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ABSTRACT

We describe here an energy based computer soft-
ware suite for narrowing down the search space of
tertiary structures of small globular proteins. The
protocol comprises eight different computational
modules that form an automated pipeline. It com-
bines physics based potentials with biophysical
filters to arrive at 10 plausible candidate structures
starting from sequence and secondary structure
information. The methodology has been validated
here on 50 small globular proteins consisting of 2–3
helices and strands with known tertiary structures.
For each of these proteins, a structure within 3–6 Å
RMSD (root mean square deviation) of the native has
been obtained in the 10 lowest energy structures.
The protocol has been web enabled and is accessible
at http://www.scfbio-iitd.res.in/bhageerath.

INTRODUCTION

The tertiary structure prediction of a protein using amino acid
sequence information alone is one of the fundamental
unsolved problems in computational biology/molecular bio-
physics (1). The folding of protein molecules with a large
number of degrees of freedom spontaneously into a unique
three-dimensional (3-D) structure is of scientific interest
intrinsically and due to its application in structure based
drug design endeavors. The cost and time factors involved
in experimental techniques urge for an early in silico solution
to protein folding problem (2). The ultimate goal is to use
computer algorithms to identify amino acid sequences that
not only adopt particular 3-D structures but also perform spe-
cific functions i.e. to propose designer proteins (3).

Contemporary approaches for protein structure prediction
can be broadly classified under two categories viz. (i) com-
parative modeling, which includes homology modeling and

threading (4–7) and (ii) de novo folding (8–12). The first
category of methods utilizes the structures of already solved
proteins as templates (either locally or globally, at the
sequence level or at the sub-structure level). With large
amounts of genome and proteome data accumulating via
sequencing projects, comparative modeling has become the
method of choice to characterize sequences where related
representatives of a family exist in structural databases
(13–18). There are several web servers based on comparative
modeling approaches such as Swiss Model (4), CPHmodels
(19), FAMS (20) and ModWeb (21). The assessors for com-
parative modeling at CASP6 (Critical Assessment of protein
Structure Prediction methods) have noted small improve-
ments in model quality despite increase in the available struc-
tures but marginal improvement in alignment accuracy when
compared to CASP5 (22). A natural limit for these
approaches is the quantity of information available in the
structural databases. This highlights the importance of
de novo techniques for protein folding.

Significant progress has been made in recent years towards
physics-based computation of protein structure, from a
knowledge of the amino acid sequence. This approach, com-
monly referred to as an ab initio method (23–25) is based on
the thermodynamic hypothesis formulated by Anfinsen
(1973), according to which the native structure of a protein
corresponds to the global minimum of its free energy under
given conditions (26). Protein structure prediction using ab
initio method is accomplished by a search for a conformation
corresponding to the global-minimum of an appropriate
potential energy function without the use of secondary struc-
ture prediction, homology modeling, threading etc. (27). In
contrast, methods characterized as de novo use the ab initio
strategies partly as well as database information directly or
indirectly. Table 1 summarizes different known web servers/
groups for protein structure prediction and the function(s)
therein. The tertiary structure prediction of protein starting
from its sequence has been successfully demonstrated on pro-
tein sequences <85 residues in length by Baker’s group
(28,29) using a fragment assembly methodology. The ProtInfo
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web server by Samudrala et al. (30) predicts protein tertiary
structure for sequences <100 amino acids using de novo meth-
odology, where by structures are generated using simulated
annealing search phase which minimizes a target scoring func-
tion. Scratch web server by Baldi et al. (31) predicts the pro-
tein tertiary structure as well as structural features starting
from the sequence information alone. Astro-fold (32) an ab
initio structure prediction framework by Klepeis and Floudas
employs local interactions and hydrophobicity for the identi-
fication of helices and beta-sheets respectively followed by
global optimization, stochastic optimization and torsion
angle dynamics. De novo structure prediction by simfold
energy function with the multi-canonical ensemble fragment
assembly has been developed by Fujitsuka et al. (33). The
function has been tested on 38 proteins along with the frag-
ment assembly simulations and predicts structures within 6.5
s RMSD (root mean square deviation) of the native in 12 of
the cases. Arriving at structures between 3 and 6 s RMSD of
the native expeditiously using ab initio or de novo methodolo-
gies remains a formidable challenge.

We have developed a computationally viable de novo strat-
egy for tertiary structure prediction, processing and evalu-
ation. The web server christened Bhageerath takes as input
the amino acid sequence and secondary structure information
for a query protein and returns 10 candidate structures for the
native. In this article, we report the validation and testing of
the protein structure prediction web suite Bhageerath with
application to 50 small globular proteins. The programs are
written in standard C++, with a total of more than �8000
lines of code and are easily portable on any POSIX (UNIX,
LINUX, IRIX and AIX) compliant system.

MATERIALS AND METHODS

Bhageerath (www.scfbio-iitd.res.in/bhageerath) software
suite for protein tertiary structure prediction narrows down
the search space to generate probable candidate structures
for the native. The flow chart diagram of Bhageerath is
depicted in Figure 1.

Table 1. Some de novo/ab initio servers for protein folding

Sl. No. Name of the Web Server/Group Description

1. ROBETTA (28,29) (http://robetta.bakerlab.org) De novo Automated structure prediction analysis tool used to infer protein structural
information from protein sequence data

2. PROTINFO (30) (http://protinfo.compbio.washington.edu) De novo protein structure prediction web server utilizing simulated annealing for
generation and different scoring functions for selection of final five conformers

3. SCRATCH (31) (http://www.igb.uci.edu/servers/psss.html) Protein structure and structural features prediction server which utilizes recursive
neural networks, evolutionary information, fragment libraries and energy

4. ASTRO-FOLD (32) Astro-fold: first principles tertiary structure prediction based on overall deterministic
framework coupled with mixed integer optimization

5. ROKKY (33) (http://www.proteinsilico.org/rokky/rokky-p/) De novo structure prediction by the simfold energy function with the multi-canonical
ensemble fragment assembly

6. BHAGEERATH (http://www.scfbio-iitd.res.in/bhageerath) Energy based methodology for narrowing down the search space of small
globular proteins

Figure 1. The flow of information in Bhageerath web server, starting with the input from the user to the final 10 predictions made available to the user.
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The first module involves the formation of a 3-D structure
from the amino acid sequence with the secondary structural
elements in place. The second module involves generation
of a large number of trial structures with a systematic sam-
pling of the conformational space of loop dihedrals. The
number of trial structures generated is 128(n�1) where n is
the number of secondary structural elements. These structures
are generated by choosing seven dihedrals from each of the
loops (three at both ends and one dihedral from the middle
of the loop) and sampling two conformations for each dihe-
dral. The values assigned for dihedrals F, Y to each amino
acid during structure generation are given in supplementary
information (Supplementary Table S1). The trial structures
generated via dihedral sampling are screened in the third
module through persistence length and radius of gyration fil-
ters (34), developed for the purpose of reducing the number
of improbable candidates. The resultant structures are refined
in the fourth module by a Monte Carlo sampling in dihedral
space to remove steric clashes and overlaps involving atoms
of main chain and side chains. In module five, the structures
are energy minimized to further optimize the side chains.
The energy minimization is carried out in vacuum with dis-
tance dependent dielectric for 200 steps (75 steps steepest
descent + 125 steps conjugate gradient). Module six involves
ranking of structures using an all atom energy based empirical
scoring function (35) followed by selection of the 100 lowest
energy structures. Module seven reduces the probable candi-
dates based on the protein regularity index of the F and Y
dihedral values based on the threshold value of 1.5 for F
and 4.0 for Y (Thukral et al., manuscript accepted in
J. Biosci.). Module eight further reduces the structures
selected in the previous module to 10 using topological
equivalence criterion and the accessible surface area [calcu-
lated using NACCESS (36)]. The above eight modules are
configured to work in a conduit.

Overview of the organization of the suite

Bhageerath is a fully automated web enabled protein struc-
ture prediction software suite that is made available through
a convenient user interface which returns 10 predictions for a
given protein query sequence. A click on the Bhageerath ser-
ver opens into a window wherein a user can paste a query
protein sequence in FASTA format. The current version sup-
ports continuous sequences up to 100 amino acids. The user
is prompted for amino acid range as secondary structural
input. Upon submission the user receives an unique job id
for his/her sequence. User has the option to provide an
email ID to receive an output link which contains 10 lowest
energy candidate structures.

RESULTS

We present here a performance appraisal of the protein
tertiary structure prediction software suite on 50 globular
proteins with known structures. All the proteins have been
extracted from the Protein Data Bank (PDB) (37) and are
functionally diverse. We have extracted �8000 unique
proteins from the PDB at 50% sequence similarity or
less. From these, �8000 unique proteins, we obtained 329
proteins satisfying the criterion that the number of residues

is <100 and the number of secondary structural elements
varies between two and three. We have selected our test
set of 50 proteins randomly from these 329 proteins. The
length of the polypeptide chain varies from 17 to 70 and
the total number of helices and strands ranges between two
and three.

The results obtained for the 50 globular proteins with the
web server are shown in Table 2. The table gives the PDB
ID, the number of amino acids in the sequence as well as
the number and type of secondary structural elements present
in each protein in columns (i)–(iii). The number of structures
obtained after the persistence length and radius of gyration
filters are given in column (iv) of Table 2. The lowest
RMSD obtained in the 100 structures along with its energy
rank are provided in the next two columns, (v) and (vi).
This is followed by the number of structures selected by
ProRegIn filter in column (vii). The number in parenthesis
in column (vii) indicates the number of structures with
RMSD < 6 s in the selected structures. The lowest RMSD
and the corresponding energy rank after selection with
ProRegIn filter are reported in column (viii) and (ix). The
structures selected after the Topology filter are reported in
column (x) and the number in parenthesis indicates the num-
ber of structures with RMSD <6 s in the final 10 structures.
The last two columns of Table 2 [column (xi) and (xii)] show
the lowest RMSD with respect to the native obtained from
amongst the 10 predicted structures along with the energy
rank of the structure. For all the 50 test proteins, irrespective
of the nature of secondary structural elements and the length
of intervening loops, it may be noted that a few topologically
correct structures within an RMSD of 3–6 s from the native
structure are obtained in the final 10 predicted structures.
Thus, the ‘needle in a haystack’ problem can be reduced to
finding a solution in the best 10 structures at least for small
proteins.

Figure 2 shows a superimposition of the lowest RMSD
structure with the respective native structures for all the
50 globular test proteins.

A comparison of the structures obtained with the protein
structure prediction web server presented here was carried
out with six freely available homology modeling servers:
CPHmodels (19), Swiss Model (4), EsyPred3D (38),
ModWeb (21), Geno3D (39) and 3Djigsaw (40). While
SwissModel, EsyPred3D, Geno3D and 3Djigsaw provide an
option for template selection the other two servers are auto-
matic. For the 50 test proteins validated, we have first carried
out sequence alignment using PSI BLAST (41) and the tem-
plates were selected such that the sequence similarity of the
template is >30% and the template is not from the same fam-
ily. For most of the proteins there was very less sequence
similarity with proteins of other families and the templates
were restricted to the same family. In such cases the quality
of model built is quite high and the RMSD with respect to the
native is <1 s in few cases. The proteins where the templates
are selected from different families result in RMSDs compa-
rable to those obtained with Bhageerath web server. Table 3
shows the RMSD of the structures obtained by homology
modeling from the respective web servers for all the 50
globular proteins. The template ID, percentage sequence
similarity and alignment of the target-template sequence
for each method and each structure therein is provided in
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supplementary information (Supplementary Tables S2–S7).
Thus, for new sequences with no known sequence homo-
logues, the Bhageerath web server has the potential to predict
a structure to within 3–6 s RMSD of the native structure with
accuracies comparable to the homology modeling servers.

Further comparison of the 10 structures obtained from
Bhageerath was carried out with the five candidate structures
obtained from the ProtInfo web server (30) and 10 structures
obtained with ROBETTA software (28) configured locally.
The results shown in Table 4 indicate that the server
described here is able to predict structures with RMSDs com-
parable to those obtained by ProtInfo web server and
ROBETTA software. Supplementary Table S8 in the supple-
mentary information provides the comparison of the GDT_TS
scores obtained using LGA server (42) for structures obtained
with Bhageerath and ProtInfo web servers and ROBETTA
software. The GDT_TS scores are also found to be compara-
ble for structures obtained from these three different structure
prediction methodologies.

DISCUSSION

We describe here an energy based computational web server
Bhageerath, for an automated candidate tertiary structure pre-
diction. The web server permits predictive folding with mod-
erate computational resources. The validation of the
computational protocol on 50 globular proteins has shown
that the web server selects one or more candidate structures
within an RMSD of 3–6 s with respect to the native in the
10 lowest energy structures. The results presented are for
proteins having 2–3 secondary elements with a, b and a/b
structures and are obtained solely from the amino acid
sequence and secondary structure information (without the
aid of multiple sequence alignment, or fold recognition).
The results provide a benchmark as to the level of model
accuracy one can expect from this web server.

All of the eight modules are currently being executed on a
cluster with 32 dedicated UltraSparc III 900 MHz processors.
In contrast to typical short return times (ranging from 1 to
10 min) for receiving results from comparative modeling

Figure 2. The superimposed lowest RMSD structures for the 50 small globular test proteins used for the validation of Bhageerath web server. The PDB ID’s are
shown underneath each structure. The predicted structure is shown in red color and the native in blue.
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servers, the expected prediction time with Bhageerath web
server for two helix systems is 4–5 min while for three
helix systems it is �2–3 h. However, this depends on the
length of the sequence, number of secondary structure ele-
ments and the number of structures accepted after the bio-
physical filters for processing the energetics of each trial
structure at the atomic level. It is currently able to process
�4–5 normally sized jobs per day on 32 processors.

The current version of the web server elicits secondary
structure information from the user. For new sequences
where secondary structure information is not available, web
based secondary structure prediction tools can be employed.
We have characterized the results obtained from five different
freely available secondary structure prediction servers (43–47)
available on the web for the 50 test proteins. The pre-
dictions are provided in the supplementary information

Table 4.A comparison of protein tertiary structure prediction accuracy with ProtInfo web server and ROBETTA software available in the public domain for 50 test

proteins

Sl. No. PDB ID RMSD without end loops (Å) (Bhageerath) RMSD without end
loops (Å) (ProtInfo)a (30)

RMSD without end loops (Å) (ROBETTA)a (28)

1 1E0Q 4.5, 2.5, 3.0, 5.0, 3.4, 3.3, 3.2, 3.3, 5.9, 3.3 4.0, 4.1, 3.7, 3.9, 4.2 1.1b

2 1B03 10.3, 4.4, 5.9, 5.5, 6.7, 5.4, 4.5, 6.1, 6.9, 7.5 4.0, 4.7, 4.1, 4.5, 4.4 2.7, 3.0
3 1WQC 4.0, 4.5, 2.5, 3.8, 2.9, 5.1, 4.2, 5.7, 3.8, 4.7 2.1, 1.8, 1.8, 2.0, 2.1 2.3, 3.4
4 1RJU 6.1, 6.3, 6.6, 5.9, 6.6, 5.9, 6.6, 7.0, 6.7, 7.4 3.4, 4.9, 3.3, 4.8, 6.0 3.4, 4.0, 2.5, 3.2, 3.0, 3.6, 4.8, 2.9, 3.0, 3.1
5 1EDM 3.9, 3.5, 3.8, 4.0, 3.6, 5.2, 5.4, 4.1, 3.9, 4.7 3.4, 4.0, 3.7, 3.3, 3.1 0.4, 0.5, 0.4, 0.5, 0.6, 0.4, 0.7, 0.7, 1.1, 0.4
6 1AB1 4.8, 4.5, 4.3, 5.2, 4.2, 2.9, 4.5, 3.8, 5.8, 3.3 3.3, 5.1, 6.3, 3.6, 4.9 2.2, 2.8, 2.9, 2.4, 2.9, 2.7, 3.7, 3.5, 2.2, 3.3
7 1BX7 3.3, 4.0, 5.0, 3.2, 4.5, 3.8, 4.8, 3.1, 4.0, 3.5 2.6, 4.2, 3.7, 4.5, 2.1 0.9, 1.5, 1.0, 1.6, 1.5, 1.6, 1.4, 1.0, 2.0, 1.5
8 1B6Q 6.1, 8.4, 4.0, 4.4, 3.8, 10.1, 5.3, 9.7, 10.7, 3.1 10.2, 10.0, 10.0, 10.4, 10.5 10.0, 9.6, 8.5, 7.6, 12.0, 8.3, 8.2, 7.0, 10.2, 9.0
9 1ROP 5.3, 4.3, 9.2, 7.3, 7.5, 11.0, 14.2, 11.5, 8.7, 6.2 10.8, 11.5, 11.5, 10.1, 12.4 5.8, 10.3, 10.0, 11.7, 8.6, 7.0, 8.3, 7.7, 11.2, 13.6
10 1NKD 3.9, 16.2, 10.1, 7.0, 10.6, 3.8, 4.8, 4.9, 7.9, 14.7 13.5, 13.5, 13.3, 13.4, 11.7 8.9, 8.9, 10.6, 11.0, 12.6, 10.7, 12.2, 10.1, 11.0, 9.1
11 1RPO 9.9, 3.8, 4.0, 7.5, 14.4, 4.8, 6.0, 13.5, 3.8, 7.5 10.8, 10.4, 10.4, 10.9, 11.2 10.3, 8.7, 6.9, 6.0, 12.4, 7.7, 10.1, 7.2, 10.0, 7.7
12 1QR8 9.0, 11.1, 8.2, 7.1, 9.7, 14.0, 8.1, 10.9, 5.4, 4.4 10.1, 9.5, 10.0, 10.4, 12.2 11.3, 9.3, 9.0, 7.6, 9.5, 12.2, 10.5, 7.1, 11.3, 8.5
13 1FME 4.9, 5.0, 4.8, 6.5, 3.7, 4.5, 4.2, 6.2, 4.3, 4.1 2.2, 2.3, 2.5, 2.7, 1.6 3.8, 2.8, 3.3, 4.5, 3.6, 3.1, 2.7, 3.9, 4.4, 3.7
14 1ACW 5.5, 7.0, 5.3, 6.0, 7.4, 5.7, 7.0, 5.1, 7.2, 5.6 5.8, 5.8, 6.0, 6.2, 7.1 1.3, 1.7
15 1DFN 5.0, 5.9, 6.5, 5.8, 6.8, 6.0, 7.1, 6.1, 6.5, 7.4 5.6, 6.8, 6.4, 6.6, 6.4 1.7, 5.3, 6.0, 5.5, 4.0, 6.3, 5.2, 6.5, 5.2, 6.6
16 1Q2K 7.4, 7.4, 7.2, 4.8, 5.8, 6.5, 5.7, 6.2, 4.2, 7.3 5.9, 6.0, 5.8, 6.4, 9.1 1.7, 3.0, 3.3, 1.6, 4.7
17 1SCY 6.1, 4.8, 6.6, 7.2, 3.1, 5.0, 6.5, 6.9, 7.2, 5.6 5.5, 5.6, 6.5, 6.4, 6.2 2.2, 2.7, 3.3
18 1XRX 5.6, 8.8, 7.6, 7.7, 9.6, 8.4, 9.0, 6.2, 8.4, 8.2 8.6, 8.8, 7.8, 8.8, 4.0 5.2, 9.1, 7.1, 6.2, 4.4, 9.4, 6.6, 4.5, 5.4, 8.2
19 1ROO 3.9, 3.4, 3.3, 3.8, 2.8, 4.1, 3.5, 3.2, 3.2, 3.3 2.8, 2.7, 2.7, 3.0, 2.7 1.8, 2.1, 1.9, 2.9, 2.5, 1.2, 2.5, 1.9, 2.8, 2.2
20 1YRF 5.9, 5.7, 5.7, 4.8, 4.9, 5.0, 4.9, 5.0, 6.2, 5.8 4.3, 4.1, 3.3, 3.3, 4.3 1.7, 3.1, 4.3
21 1YRI 5.9, 5.5, 4.6, 6.0, 5.5, 3.8, 5.5, 5.4, 5.5, 6.1 4.2, 4.0, 3.2, 3.2, 4.2 1.7, 3.9, 2.8
22 1VII 5.5, 3.7, 6.6, 5.9, 6.1, 5.7, 5.6, 6.0, 6.3, 5.7 4.4, 4.7, 4.5, 4.3, 3.7 2.4, 3.3, 1.8, 5.6, 4.3, 3.0, 3.2, 3.7, 4.8, 1.9
23 1BGK 5.8, 5.9, 4.1, 6.1, 5.8, 5.5, 5.5, 4.9, 5.2, 6.1 6.2, 6.0, 6.4, 6.4, 6.2 6.5, 4.1, 4.6, 2.5, 3.8, 5.9, 3.5, 3.3, 3.5, 6.1
24 1BHI 7.9, 5.3, 6.7, 7.2, 5.4, 8.9, 6.3, 6.6, 6.2, 7.1 3.7, 3.8, 4.5, 4.5, 5.0 2.4, 2.4, 1.7, 1.1, 2.8, 1.7, 2.6, 2.2, 2.3, 1.9
25 1OVX 4.0, 6.4, 6.3, 4.3, 6.1, 5.4, 5.3, 5.9, 7.7, 6.1 4.6, 4.9, 4.4, 5.6, 5.2 3.2, 1.5, 3.1, 2.6, 4.2, 4.4, 2.3, 2.6, 1.9, 5.0
26 1I6C 7.5, 5.1, 5.4, 6.2, 5.4, 6.2, 8.0, 6.2, 6.7, 7.6 5.6, 5.7, 5.6, 7.3, 6.9 3.0, 3.0, 2.2, 3.2, 2.1
27 2ERL 6.7, 8.6, 7.1, 8.4, 7.2, 3.2, 4.1, 6.2, 6.8, 8.1 7.0, 7.4, 7.1, 7.2, 8.3 1.3, 7.1
28 1RES 6.1, 4.2, 5.2, 7.7, 4.8, 4.8, 4.3, 7.0, 5.6, 5.5 7.6, 7.1, 7.0, 7.3, 5.1 3.5, 3.0, 2.8, 4.3, 4.2, 2.3, 2.0
29 2CPG 10.1, 5.3, 10.0, 8.5, 9.4, 10.6, 7.8, 9.4, 7.4, 7.5 4.2, 4.5, 5.3, 5.1, 11.0 8.0, 4.3, 8.5, 8.4, 6.5, 10.0, 4.8, 8.6, 5.5, 7.6
30 1DV0 7.7, 7.1, 8.0, 5.1, 8.3, 6.0, 7.8, 8.7, 8.4, 8.5 3.2, 4.4, 4.0, 2.8, 6.2 1.6, 1.5, 1.6, 2.0, 1.5, 4.5, 2.4, 2.0, 2.3, 4.2
31 1IRQ 6.8, 6.9, 6.4, 6.7, 10.2, 8.4, 9.8, 9.0, 5.3, 8.2 8.2, 8.9, 9.1, 9.0, 8.5 6.1, 4.3, 6.0, 5.0, 6.6, 6.0, 7.4, 5.2, 6.4, 7.5
32 1GUU 5.5, 5.3, 7.7, 4.6, 5.0, 4.6, 5.1, 5.7, 8.9, 9.1 10.1, 10.1, 9.8, 9.3, 10.1 2.9, 4.2, 2.9, 7.0, 3.2, 3.7, 2.4, 6.5, 5.6
33 1GV5 4.9, 4.1, 4.8, 4.8, 9.0, 9.4, 4.6, 9.2, 9.3, 8.9 9.4, 9.1, 9.5, 8.9, 3.3 8.5, 3.7, 9.1, 4.5, 4.7, 5.3, 4.2, 9.1, 3.1, 3.5
34 1GVD 5.7, 6.4, 8.0, 5.1, 6.0, 4.9, 4.9, 6.9, 4.9, 5.5 9.4, 9.4, 8.8, 9.1, 3.9 8.5, 3.5, 2.7, 3.0, 4.7, 4.4, 4.3, 2.3, 6.7, 8.9
35 1MBH 9.1, 9.2, 9.2, 4.0, 9.5, 8.4, 5.5, 5.5, 5.0, 5.3 4.3, 4.1, 5.7, 3.5, 9.5 8.3, 8.1, 4.2, 2.8, 8.9, 2.4, 7.9, 3.5, 7.7, 7.7
36 1GAB 4.9, 9.2, 6.2, 6.0, 6.8, 3.6, 8.5, 9.7, 8.8, 6.3 5.5, 5.6, 6.4, 5.4, 5.9 2.3, 8.8, 2.7, 7.9, 2.8, 8.1, 2.7, 2.3, 2.2, 7.7
37 1MOF 5.7, 3.7, 3.9, 4.2, 2.9, 4.0, 4.9, 4.3, 4.0, 4.9 12.7, 13.6, 12.5, 12.7, 13.5 13.7, 11.8, 11.2, 12.6, 12.6, 12.0, 12.2, 12.9, 12.8, 11.2
38 1ENH 6.3, 9.9, 4.6, 9.1, 9.7, 5.8, 5.7, 9.5, 6.2, 6.4 5.0, 4.6, 4.3, 8.7, 4.2 2.2, 1.7, 1.8, 5.1, 2.3, 4.6, 3.0, 5.2, 3.1, 3.2
39 1IDY 4.6, 4.9, 8.7, 4.0, 3.6, 3.5, 5.3, 3.7, 6.0, 9.3 8.7, 8.3, 8.3, 8.8, 4.6 2.7, 2.5, 3.0, 8.5, 2.1, 2.0, 2.1, 6.8, 2.6, 2.9
40 1PRV 6.9, 5.1, 6.9, 5.8, 5.0, 5.6, 5.6, 9.5, 4.9, 4.9 2.3, 2.6, 3.0, 3.2, 5.4 2.5, 2.1, 3.4, 2.9, 3.7, 4.9, 2.9, 2.4, 4.2, 6.8
41 1HDD 10.2, 6.3, 10.2, 5.5, 11.1, 6.2, 9.8, 4.8, 7.0, 6.7 4.4, 4.7, 5.8, 4.6, 9.7 2.3, 2.5, 2.2, 3.3, 3.6, 4.4, 3.4, 3.0, 4.2, 4.2
42 1BDC 7.7, 6.1, 6.6, 8.3, 4.8, 7.0, 7.5, 5.0, 6.7, 6.6 3.1, 3.0, 3.5, 2.8, 5.1 2.5, 2.5, 3.7, 3.2, 7.7, 4.0, 3.7, 7.9, 2.6, 7.8
43 1I5X 5.5, 5.9, 3.6, 5.4, 5.8, 2.6, 4.3, 6.0, 3.9, 5.1 11.4, 11.0, 11.0, 11.5, 9.2 10.8, 6.8, 8.6, 12.5, 4.5, 9.8, 7.1, 13.1, 9.0, 7.0
44 1I5Y 5.8, 5.1, 4.3, 4.3, 3.4, 4.9, 2.6, 3.7, 3.2, 4.0 9.8, 8.9, 8.4, 11.8, 9.1 9.6, 7.8, 10.2, 9.1, 8.2, 5.0, 12.5, 11.3, 8.4, 8.1
45 1KU3 6.6, 7.4, 6.4, 5.5, 7.2, 5.6, 6.3, 6.2, 5.6, 8.3 5.6, 5.4, 4.9, 5.4, 9.6 4.7, 4.4, 5.8, 4.5, 5.3, 5.3, 5.5, 6.2, 4.7, 2.9
46 1YIB 6.7, 5.3, 5.5, 5.8, 3.5, 4.8, 5.1, 4.5, 5.2, 4.6 17.5, 17.6, 18.3, 17.3, 17.4 17.8, 17.5, 17.1, 17.1, 17.3, 17.5, 18.5, 16.3
47 1DF5 3.4, 5.3, 6.0, 6.1, 7.0, 3.8, 3.4, 3.1, 8.1, 3.4 9.3, 10.3, 8.7, 9.3, 11.7 9.9, 8.2, 5.7, 5.6, 9.9, 8.5, 8.6, 11.1, 6.3, 7.0
48 1AHO 7.8, 7.6, 9.1, 8.7, 6.6, 6.0, 7.2, 7.7, 9.2, 7.7 8.1, 6.6, 4.1, 5.2, 6.0 0.6, 1.1, 0.6, 1.2, 1.0, 0.4, 0.8, 1.4, 1.2, 0.8
49 1QR9 4.3, 3.8, 4.9, 5.1, 10.9, 6.0, 4.0, 4.0, 4.2, 4.6 11.0, 11.1, 9.6, 11.2, 12.9 6.3, 8.5, 4.3, 9.9, 8.6, 6.5, 8.7, 11.7, 12.1, 10.7
50 1AIL 10.8, 6.6, 4.4, 6.4, 7.2, 8.9, 4.2, 8.5, 6.0, 4.2 9.0, 8.9, 8.4, 7.6, 10.3 3.2, 4.4, 4.5, 5.3, 7.2, 5.4, 6.4

aThe secondary structure information was utilized from the native structure along with the sequence information for both Bhageerath and ROBETTA (Rosetta++
software suite was obtained from UW TechTransfer Digital Ventures). We have generated 10000 decoys starting from sequence and secondary structure informa-
tion. The top 2000 scoring decoys were selected and top 10 cluster centers were extracted. The ProtInfo (http://protinfo.compbio.washington.edu) predictions were
obtained from the sequence information alone.
bFor the system 1e0q it took �12 days on a dedicated processor to generate 1000 decoys.
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(Supplementary Table S9). We envisage the introduction of a
secondary structure predictor in module one shortly. For larger
systems, i.e. those containing more than 100 amino acid resi-
dues and those with more than three secondary structural ele-
ments, we conceive the introduction of loop filters to control
the combinatorial explosion in the number of trial structures.
We have utilized two biophysical filters presently in module
three for trial structure selection and plan to utilize a few
more such as hydrophobicity and packing fraction at later
stages. Also one could profitably employ constraints on
strands for sheet formation, constraints on metal ions to cluster
residues and disulphide bridges as filters for reducing the
number of trial structures. The all atom empirical energy
function utilized in module six was tested previously and
was seen to separate native from the decoy structures in
67 of the 69 protein sequences from among 61 640
decoys studied (35). The scoring function calculates the
non-bonded energy of each trial structure as a sum of the elec-
trostatics, van der Waals and hydrophobicity. There is scope
for improvement in the scoring function particularly in
describing the hydrophobicity component. Work on the
above mentioned lines as also on a Flexible Monte Carlo simu-
lation strategy to bring down the RMSD < 3 s of the native is
in progress.

The individual modules of Bhageerath are web enabled for
free access. These include the four biophysical filters (persis-
tence length, radius of gyration, hydrophobicity ratio and
packing fraction), a protein structure optimizer, an all-atom
empirical energy based scoring function and ProRegIn utility.
These are listed in Table 5 along with their corresponding
URL’s.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids
Res., 25, 3389–3402.

42. Zemla,A. (2003) LGA - a method for finding 3D similarities in protein
structures. Nucleic Acids Res., 31, 3370–3374.

43. Bryson,K., McGuffin,L.J., Marsden,R.L., Ward,J.J., Sodhi,J.S. and
Jones,D.T. (2005) Protein structure prediction servers at
University College London. Nucleic Acids Res., 33,
W36–W38.

44. Rost,B., Yachdav,G. and Liu,J. (2003) The PredictProtein server.
Nucleic Acids Res., 32, W321–W326.

45. Cuff,J.A., Clamp,M.E., Siddiqui,A.S., Finlay,M. and Barton,G.J.
(1998) Jpred: a consensus secondary structure prediction server.
Bioinformatics, 14, 892–893.

46. Sen,T.Z., Jernigan,R.L., Garnier,J. and Kloczkowski,A. (2005) GOR V
server for protein secondary structure prediction. Bioinformatics, 21,
2787–2788.

47. Frishman,D. and Argos,P. (1996) Incorporation of non-local
interactions in protein secondary structure prediction from the amino
acid sequence. Protein Eng., 9, 133–142.

6204 Nucleic Acids Research, 2006, Vol. 34, No. 21


