based training strategies, Paas et al.31 found no correlation between cognitive load and one specific 
aspect of heart rate variability; however, they only looked at the spectral power in the low frequency band (i.e., 
spectral power of the frequency band of 0.07–0.14 Hz), did not parse out different components of cognitive load, 
and did not include an orthogonal measure of the impact of cognitive load on the autonomic nervous system. For 
further review of the studies investigating the use of physiologic measures, particularly heart rate variability, to 
assess stress and mental workload, please see refs32–34.

Furthermore, research conducted in other domains suggests that biological changes may precede cognitive 
awareness when individuals are struggling with their thought processes (i.e., high cognitive load); for example, 
among professional gamblers, high sympathetic tone, as measured by skin galvanic response, was observed before 
these professionals could vocalize a problem with a fixed card deck35. We therefore specifically sought to explore if 
this phenomenon is present in the context of clinical reasoning as improving physician’s awareness of when help 
is needed could dramatically improve care and reduce error.

The purpose of this exploratory study is first to determine whether cardiovascular measures can be used as 
markers for cognitive load and, second, to investigate whether the more feasible option of self-report measures 
have biological validity evidence for clinical reasoning performance in medical students. Here, in addition to 
measuring the spectral power in different frequency bands, we use time-domain measures of heart rate variabil-
ity; i.e., the root mean square of differences of successive heartbeat intervals (RMSSD), and the standard deviation 
of the normal to normal heart beat intervals (SDNN), which assesses total variability and makes no prior assump-
tions about the specific frequency band likely to be affected25. Moreover, we also measure the total variability of 
the QT interval (the period between the beginning of the Q wave and the end of the T wave in each cycle of the 
ECG signal) as an orthogonal index of the impact of cognitive load on the autonomic nervous system. This meas-
ure of QT variability is an index of the effects of changes in autonomic tone on the heart rhythm. Because they 
are objective and reliable24, physiologic markers could potentially provide an effective means to investigate the 
validity of self-reported measures of cognitive load.

We predicted that our findings would not only detect an association between cognitive load and clinical 
reasoning performance consistent with our theoretical framework, but also that there would be an association 
between cognitive load measures and sympathetic tone, providing additional evidence for the validity of cogni-
tive load self-reported measures. We further predicted that these associations would be detectable during three 
episodes of relatively mundane clinical reasoning and not be restricted to extraordinarily challenging encounters.
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Methods
participants. Fifteen third- and fourth-year medical students from the Uniformed Services University of the 
Health Sciences were recruited to view three videos depicting physician-patient interactions and then complete a 
post-encounter form (PEF) for each one. Their ECG was recorded using a Holter monitor starting 24 hours before 
(baseline) and while they watched the videos and reported their clinical reasoning (test). Holter data for five of 
the participants were excluded from analysis for the following reasons: for one participant, the recording was too 
noisy; for two, the time stamps were not available; and for two, the data were not recorded for the full period of the 
experiment. The data of the remaining 10 participants were used in the analysis. There were no exclusion criteria.

Assessment of clinical reasoning performance. As a first step, several authors crafted a written script 
for three video-based cases. The cases were then reviewed by an expert panel of eight internal medicine physicians 
and modifications were made to the script. Video cases were then filmed and re-reviewed by the same expert 
panel of eight internal medicine physicians for consistency.

Next, the PEF scoring rubric was constructed based on the script by having the authors generate answers for the 
different sections of the PEF. This was followed by review of the answers by the entire panel of experts. Following 
two rounds of reviews, we were able to establish complete consensus for correct, partially correct, and incorrect 
responses for each section. After having participants complete the PEF, additional answer options were generated 
that were not a part of the key (note: less than 2% of answers were not on the original key). These answers were 
reviewed by four of the study authors and complete consensus was reached for final responses. Reliability and valid-
ity evidence for using PEF has been collected previously36.

procedures. After informed consent, a trained researcher fitted participants with a 12-lead Holter recorder 
24 hours prior to the test to establish a baseline reading. Following the 24-hour baseline period, participants 
were asked to sit behind a computer desk and view three outpatient clinical encounter videos that had previously 
undergone expert review. The first video portrayed a diagnosis of an acute retroviral syndrome, the second patient 
presented with colorectal cancer and an acute pulmonary embolism, and the third patient presented with new 
onset diabetes. The second case video, representing a life-threatening presentation, was anticipated to lead to the 
greatest amount of cognitive load and sympathetic tone due to the acuity of the presentation. We did not include 
measures of empathy, anxiety, or emotional stress as these cases were typical for the work that these physicians 
would be expected to encounter in practice.

During the test period, for each video, participants viewed the video and then completed the PEF followed 
by a single-item cognitive load rating scale. Participants then immediately re-watched the video and were asked 
to explain their reasoning orally using a think-aloud protocol that is similar to cued retrospective reporting37. 
Following these steps, participants completed a 10-item cognitive load measure one time at the end of the test.

cognitive load measures. After completion of each PEF, participants provided a self-reported single-item 
cognitive load measure31. For this, they rated their level of cognitive load exerted on the task using a Likert-type 
scale ranging from 1 (no cognitive load exerted) to 9 (very high cognitive load). This single-item measure is brief 
and has been used in several prior studies38.

An additional self-reported measure of cognitive load was given to each participant at the end of the 
three cases. It consisted of a 10-item questionnaire designed to measure the three different types of cognitive 
load (extraneous, germane, and intrinsic). We included these measures given the reported limitations of the 
single-item cognitive load measure39. All questionnaire items use an 11-point Likert-type scale that ranged from 
0 to 10, with higher scores indicating higher cognitive load. Validity of the scores on this questionnaire as a psy-
chometric measure has been shown in domains outside medical education15,18.

physiologic measures. ECG recordings were obtained using a high-resolution (1 kHz), digital, 12-lead, 
portable Holter monitoring system (Mortara Instrument Inc., Milwaukee, WI) starting 24 hours prior to the test 
and during the intervention. Several time and frequency domain measures were extracted from each participant’s 
ECG according to established guidelines25. Time domain measures consisted of the mean heart rate (HR, beats/
min), heart rate variability calculated as the standard deviation of the time between normal beats (SDNN, msec) 
and root mean square of successive differences of heartbeat intervals (RMSDD, msec). The power of heart rate 
variability time series was measured in three frequency bands: very low frequency (VLF; 0.0037–0.04 Hz), low 
frequency (LF; 0.04–0.15 Hz), and high frequency (HF; 0.15–0.4 Hz). LF is associated with combined vagal and 
sympathetic stimulations40 and HF is associated with vagal stimulation and the respiratory system’s effect on the 
heart rate41; therefore, these two measures are not independent.

On average, each task took 7.01 ± 2.13 min (mean ± standard deviation), and the shortest task across all par-
ticipants lasted 4.5 minutes. Therefore, to account for all the tasks in the test, the analysis was performed on 
4.5-minute segments of the ECG signal, using a moving window at 0.5-minute steps. For each task, we used the 
average of the parameters calculated for each of the windows covered during that task. For example, VLF reported 
for a 7-min task is the average of VLF calculated for each of the six 4.5-min windows covered during that task. 
This would improve parameter estimates and lower distortion.

The QT interval was measured using a semi-automated, template matching algorithm that has been previously 
described42. Briefly, the algorithm generates several signal-averaged templates from a chosen ECG lead. For each 
template, the investigator identifies a representative complex, including the entire QT and U wave in order to 
include all components related to depolarization and repolarization of the ventricles. The inclusion of the U wave 
has been previously shown to improve the predictive value of the metric for life-threatening arrhythmias43. Each 
individual QT interval value is then calculated as how much each beat needs to be stretched or compressed to 
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fit the corresponding template QT. A normalized QT variability index (QTVI) was also derived according to the 
following equation:

QTVI log [(QTv/QT )/(HRv/HR )],10
2 2=

where HR = mean heart rate, HRv = heart rate variance, QT = mean QT interval, and QTv = QT interval vari-
ance. QTVI formula is designed to produce an independent measure by including QT and HR (which are not 
independent) in the numerator and the denominator.

To limit the effect of posture or physical activity on the physiologic measures, the participants were asked to 
keep sitting as they watched the videos, filled out the questionnaires, or explained their thinking process.

clinical reasoning performance measures. Participants’ performance for each scenario was measured 
using a PEF, on which they indicated a leading diagnosis, differential diagnosis, supporting data and a thera-
peutic management plan. Scoring of the PEF entailed having a group of experts construct and revise answer key 
responses through a series of discussions. Complete consensus was achieved for this scoring rubric. Reliability 
and validity of this PEF for the assessment of clinical reasoning has been previously established36,44. Each PEF 
consisted of the following prompts:

Patient history. What else do you want to ask this patient? (List one to five questions).

Physical exam. What else would you want to look for on this patient’s physical exam? (List one to five items).

Differential diagnosis. What is your differential diagnosis? (please list in order of likelihood and list at least 3 
responses).

Supporting evidence. What data supports this diagnosis? (List one to five pieces of evidence).

Treatment/management plan. What is your treatment/management plan for this patient (diagnostic and/or 
therapeutic).

An expert panel generated scores for every entry on the PEF with complete consensus. This was achieved after 
two rounds of review and edits to potential PEF responses. Scores for each response ranged from 0 (incorrect), 
to 1 (partially correct), and 2 (correct). Scores for all responses were tallied to generate a total score for clinical 
reasoning performance (maximum score of 30).

Data analysis. Correlation analysis was performed to assess the association between the self-reported cog-
nitive load measures and physiologic measures. For this purpose, partial correlation was measured to control for 
gender differences in physiologic measures of heart rate variability33. Correlation analysis was also used to explore 
the relationship between clinical reasoning performance scores and cognitive load using both physiologic meas-
ures and self-reported measures of cognitive load. We extracted the time and frequency domain parameters for 
the time period that each participant spent watching and completing the PEF and think-aloud protocols for each 
video. Participants’ average physiologic measures during each task were used to calculate the correlation coeffi-
cients. Signal processing, feature extraction and data analysis were performed using in-house software developed 
in MATLAB45. Data are presented as mean ± standard error of the mean unless noted otherwise. For correlation 
analysis, we set type I error rate of α = 0.05. When considering each task separately, we set the minimum cor-
relation coefficient of |ρ| ≥ 0.67. With 15 subjects, our analysis would have 80% power (i.e., type II error rate of 
β = 1 − power = 0.2). Because we lost data from 5 out of 15 subjects, our analysis power dropped to 60% (i.e., 
β = 0.4)46. Due to this increase in type II error, there might be associations between the cardiovascular parameters 
of each specific task and performance/cognitive load measures that we failed to detect; however, the type I error 
rate was kept low (α = 0.05).

ethical approval. The data were stored and analyzed anonymously, and this study was deemed exempt by 
IRB at Uniformed Services University of the Health Sciences. Informed consent was obtained from all partici-
pants prior to the study. All research was performed in accordance with relevant guidelines and regulations.

Disclaimer. The views expressed in this paper reflect the opinions of the authors only and not the official 
policy of the United States Army, Uniformed Services University, or the Department of Defense.

Results
Study cohort. The final sample of ten participants contained 2 females, and the mean age was 25. None 
were on any prescribed medications. Average electrocardiographic variables recorded at baseline (24-hour period 
preceding the test) and during the test are reported in Table 1. For each case, participants took 5.6 ± 0.2 min to 
watch the video, 8.97 ± 0.32 min to fill out the PEF, and 6.5 ± 0.33 min for think-aloud.

cognitive load and clinical reasoning performance. Participants’ performance scores on the PEF 
ranged from 11 to 25 (17 ± 1.73) for the first video, 16 to 27 (22.1 ± 1.29) for the second video, and 10 to 25 
(16.7 ± 1.57) for the third video. The average single-item measures of cognitive load were 5.9 ± 0.53 after the 
first (CL1), 6.5 ± 0.4 after the second (CL2), and 7.4 ± 0.31 after the third video (CL3), showing a steady increase 
(CL3 > CL1, p < 0.05). On the 10-item inventory, intrinsic, germane and extraneous types of cognitive load 
were measured: scores for intrinsic and germane cognitive loads ranged from 3 to 8 (4.97 ± 0.55 and 5.03 ± 0.52, 
respectively), and scores for extraneous cognitive load ranged from 0 to 10 (2.07 ± 0.98).
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Across all three case videos (n = 30), performance scores negatively correlated with single-item measures of 
cognitive load (r = −0.47, p < 0.01). However, we did not find any statistically significant correlation between the 
10-item measures of the three different types of cognitive load and performance scores.

cognitive load and cardiovascular measures. Here, we assessed the correlation between measures of 
cognitive load (intrinsic, germane, and extraneous) and cardiovascular measures. During the test, intrinsic cog-
nitive load was positively correlated with heart rate variability features in both time and frequency domains, 
including SDNN, RMSSD, LF and VLF power (Table 2). Of note, the correlation between self-reported intrinsic 
cognitive load and SDNN measured during think-aloud sessions increased across the three video tasks (Fig. 1). 
A steady increase was also seen in the correlation between self-reported intrinsic cognitive load and LF power 
measured during think-aloud (Table 2). QTVI was strongly associated with single-item measures of cognitive 
load during the second case video (Table 2).

clinical reasoning performance and cardiovascular measures. Table 3 lists the statistically signif-
icant correlations of clinical reasoning performance scores with cardiovascular measures. Performance scores 
for clinical case 2 were positively correlated with heart rate variability as measured by SDNN and VLF while the 

HR (beat/min) SDNN (msec) QTVI

24 hours prior to the test 71.04 ± 2.73 79.11 ± 5.94 −1.42 ± 0.06

During the test 68.88 ± 2.70 70.32 ± 3.80 −1.46 ± 0.10

Table 1. Baseline mean values of the physiologic parameters measured 24 hours prior to the test. The 
parameters are reported as mean ± standard error of the mean.

Cognitive Load 
Measure

Physiologic 
Measure

Correlation 
Coefficient p-value

Intrinsic LF 0.91 0.001

Intrinsic SDNN 0.71 0.031

Intrinsic RMSSD 0.69 0.040

Germane VLF 0.68 0.045

CL1 + CL2 + CL3 QTVI 0.72 0.030

Intrinsic t1 LF 0.70 0.035

Intrinsic v2 LF 0.77 0.016

Intrinsic v2 QT 0.75 0.033

Intrinsic p2 LF 0.72 0.028

Intrinsic p2 RMSSD 0.71 0.032

Intrinsic t2 SDNN 0.76 0.019

Intrinsic t2 VLF 0.73 0.027

Intrinsic t2 LF 0.73 0.026

Intrinsic v3 LF 0.73 0.026

Intrinsic p3 LF 0.74 0.022

Intrinsic p3 RMSSD 0.74 0.023

Intrinsic t3 SDNN 0.90 0.001

Intrinsic t3 VLF 0.76 0.018

Intrinsic t3 LF 0.90 0.001

Intrinsic t3 HF 0.72 0.030

Intrinsic t3 RMSSD 0.86 0.003

Germane p1 SDNN 0.84 0.005

Germane p1 VLF 0.82 0.007

Germane p1 LF 0.72 0.028

CL2 p2 QTVI 0.81 0.008

CL2 t2 QTVI 0.77 0.016

CL2 p3 QTVI 0.89 0.001

CL2 t3 QTVI 0.81 0.008

CL3 p3 RMSSD 0.69 0.040

Table 2. Correlations between measures of self-reported cognitive load and physiologic measures. vn, pn and 
tn indicate the physiologic measures averaged during watching, PEF completion and the think-aloud sessions 
for clinical case n (1–3), respectively. When task number is not indicated, the full test period (63.1 ± 1.87 min) 
was used for the measurement.
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participants watched the video. Those with better performance for case 2, manifested lower heart rates and higher 
QT interval during the following task. These correlations were not present for the other two cases. For case 3, the 
performance score was negatively correlated with QTVI while the participants watched the video.

Discussion
The major findings of this study were threefold: (a) we found strong correlations between cardiovascular meas-
ures and self-reported measures of cognitive load during clinical reasoning; (b) performance scores negatively 
correlated with single-item measures of cognitive load; and (c) we found strong negative correlations between 
objective measures of performance and mean heart rate for one task. QT duration was also correlated with perfor-
mance, but this effect likely reflects the same phenomenon as heart rate, i.e. an increase in sympathetic tone. The 
correlations between performance and the physiologic measures reported in this study were not present with the 
physiologic measurements 24 hours prior and were only present on the test day. These findings were consistent 
with our hypothesis that high cognitive load would correlate with physiologic measures of sympathetic tone. The 
correlations were strongest for case 2, which represented the most urgent presentation (a patient with colorectal 
cancer and a pulmonary embolism), as the acuity of this life-threatening presentation would be expected to 
invoke greater sympathetic tone. This finding could have significant implications for the assessment of individuals 
performing complex tasks that are associated with significant failure risks.

Our analysis showed a positive correlation between intrinsic cognitive load and heart rate variability fre-
quency and time domain measurements (Table 2). An increase in heart rate variability is generally regarded as 
an indication of a robust autonomic nervous and cardiovascular system25, and it is somewhat surprising that it 
was associated with increased cognitive load. Heart rate variability can increase due to an increase in parasympa-
thetic or sympathetic tone (or both)40. Our findings suggest that an increase in perceived cognitive load appears 
to result in an increase in both sympathetic and parasympathetic components of the autonomic nervous system. 
While mental stress is typically associated with decreased parasympathetic tone, an increase in blood pressure 
may have had the opposite effect in our cohort. Mental stress has been shown to increase blood pressure47, and an 
increase in blood pressure in young healthy individuals could be expected to increase parasympathetic tone via 
the baroreceptor reflex mechanism.
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Figure 1. Scatterplot of SDNN versus intrinsic cognitive load during the think-aloud sessions of the three 
clinical cases. The correlation between intrinsic cognitive load and SDNN increased during the experiment.

PEF-based Performance 
Measure

Physiologic 
Measure

Correlation 
Coefficient p-value

Case 2 Performance Score

v2 SDNN 0.69 0.042

v2 VLF 0.68 0.042

v2 QT 0.71 <0.05

v3 QT 0.68 0.045

p3 HR −0.70 0.037

p3 QT 0.69 0.042

t3 QT 0.73 0.026

Case 3 Performance Score v3 QTVI −0.73 0.024

Table 3. Correlations between objective performance measures and cardiovascular variables. vn, pn and tn 
indicate the physiologic measures averaged during watching the video, PEF completion and the think-aloud 
sessions for case n (1–3), respectively.
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QTVI, a validated measure predicting adverse cardiovascular events, was correlated with self-reported 
single-item measures of cognitive load overall, and particularly at the end of the second case, as well as the per-
formance scores for the third case. In healthy individuals, heart rate and QT interval are inversely correlated; as 
heart rate increases, the QT interval shortens. Activation of the sympathetic nervous system and parasympathetic 
withdrawal significantly increases heart rate and shortens the QT interval through direct and indirect effects 
on the myocardium. QTVI is a log ratio of normalized QT variance over normalized heart rate variance, and 
therefore an increase in QTVI in the setting of increased heart rate variability is somewhat unusual, indicating 
that repolarization variability increased to a greater extent than heart rate variability. Identifying trainees who are 
experiencing increased cognitive load could have important implications for physician health and for program 
level wellness initiatives.

Clinician’s performance is a critical concern to patients and health systems, and identifying clinicians that are 
in danger of clinical reasoning performance failure prior to making an error is an important goal. In this study, 
we found a strong inverse correlation between heart rate and an objective performance score during a clinical 
reasoning exam, indicative of activation of the sympathetic nervous system in those at risk of doing poorly. In 
addition, self-reports of cognitive load are not feasible to be used during normal clinical practice, whereas these 
are the contexts in which this balance between cognitive load and capacity may be most detrimental. If a clini-
cian is overwhelmed at times by the situational demands, they generally do not have the time to sit and think, or 
reflect, or take a ‘timeout’ in every situation. The understanding of the relationship between cognitive load, risk 
of underperformance and physiological parameters may be useful to design monitoring warning instruments for 
practicing clinicians in complex settings to enhance self-monitoring – a critical component of self-regulation.

The current study is unique in that it bridges multiple fields: cognitive psychology, physiology, and medicine. 
It is a first attempt to measure clinical reasoning performance using the proxy of cognitive load with physiologic 
parameters that are not subject to error in self-reports. As stated in the introduction, all assessments bear in 
them the problem of having to infer mental processes from observing external behavior and this inference is 
always influenced by the validity evidence in the context of current validity theory. Physiological parameters 
could potentially serve as a more direct measurement of cognitive load. Therefore, the findings from this study 
may have important practical significance and implications in medical education, especially with respect to the 
development of tools to optimize the influence of cognitive load and improve clinical reasoning performance. 
The increasing use of personalized monitors for heart rate and even electrocardiogram makes it likely that these 
findings could be potentially employed to monitor trainees to optimize their clinical reasoning ability, as well as 
their personal health and to preempt clinical failure.

This study also had several limitations. First, the sample of participants in this study was quite small. Out of 
original 15, five participants’ data had to be excluded for technical reasons. However, the identified effect sizes were 
large, and the results were statistically significant. Second, the study was conducted in a low-stakes experimental 
environment, which might have attenuated the effects of cognitive load on performance. Third, the absence of blood 
pressure as a gauge of physiologic response to stress limits any inferences we might have been able to make regard-
ing its potential moderating role on the impact of cognitive load on performance. Fourth, we did not explore the 
learning process in this investigation, and there may be differential effects on learning and performance in trainees 
in terms of cognitive load.

For the purposes of our analysis, we have applied the prevalent assumption that the autonomic nervous system 
– and the indices of heart rate variability and QTVI – represent purely reactive phenomena triggered by the per-
ception of external stimuli. The “Polyvagal Theory”, however, suggests that there are phylogenetic differences in 
the organization of the parasympathetic system that support a bidirectional interaction for the autonomic system 
and higher behaviors48. In mammals, the parasympathetic system incorporates central nuclei that allow the sys-
tem to not only suppress sympathetically-driven vegetative functions (i.e., blood pressure and heart rate), but to 
also modulate internal perceptions, facial behaviors, and ultimately social interactions49. Testing this hypothesis is 
beyond the scope of this study, but future investigations could explore the impact of parasympathetic intervention 
(i.e., exercise training) on perceived cognitive load and performance.

Our current findings have the potential to inform assessment of clinical reasoning performance in authentic 
(e.g. patient care) settings. Such work could also advance our understanding of context specificity, which leads 
to unwanted variation in physician performance. For example, consistent with the literature on cognitive load, 
instructional materials could then be developed to assist the clinician/student with reducing cognitive load and 
improving future performance. The inclusion of physiologic monitoring in a training regime could provide “real 
time” feedback to the learner regarding the effectiveness of that regime.

One implication for practice is to determine if expected increases in sympathetic tone would be seen before 
an individual is able to vocalize that they are dealing with a challenging situation (e.g., that they are “out of their 
depth”). We envision future means of looking at heart rate variability by emerging hand-held or wearable technol-
ogies to help the physician know when they may need help with clinical care, as well as using heart rate variability 
monitors to generate validity evidence for more common assessment measures of clinical reasoning in practice.

Data Availability
Anonymized data are available from the corresponding author upon reasonable request.
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