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1  | INTRODUC TION

The interdisciplinary field of geroscience is aimed at understand‐
ing the relationship between the biology of aging and aging‐related 
disorders. The central tenant, the “geroscience hypothesis,” is both 
simple and profound: targeting aging will delay the emergence, and 
diminish the severity, of many chronic diseases because the major 
underlying risk factor for these diseases is aging.1

The aging process is complex, resulting from the integration of 
numerous physiological processes—or maybe more precisely, patho‐
physiological underpinnings.2 Viewed from a pathophysiological 
framework, aging can be considered a pleiotropic and treatable 
disease.3,4 In the context of geroscience, a pleiotropic approach 
is thus essential to treating aging‐related disorders and improving 
the health span to match the ever‐increasing life expectancy. As a 
potential therapeutic, mesenchymal stem cells (MSCs) represent 
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Abstract
Extraordinary advances in medicine and public health have contributed to increas‐
ing life expectancy worldwide. However, health span—“healthy aging”—has paradoxi‐
cally lagged to parallel this increase. Consequently, aging‐associated illnesses, such as 
Alzheimer's disease and aging frailty, are having a growing impact on patients, their 
families, and entire health‐care systems. Typically, such disorders have been treated 
as isolated disease entities. However, the inextricable links between aging‐associated 
disorders and the aging process itself have become increasingly recognized, lead‐
ing to formation of the field of geroscience. The geroscience concept is that treat‐
ing the aging process itself should lead to treatment and prevention of aging‐related 
disorders. However, the aging process is complex, dictated by highly interrelated 
pleiotropic processes. As such, therapeutics with pleiotropic mechanisms of action 
(either alone, or as part of combinatorial strategies) will be required for preventing 
and treating both aging and related disorders. Mesenchymal stem cells (MSCs) have 
multiple mechanisms of action that make these highly promising geroscience thera‐
peutic candidates. These cells have a high safety profile for clinical use, are amenable 
to allogeneic use since tissue‐type matching is not required, and can have sustained 
activity after transplantation. Herein, we review preclinical and clinical data support‐
ing the utility of allogeneic MSCs as a geroscience therapeutic candidate.
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important candidates for meeting many of the requisites as a pleio‐
tropic intervention (Table 1).

The geroscience potential of MSCs resides in their intrinsic proper‐
ties.5‐15 MSCs have powerful anti‐inflammatory properties and home 
to sites of injury and inflammation, and are thus ideal candidates for 
treating aging‐related inflammation (also referred to as “inflammag‐
ing”16). MSCs: secrete numerous bioactive molecules that stimulate 
endogenous stem cell recruitment, proliferation, and differentiation; 
inhibit apoptosis and fibrosis; can, to an extent, differentiate in vivo to 
contribute to repair and regeneration; have the potential to improve 
immune function; and promote neovascularization. MSCs can also reg‐
ulate host stem cell niches through paracrine activity and cell‐cell in‐
teractions to promote intrinsic repair and regenerative responses.17‐20

Mesenchymal stem cells possess important immunoprivileged/
immunoevasive properties, thereby rendering them safe for al‐
logenic use. This results from MSCs having undetectable levels of 
major histocompatibility complex (MHC) class II molecules, and 
low‐level MHC class I expression.19,21 Even xenogeneic grafts of 
human MSCs into immunocompetent rodent, dog, goat, baboon, and 
swine do not evoke anti‐allograft response.11 Thus, MSCs have the 

potential to be an “off‐the‐shelf” therapy that is immediately avail‐
able and accessible to broad patient populations.

Allogeneic MSCs have a demonstrated high clinical safety pro‐
file,19,20,22 and benefits from a single infusion of MSCs can persist 
for months.17,18,20,23‐25 Furthermore, multiple dosing is well‐toler‐
ated, and human MSCs can persist for over a month in immunocom‐
petent hosts, thereby helping to explain their sustained beneficial 
effects.17,18,20,22‐26 MSCs have also been shown to not undergo 
malignant transformation after transplantation into patients.25 A 
comprehensive meta‐analysis of 36 clinical studies entailing 1024 
volunteers (either healthy or with a clinical condition) supports 
the concept that MSC treatment has an exceptionally high safety 
profile.20

Since MSCs can be used as an allogeneic treatment, they can 
be sourced from young healthy donors. Such sourced MSCs can 
provide significantly higher potency over similarly prepared autol‐
ogous MSCs.14,27‐30 This likely is due to the fact that autologous 
MSCs, being used in the context of treating aging, can be impaired 
by advanced age and/or patient comorbidity.31,32 Relative to young 
and middle‐aged adults, MSCs from elderly adults appear to have 
reduced regenerative potential, as indicated by diminished prolif‐
erative capacity, diminished differentiation potential, increased se‐
nescence, increased expression of DNA‐break repair genes, altered 
DNA‐methylation and gene‐expression patterns, impaired migra‐
tion, altered expression of microRNAs and cell‐surface markers, and 
diminished anti‐inflammatory activity.33‐41

2  | PRECLINIC AL E VIDENCE 
DEMONSTR ATING THE POTENTIAL OF 
ALLOGENEIC MSC S TO IMPROVE HE ALTH 
SPAN AND LIFE E XPEC TANCY

Preclinical studies support the efficacy of allogeneic MSCs as a 
geroscience‐directed therapeutic. In one of the earliest studies to 
examine this, mice aged 18‐24 months were transplanted with al‐
logeneic bone marrow stem cells (which contain a mixture of MSCs 
and other stem cell types).42 Those mice transplanted with stem cells 
from young donor mice (1‐2 months old) had a 16% increase in aver‐
age life expectancy, and a substantial decline in age‐related bone 
density deterioration. Such benefits were not imbued using MSCs 
sourced from old donors (from 20‐24 month‐old mice). A caveat to 
this study is that all animals underwent X‐irradiation (500 cGy) prior 
to transplantation of the stem cells, which would appear confound‐
ing in terms of relating the results to an understanding of treating 
the aging process. Nevertheless, the results are encouraging and 
provide rationale for further study.

In more direct experiments to evaluate the potential of alloge‐
neic MCSs for aging, transplantation of young normal mouse MSCs 
into premature‐aging‐model mice (Bmi‐1‐defiicient) were performed 
using a multi‐dosing paradigm.43 The transplanted MSCs promoted 
growth in the treated mice, which was not seen with vehicle control, 
and led to significant improvements in life span (>100% increase over 

TA B L E  1   Geroscience application of allogeneic MSCs

Pillars of aging3 Hallmarks of aging4
Potential ben‐
efits of MSCs

Inflammation — Inhibit pro‐in‐
flammatory 
pathways

Stimulate anti‐
inflammatory 
pathways

Stem cell and regen‐
eration impairment

Stem cell exhaustion Replenish ex‐
hausted MSCs

Promote intrinsic 
regenerative 
and repair 
responses

Reduce cellular 
senescence

Cellular senescence

Stress 
maladaptation

Altered intercellular 
communication

Potential to 
renormalize 
stress response

Epigenetics 
alterations

Epigenetics alterations Unknown

Macromolecular 
damage

Genomic instability Reduce DNA 
damage

Reduce oxidative 
stress

Telomere attrition

Metabolic 
dysfunction

Nutrient sensing 
dysregulation

Mitochondrial 
exchange

Reduce oxidative 
stress

Mitochondrial 
dysfunction

Proteostasis 
dysfunction

Proteostasis 
dysfunction

Potential to 
stimulate 
proteostatic 
responses

Abbreviation: MSCs, mesenchymal stem cells.
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untreated mice). This was accompanied by migration of the MSCs to 
multiple organs and differentiation into multiple cell types, and in‐
hibition of cellular senescence normally seen in the Bmi‐1‐defiicient 
mice. Moreover, bone osteogenesis was improved and bone adi‐
pogenesis reduced, with concomitant reduction in osteoporosis. 
Immune status also improved. Furthermore, oxidative stress and 
DNA damage in multiple organs were broadly reduced. Cumulatively, 
these results suggest the pleiotropic potential of allogeneic MSCs to 
treat aging and aging‐associated diseases.

In yet another study, 18‐month‐old mice were given single or 
multiple intravenous infusions (four infusions at 2‐week intervals) 
of human MSCs.44 The treated mice showed significant improve‐
ments in locomotion, and behavioral/cognitive performance im‐
proved as assessed via passive avoidance and the Morris water 
maze. Impressively, these improvements approached those of nor‐
mal young mice (8‐weeks old). Furthermore, treated mice showed 
improved hippocampal cell count.

Reproductive potential of old female mice could also be signifi‐
cantly improved after receiving regular transplants of MSCs derived 
from young mice.45 Impressively, offspring survival also improved. It 
is interesting to note that these results were more profound when 
MSCs derived from young female mice were used, compared to male 
donor mice. In another murine study, allogeneic transplant of MSCs re‐
versed aging‐associated dysregulation of the gastrointestinal immune 
system.15 In these studies, aged mice (>18 months old) that received 
transplanted MSCs showed improved levels of mucosal secretory IgA 
and plasma IgG antibody production that restored nearly to levels 
seen in young mice. These were accompanied by increased Th1‐ and 
Th2‐type cytokine responses by CD4+ T cells. Also, a Sprague‐Dawley 
rat that was treated every 2 weeks with human MSCs starting at 
6 months old was reported to have lived past 44 months old—a 22% 
increase over the life‐expectancy of 36 months.46

Together, these and other47,48 preclinical findings suggest the 
geroscience potential of allogeneic MSCs to positively improve mul‐
tiple aspects of aging.

3  | CLINIC AL E VALUATION OF 
ALLOGENEIC MSC S FOR AGING ‐REL ATED 
INDIC ATIONS

There are currently over 250 clinical trials for use of allogeneic MSCs re‐
ported on https ://clini caltr ials.gov (as of August 8, 2019). Given the pleio‐
tropic mechanisms of action of these cells, it is not surprising that the vast 
majority of these trials are for aging‐related conditions (eg, the metabolic 
syndrome, cardiac indications, osteoarthritis, autoimmune disorders, 
and type II diabetes). Three of these studies are for aging frailty (ac‐
cession numbers NCT02065245, NCT02982915, and NCT03169231), 
which can be considered an extreme form of unsuccessful aging.

Aging frailty is a biologically driven decline in function and re‐
serves across multiple physiologic systems that appears independent 
of the chronological aging process.49,50 The biological basis of aging 
frailty appears multifaceted and includes an aging‐related chronic 

systemic inflammatory state known as “inflammaging.”5,7,8,11‐13 This 
loss of physiological control over inflammation appears resultant 
from an imbalance between the levels of pro‐ and anti‐inflamma‐
tory cytokines, as well as diminished capacity to restore equilibrium 
once an inflammatory stimulus has subsided. The ultimate result is 
elevated serum levels of pro‐inflammatory cytokines and diminished 
serum levels of anti‐inflammatory cytokines (eg, tumor necrosis fac‐
tor [TNF]‐α and interleukin‐10, respectively).

Subjects with aging frailty are exceptionally compromised in 
their ability to cope with everyday or acute stressors. This leads to 
increased vulnerability to disease and injury (eg, increased adverse 
clinical outcomes, such as falls, fractures, infections, hospitaliza‐
tions, institutionalizations, and mortality).13,51 As a result of aging 
frailty, normally small insults (eg, minor infection, minor surgery, tol‐
erance for a new drug) result in dramatic and disproportionately se‐
vere adverse consequences, frequently leading to a spiral of decline. 
From a clinical standpoint, aging frailty is characterized by weakness, 
weight loss, slowness, and low activity, as well as chronic inflamma‐
tion as described above. A conservative estimate for the prevalence 
of aging frailty is 10% of those aged 65 years and older.52,53 And this 
prevalence will continue to increase with changing demographics to‐
wards a more elderly population. Given the important consequences, 
leading geriatric researchers, including Linda Fried, John Morley, 
Kenneth Rockwood, and Jeremy Walston, have recommended that 
everyone aged 70 years and older should be evaluated for frailty 
using the simple, validated frailty assessment tools available.54

The first‐in‐human clinical study using allogeneic MSCs as an inter‐
vention for aging frailty was recently completed, called the “CRATUS 
study” (“AllogeneiC Human Mesenchymal Stem Cells [hMSC] in Patients 
With Aging FRAilTy Via IntravenoUS Delivery”; NCT02065245).26,55,56 
CRATUS was a safety study consisting of two phases in which subjects 
with aging frailty were intravenously infused with either allogeneic 
MSCs or placebo. Phase 1 was an open‐label dose‐escalation study in 
which each subject was given a single dose of 20 million MSCs, 100 
million MSCs, or 200 million MSCs. The treatments were found to 
be safe and well‐tolerated at all dosages (eg, there were no reported 
adverse events or serious adverse events related to the cells, and no 
observed immunoreactions against the product as assessed by anti‐
human leukocyte antigen [anti‐HLA] antibody production). Despite the 
trial only being powered for safety, there were also statistically signif‐
icant improvements in several key measures of effect. These included 
decreased inflammatory status, such as a significant decrease in TNF‐α; 
and improved physical functioning, as assessed by the 6‐minute walk 
test and spirometry. These phase 1 measures were then prospectively 
tested in a small placebo‐controlled, randomized, double‐blinded phase 
2 trial. The cells were again found to be safe and led to similar signifi‐
cant improvements in key effect measures of aging frailty.

Combined, the phase 1/2 results of the CRATUS study can be sum‐
marized as follows: (a) allogeneic MSCs were safe and well‐tolerated 
when administered to aging frailty subjects; (b) allogeneic MSC treatment 
led to statistically significant improvements in key measures of aging 
frailty, including decreasing inflammation and improving physical perfor‐
mance; and (c) none of the evaluated safety or effect measures showed 

https://clinicaltrials.gov
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worsening. While not significant, there also appeared to be a trending 
decrease overall in incidents of serious adverse events with MSC treat‐
ment relative to placebo. Based on the promising results of CRATUS, a 
larger phase 2b study is now being conducted (NCT03169231). This trial 
consists of five treatment arms (25 million, 50 million, 100 million, or 
200 million allogeneic MSCs, or placebo), is powered for effect based on 
the 6‐minute walk test, and is currently enrolling. A second related study 
to evaluate the potential of allogeneic MSCs to improve immune status 
in subjects with aging frailty is also being conducted (NCT02982915).

4  | CONCLUSION

Worldwide demographics continue to shift towards populations 
with increased life expectancy. Consequently, the importance of 
achieving a health span that parallels those changes has become 
paramount. A geroscience approach offers promise towards achiev‐
ing these goals, by treating the aging process itself. Given the com‐
plex and multifactorial nature of the biology aging, a multimodal 
approach is required. As presented herein, there is strong evidence 
suggesting the high potential of allogeneic MSCs as a geroscience 
therapeutic due to their pleiotropic mechanisms of action. Animal 
models have shown that allogeneic MSCs can successfully treat 
many aspects of the aging process, and lead to significant improve‐
ments in life expectancy with accompanying increases in health 
span. Clinical evaluation from early stage trials supports the prom‐
ise of allogeneic MSCs to successfully treat aging frailty. Ultimately, 
this regenerative medicine approach could be extended to examine 
whether MSC can be used to prevent aging frailty and for treating 
aging in general. Given the high safety profile of allogeneic MSCs, 
these studies would appear to be the imminent next steps.
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