
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Shape based indexing for faster search of RNA family databases
Stefan Janssen, Jens Reeder and Robert Giegerich*

Address: Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany

Email: Stefan Janssen - stefan.janssen@uni-bielefeld.de; Jens Reeder - jreeder@techfak.uni-bielefeld.de; Robert Giegerich* - robert@techfak.uni-
bielefeld.de

* Corresponding author

Abstract
Background: Most non-coding RNA families exert their function by means of a conserved,
common secondary structure. The Rfam data base contains more than five hundred structurally
annotated RNA families. Unfortunately, searching for new family members using covariance models
(CMs) is very time consuming. Filtering approaches that use the sequence conservation to reduce
the number of CM searches, are fast, but it is unknown to which sacrifice.

Results: We present a new filtering approach, which exploits the family specific secondary
structure and significantly reduces the number of CM searches. The filter eliminates approximately
85% of the queries and discards only 2.6% true positives when evaluating Rfam against itself. First
results also capture previously undetected non-coding RNAs in a recent human RNAz screen.

Conclusion: The RNA shape index filter (RNAsifter) is based on the following rationale: An RNA
family is characterised by structure, much more succinctly than by sequence content. Structures of
individual family members, which naturally have different length and sequence composition, may
exhibit structural variation in detail, but overall, they have a common shape in a more abstract
sense. Given a fixed release of the Rfam data base, we can compute these abstract shapes for all
families. This is called a shape index. If a query sequence belongs to a certain family, it must be able
to fold into the family shape with reasonable free energy. Therefore, rather than matching the
query against all families in the data base, we can first (and quickly) compute its feasible shape(s),
and use the shape index to access only those families where a good match is possible due to a
common shape with the query.

Background
ncRNA
Computational screens [1-3] predict thousands of poten-
tially conserved secondary structures in the human
genome. Similar screens in Yeast and Nematodes [4] also
produced thousands of potential non-coding RNAs
(ncRNAs). Some were already identified by sequence
comparison as members of the known RNA families, but
the meaning of the majority remains unclear. With func-

tional RNA, structure is often more important than pri-
mary sequence content. Thus, a BLAST screen against RNA
sequence databases is not enough – the structure needs to
be taken into account when searching for known relatives
of a query RNA.

Rfam and its usage
The Rfam database [5] is a constantly growing data source
for ncRNAs. The current release (Rfam 8.0, February 2007.

Published: 29 February 2008

BMC Bioinformatics 2008, 9:131 doi:10.1186/1471-2105-9-131

Received: 30 October 2007
Accepted: 29 February 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/131

© 2008 Janssen et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/131
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18312625
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
During the submission process a new version of Rfam
(8.1, 607 families) appeared.) contains 273 989 anno-
tated sequences grouped in 574 families. An Rfam family
contains two secondary structure annotated, multiple
alignments, a so called seed alignment and a larger full
alignment. A consensus structure is also provided (anno-
tated as SS_cons), with no guarantee that family members
actually fold into this consensus. The seed alignment usu-
ally is hand-curated and contains only validated
sequences from the literature and other databases. From
the seed alignment, a probabilistic model is learned,
which is then used to annotate new members of this fam-
ily. All members with a good CM (covariance model)
score build the full alignment.

Researchers today use the information stored in Rfam rou-
tinely to annotate newly sequenced bacterial genomes,
and with caution also for more complex eukaryotic
genomes. The major obstacle researchers encounter
hereby is the high computational complexity, which
makes the annotation process very time consuming or
even impossible. Filtering techniques are therefore neces-
sary to speed up the analysis. In the next sections we will
shortly review the probabilistic models used for searching
and two sequence based filtering techniques.

Searching with covariance models
Covariance models (CMs) [6] are probabilistic models,
incorporating family specific structural information,
much like profile hidden Markov models (HMM) in (lin-
ear) sequence analysis do. The main advantage of a CM
over a HMM is, that it can model the long range interac-
tions we see with RNA base pairing.

CMs basically are profile stochastic context free grammars
(SCFG). Each base pair and each unpaired residue is rep-
resented by one state. States are arranged in a tree-like
structure that mirrors the tree-like consensus structure of
an RNA family. Additional states model insertions and
deletions of bases, differing from the consensus. Transi-
tions from one state to another in a CM are modeled by
production rules, each having certain transition and emis-
sion probabilities, learned from a multiple structural
alignment. Given a CM and a query sequence, the algo-
rithmic problem is to find the path through the CM that
emits the sequence with the highest probability. This can
be done efficiently using dynamic programming with a
CYK-like parsing algorithm in O(LN3), where L is the tar-
get sequence length and N the window size. The programs
to build and search with CMs are bundled in the software
package Infernal.

Despite some recent improvements [7], many Rfam fami-
lies still require more than an hour CPU time per Mb.
Consequently, a large eukaryotic genome cannot be anno-

tated in total within reasonable time. The search proce-
dure has to be restricted to the most promising regions.
This is where the need for efficient filters arises.

Filtering
Basic concepts of filtering
Usually, filters strive to rule out as much of the input data
as possible, without discarding too many positive cases.
Of course, these are two competing goals and in practice a
trade-off has to be made. We define the ratio of the input
data that passes the filter and the total input data as the fil-
tration ratio. A good filter has a low filtration ratio, a use-
less one a ratio of 1. The sensitivity is defined as the ratio
of positives passing the filter and all positives. A special
case are rigorous filters, which have a perfect sensitivity.
They never filter out a true positive.

With most non-rigorous filters, we can easily change sen-
sitivity versus filtration ratio, i.e. accuracy versus speed.
Plotting these two values, yields a ROC-like curve (ROC =
receiver operating characteristic, a graphical plot of the
sensitivity vs. (1 – specificity), see Figure 1), which allows
for an easy comparison of different filters over a wide
range of parameters.

BLAST-filter
The curators of Rfam provide a simple and fast BLAST
based filtering heuristic [8]: All BLAST hits with a P-value
<10 to any member of the seed alignments are extracted
and a family specific window size is added to both ends of
the hit. Only the much smaller subsequences are then
analyzed with an expensive CM search. Despite its sim-
plicity, the filter has been used to add sequences to Rfam.
For each new Rfam release, a portion of the EMBL nucle-
otide database is scanned this way. The resulting CM hits,
together with the seed members, then constitute the full
alignment.

The more diverse in sequence the seed alignment is, the
more likely distantly related family members will be rec-
ognized. Also, with each new family member the filter
becomes more sensitive, yet less specific. However by con-
struction, an RNA perfectly in agreement with the consen-
sus structure but very dissimilar in sequence will be
discarded. At the moment, it is unclear how many homo-
logues are hidden in the databases, overlooked by the
BLAST filter.

HMM-filter
Recently, another filtering approach was introduced by
Weinberg and Ruzzo. They suggest profile HMMs, auto-
matically built from the CM, as a prefilter to the CM
search. In [9], the authors demonstrate how to convert a
CM into a rigorous HMM filter. First, the CM has to be lin-
earized. For a base pair state s in the CM, emitting col-
Page 2 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
umns i and j in the multiple alignment, two states in the
HMM are introduced, namely at position i and j. Now,
assume the CM emits only C-G and G-C base pairs in state
s, then the HMM would emit a C or G at position i and
another C or G at position j. Of course the base pair con-
dition cannot be modeled this way, but nevertheless the
sequence information is still available. Second, the scores
of the HMM are cleverly chosen, such that the HMM
Viterbi score is an upper bound for the CM score. Thus any
subsequence scoring below a certain threshold can be
safely discarded. For many Rfam families the filtration
ratio is <0.01, thus making the HMM scan itself the run
time determining step. The HMM searches scan the data-
base approximately 200 times faster than the original CM
searches.

However, for some families the rigorousness requirement
prevents a significant speed up of the resulting HMM over
the CM. Also the filtering efficiency may suffer from the
attempt to capture even the most excentric family mem-
ber. A way out of this dilemma are heuristic filters (called
Maximum-Likelihood (ML) heuristics in [10]), which sac-
rifice rigorousness for speed. The ROC-like curves in [10]
and the pink data point in the lower right of Figure 1 give
an impression of this fact. The current Infernal release 0.81
provides a variant of the ML-heuristic.

A new approach: shape based filtering
Our idea of RNA shape index filtering (RNAsifter) is based
on the following rationale: An RNA family is characterised
by structure, much more succinctly than by sequence con-

Evaluation for the different shape indicesFigure 1
Evaluation for the different shape indices. The app. 10,000 sequences of the testing set are searched against Rfam with all
5 mentioned types of shape indices, that are namely: 1-SS_cons-, 1-consensus-, 1-hybrid-, 1-union-, and k-best-shape-index.
Additionally the figure contains results for a 1-RNAalifold-shape-index (RNAalifold is used to construct a consensus structure
for each family that is later transformed to a shape), a k-RNAlishapes-shape-index (the same as RNAalifold but with suboptimal
structures of different shape), and the results from a complete run with the HMM filter (pink triangle in the lower right cor-
ner). 175 different parameter sets, see subsection Testing in the Evaluation, are used for the k-best-shape-index. The blue col-
oured data point (kfamily = 3, kquery = 5, ε = 0.4) displays our recommended parameter settings as a practical trade-off between
filtration ratio and sensitivity. kfamily for the k-RNAlishapes-shape-index is handled as before, but the energy-index is switched
off by a gigantic value for ε. The other five shape-indices use only one shape per family or per family member, so their kfamily is
always set to 1. Their energy-index is switched off, too.

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.40 0.50 0.60 0.70 0.80 0.90 1.00

k-best-shape-index

1-SS_cons-shape-index
1-consensus-shape-index

1-hybrid-shape-index

1-union-shape-index
1-RNAalifold-shape-index

cmsearch --hmmfilter

k-RNAlishapes-shape-index
Page 3 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
tent. Structures of individual family members, which nat-
urally have different length and sequence composition,
may exhibit structural variation in detail, but overall, they
have a common shape in a more abstract sense. Given a
fixed release of the database, we can compute these
abstract shapes for all families. This is called a shape
index.

If a query sequence belongs to a certain family, it must be
able to fold into the family shape with reasonable free
energy. Therefore, rather than matching the query against
all families in the data base, we can first (and quickly)
compute its feasible shape(s), and use the shape index to
access only the families where a match is possible due to
a common shape with the query.

In an ideal world, this results in a rigorous filtering algo-
rithm (rather than a heuristics): It reduces the number of
searches (and therefore computation time), while no
potential match is missed. In reality, the outcome
depends on many details – the structural homogeneity of
families, the type of shapes we compute, and so forth.
Moreover, the general idea gives ample room for alterna-
tive implementations. We will explore some of these in
the sequel, and end up with a quite effective (although not
perfect) parameter set that finds 97.4% of all hits perform-
ing only 15.0% of the queries.

A review of abstract shapes of RNA
Abstract shapes of RNA were introduced in [11]. We give
a short review, avoiding a fully formal treatment. When
we speak about functional RNA classes, we do not refer to
concrete structures – we employ abstraction. A tRNA has a
cloverleaf structure, a microRNA precursor is a lengthy
hairpin, oxyS RNA has three adjacent hairpins. Obviously,
the most important structural characteristic is the specific
arrangement of RNA helices, governed by the two princi-
ples of adjacency and embedding. The cloverleaf, for exam-
ple, is a helix which embeds three helices adjacent to each
other. Sometimes, we want to be less abstract. The iron
responsive element, for example, is a small hairpin with a
bulged-out cytosin that is essential. The technique of
abstract shape analysis [11] formalises the concept of
shapes and teaches RNA folding programs to compute
with these shapes. This is done in a mathematically pre-
cise sense, with no heuristics involved. The program
RNAshapes computes the k ≥ 1 near-optimal structures
which have different shapes, thus giving a concise over-
view over a molecule's structural inclinations. These struc-
tures are called shape representatives, shrep for short, as
each is an optimal structure with respect to its shape.

Probabilistic shape analysis [12] computes Boltzmann
statistics shape-wise, giving us the accumulated probabil-
ity of all ways in which the given sequence can fold into

(say) a cloverleaf shape. Being a cloverleaf shape with
(say) 80% probability is much more handsome informa-
tion than traditional MFE folding, as this is independent
of sequence length and composition, and hence compara-
ble between different sequences. Formally, a shape
abstraction is a mapping from concrete RNA structures to
abstract shapes. Concrete structures are modeled as trees,
as frequently done in the RNA bioinformatics. This is nat-
ural, as trees incorporate the two principles of adjacency
(among sibling nodes) and embedding (from a parent
node to its children). Abstract shapes, then, are also trees,
but containing less detail. Any mapping from structures to
shapes that is a tree homomorphism, i.e. preserves adjacency
and embedding, can be used as shape abstraction. It is our
decision which structural feature is to be retained and
what is to be abstracted from.

In [11], five abstraction functions π ∈ {π1, ... π5} (that
produce shapes of levels 1 through 5) were introduced.
They all abstract from the length of helices and unpaired
regions, but are more or less forgetful about the presence
of structural features like bulges and internal loops.

These five abstractions are the ones also used within the
present approach. Here we skip their formal definitions,
and rather explain them by example. In doing so, we use
a string representation of shapes akin to the dot-bracket
strings that commonly encode concrete structures. We use
square brackets to denote helices (or helix parts) and
underscores for unpaired regions. Their precise meaning,
however, depends on the shape level used.

Figure 2 shows an example structure and its equivalent
notation as dot-bracket string. Shape level 5 abstracts
from all helix interruptions (bulge and internal loops)
and ignores single stranded regions, such that the level-5-
shape reduces the structure to a single helical region,
bifurcating into two hairpins. With shape level 4, we
account also for helix interuptions by internal loops (but
not by bulges), and alternatively, level 3 records all helix
interruptions, resulting in shape [[[]] [[]]]. Level 2 extends
level 3, by also differentiating in between left and right
bulges and finally in level 1 all continuous single stranded
or helical regions are recorded explicitly.

Note that the level-5-shape [] comprises all structures with
level-3-shape [], [[]], [[[]]], and so on – this is because on
level 5, helix interruptions are not accounted for at all,
while on level 3, each interruption of a helix by a bulge or
internal loop implies an extra helix part recorded by an
extra pair of square brackets.

Shape levels 1, ..., 5 are designed to form a strict hierarchy:
If πi(x) = πi(y), then also πj(x) = πj(y) for j > i. (In fact, we
found an error in this respect in the original implementa-
Page 4 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
tion of π2 and π4, and corrected it in the course of this
study. The hierarchy property is not strictly necessary for
our filtering purpose here, but mathematically pleasing
and useful in other applications of abstract shape analy-
sis.)

Methods
Throughout this section, we use Rfam as "the" RNA family
database. Note, however, that our filtering technique
applies to any database that groups RNA sequences into
structurally related families.

Shape-based indexing framework
Shape-based indexing works as follows:

1. For each family f ∈ Rfam, we compute a family shape
spectrum fss(f).

2. {fss(f) | f ∈ Rfam} is converted into an index data struc-
ture IRfam such as a hash table or a suffix tree, with search
access time independent of the size of IRfam and hence of
Rfam size.

3. For a given query sequence x, we compute a query shape
spectrum qss(x).

4. We access the index IRfam to determine the match set
M(x) = {f | qss(x) � fss(f) ≠ ∅}.

5. If M(x) = = ∅, the query ends with a negative result,
without access to Rfam. Otherwise, we execute

cmsearchf(x) for each f ∈ M(x), which determines the out-
come of the query.

Index construction (steps 1 and 2) must only be per-
formed once for each release of the data base. The match-
ing against the index (step 4) requires an exact match of a
shape in qss(x) to a shape in some fss(f). This makes access
to the index so fast that its execution time is negligible
compared to a call to cmsearch. The shape spectra qss(x)
and fss(f) can be computed in many different ways, and
can be combined (almost) arbitrarily in indexing. We
describe several variants and finally report which combi-
nation of ideas has worked best after extensive evalua-
tions.

Alternative shapes of a sequence, as computed by
RNAshapes, are ranked according to the free energy of their
respective shreps. We denote by RNAshapes(k, π, x) the
computation of the k top-ranked shapes of x under the
shape abstraction function π, where π ∈ {π1, ... π5}. k = 0
means we compute all shapes for x. By π(s), we denote the
shape of structure s. RNAfold-C(a, x) [13] denotes the min-
imum free energy structure of x under the constraint that
the base pairs indicated in the annotation string a must be
formed.

Shape index construction
1-SS cons-shape-index: fss(f) = {π(SS_cons)}
The simplest way to get a shape abstraction for each Rfam
family is by translating the already given secondary struc-
ture consensus – that is the SS_cons row in the family

An example secondary structure and its five shape representationsFigure 2
An example secondary structure and its five shape representations.

CGUCUUAAACUCAUCACCGUGUGGAGCUGCGACCCUUCCCUAGAUUCGAAGACGAG

((((((...(((..(((...))))))...(((..((.....))..)))))))))..

Shape Type 5: [[][]]

Shape Type 4: [[][[]]]

Shape Type 3: [[[]][[]]]

Shape Type 2: [[[]][[]]]

Shape Type 1: [[[]] [[]]]

1

1

*

*

*

*

*

*

*

*

*

*

Page 5 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
alignment – with RNAshapes to one single shape.
RNAshapes is not able to deal with pseudoknots, so these
sparsely occurring structures must be resolved before by
unpairing crossed over basepairs.

1-consensus-shape-index: fss(f) = rankmin{�x∈f RNAshapes(0, π,
x)}
Evaluations revealed that the given SS_cons in Rfam often
is not a really consensus structure in terms of a commonly
shared shape. There are even a few families where not a
single member folds in the shape π(SS_cons)! This can be
caused by many reasons, e.g. inaccuracies in the thermo-
dynamic model, too inhomogeneous families, or misbuilt
families. Therefore, we construct consensus-shapes
directly from the family f. First we calculate all possible
shapes for each family member. Then we scan for shapes
common to all family members. If there are more than
one common shapes, they are ranked by the sum of their
individual ranks. The top-ranked common shape then
represents the family in the index. This resembles the
RNAcast approach to consensus structure prediction [14].
Using a trusted sequence alignment, this could also be
done with RNAalifold [15] or RNAlishapes [16].

1-hybrid-shape-index
When a family is large, sequences are long, heterogeneous
in structure, and shape abstraction level is low, the
number of shapes to be computed to find a common
shape may be impractical. In such a case, the 1-consensus-
shape-index construction resorts to 1-SS_cons-shape
indexing.

union-shape-index: fss(f) = {π(RNAfold_C(SS_cons, x)) | x ∈ f}
The first three approaches all use a single shape to repre-
sent a family. But often, a family is too diverged to be
characterized well by a single shape. Instead, it can be
described with one shape per sequence. We could simple
use the shape of the MFE folding. However, to make use
of the information in the family model, as captured by
SS_cons, we use RNAfold for a constrained folding of each
sequence, and compute the shapes from these folds. This
implies that all shapes agree on the helices required by
SS_cons, but may have additional helices in different
places. We still expect |fss(f)| < |f|.

k-best-shape-index: fss(f) = ∫x∈f RNAshapes(k, π, x)
Respecting the fact that a single shape may be too strict to
describe a whole family, we finally use the k top-ranked
shapes for each individual sequence in the family, this
time ignoring SS_cons. In a homogeneous family, the
sequences will mostly agree on these shapes. But other-
wise, this results in a manifold growth of the shape index
– which is not a problem, as index access is independent
of index size. In the end, this index turned out as the most
effective. Figure 3 visualizes the shape index construction

for just one of the 574 Rfam families, employing multi-
level shape abstraction as explained below.

in the hash based shape index, where they later serve for
the query look-ups. The index is a hierarchically arranged,
3-dimensional search structure – in descending search
order of shape-abstraction-level, shape-string and shrep-
energy. The example also displays a very characteristic
phenomenon: the weaker an abstraction is, the greater is
the variance of shapes and the smaller are the family-lists
that are associated with these shapes. The last fact is not
shown directly, but can be recognized by the increasing
energy-interval-size.

Query shape spectrum construction
The five methods for index shape spectrum construction
differ in the way they use family information, or effec-
tively treat each family individually. For the query shape
spectrum, we have only one sequence, and discuss only
two variants.

1-shape-spectrum: qss(x) = RNAshapes(1, π, x)
This naive spectrum represents the query simply by its
top-ranked shape, which by definition is the shape of its
minimum free energy folding.

k-shape-spectrum: qss(x) = RNAshapes(k, π, x)
We tend not to trust solely in the minimum free energy
folding of a sequence as its "true" structure. Accordingly,
we should not use its shape alone. Choosing k > 1 shapes
to represent the query results in a trade off between more
shapes for a higher chance to find the right family, but
potentially more fruitless calls to cmsearch.

Using multi-level abstraction
All the previous constructions of family and query shape
spectra can be used in combination, under the restriction
that both were made using the same shape abstraction
function. But which abstraction level should be used?
How does the level of abstraction influence index-based
search? On the lower abstraction levels (levels 1, 2),
shapes are most specific. Relatively few families are asso-
ciated with each shape. A shape match on this level often
leads directly to the "right" family. However, if there is no
match on the low abstraction level, the sequence may be
a diverged family member, and a match on a higher
abstraction level is still possible.

To take advantage of both, short runtime at low abstrac-
tion level and better chances to find diverged families with
a strong abstraction, we construct fss(f) and qss(x) for level
1 through level 5, and the search iterates ascendingly
through the five available abstraction levels. The hope is,
that on average, a match can be found in one of the lower
levels. Ascending through shape abstraction levels incurs
Page 6 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
practically no overhead – an unsuccessful CM search on
(say) level 2 means that we need not re-search this family
because of its hits to the index on a higher level.

Using folding energies
Members of sequence families often share a typical range
of folding energies. A query that folds in a common shape
with some family members, but with substantially differ-
ent energy, is unlikely to be a family member. Together
with the shapes, RNAshapes also delivers the energies of
the corresponding shreps. Hence, the shapes in the index
can be recorded together with their shrep energies, and the
matches in M(x) are restricted to those with a similar
energy. Figure 4 shows a very clear example. While all
three families share the same shape – a simple hairpin –
their energies form quite distinct energy ranges, independ-
ent of sequence length and GC-content. To this end, we
reduce the match set M(x) to those families f that share a
shape of their fss(x) and the qss(x) with the shreps free
energy tolerance between both shapes less than ε percent.

this normalized energy value. Several distinct peaks can be
seen, showing that the shrep energy does not only depend
on sequence length. Therefore, it provides an additional
attribute of a family that can be used in filtration.

Omitting "difficult" families
Our evaluation shows that there are a few families which
can hardly be found. Often (10 of 25 cases in Additional
file 1), these are families with pseudoknots. Shape
abstraction can, in principle, be extended to pseudoknots
and implemented in pseudoknot folding programs such
as pknotsRG [17,18]. However, this has not been done yet.
For the moment, it is not surprising that these families
perform badly. In a large scale project, some more runt-
ime can be saved by ignoring these families. Additional
file 1 lists the most difficult families, sorted by their
impact on the filter sensitivity.

Algorithm
The idea of shape-based indexing, as we have seen in the
previous section, opens up a four-dimensional search

Workflow of a shape index constructionFigure 3
Workflow of a shape index construction. The example demonstrates the process of index construction for the family
RF00432. For each of the five shape abstraction levels, an independent shape index has to be computed. For this purpose,
every single sequence of each Rfam family (currently 574 families in Rfam 8.0) has to be abstracted with kfamily shapes (kfamily = 2
for the example). This is done by RNAshapes. After the shapes were computed, they are stored in the hash based shape index,
where they later serve for the query look-ups. The index is a hierarchically arranged, 3-dimensional search structure – in
descending search order of shape-abstraction-level, shape-string and shrep-energy. The example also displays a very character-
istic phenomenon: the weaker an abstraction is, the greater is the variance of shapes and the smaller are the family-lists that
are associated with these shapes. The last fact is not shown directly, but can be recognized by the increasing energy-interval-
size.
Page 7 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
space: We may vary the construction of family shape spec-
tra, query shape spectra, shape abstraction level, and con-
sider different tolerances in the use of energies. There are
many trade-offs. For example, when the family is repre-
sented by several shapes per family member, chances
increase that describing the query with a single shape is
sufficient.

We have explored numerous points in this methodical
space, and for the routine application considered here –
matching a large number of predicted ncRNAs as queries
against Rfam – the choice of methods described in this
section has worked best.

Method of choice
The method of choice for our program RNAsifter is a com-
bination of the k-best-shape-index, together with the mul-
tilevel abstraction, use of the folding energies and a k-
shape-spectrum of the query:

where E (q) denotes the shrep energy of shape q.

This combination of methods is implemented by RNAs-
ifter [19], available as source code or for online submis-
sion. Figure 5 shows the iterative workflow through the 5
abstraction levels. 11 parameters remain to adjust to find
an acceptable trade-off between sensitivity and filtration

ratio, namely the number of shapes for the query

for all five shape-levels, five parameters for the numbers of

shapes for each family to build the shape index ,

and the allowed energy tolerance between query-shape

qss x RNAshapes k x

fss f RNAshapes

query() (, ,) { ,..., }

()

= ∀ ∈

=

p p p p1 5

((, ,) { ,..., }

() { | () () ,

k x

M x f qss x fss f q

family

x f

p p p p∈

= ≠ ∃ ∈
∈

1 5

0

∪
∩ qqss x d fss f E q E d(), () | () () | ,}∈ − < e

kquery
p

k family
p

Distribution of shrep energies, normalized to sequence length for three selected Rfam familiesFigure 4
Distribution of shrep energies, normalized to sequence length for three selected Rfam families. The MFE struc-
ture for all sequences from the three chosen families is the single hairpin shape. While their abstract shape is the same, they
differ in folding energy. To eliminate the influence of sequence length on the folding energy, it is divided by sequence length.
The x-axis represents this normalized energy value and the y-axis shows the amount of sequences that fold with this normal-
ized energy value. Several distinct peaks can be seen, showing that the shrep energy does not only depend on sequence length.
Therefore, it provides an additional attribute of a family that can be used in filtration.

 0

 2

 4

 6

 8

 10

 12

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

n
u

m
b

e
r

o
f

s
e

q
u

e
n

c
e

s

length normalized energies

GC = 0.57

GC = 0.40

GC = 0.55

common shape for all sequences: single hairpin = []

Coronavirus packaging signal (RF00182)

UnaL2 LINE 3' element (RF00436)

Hepatitis C virus stem-loop VII (RF00468)
Page 8 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
and the family-shape ε. It is optional to omit "difficult"
families due to the decision of the user. This is realized by
removing bad families from the set M (x) before applying
cmsearchf (x).

the corresponding level-1-shape index so the system goes
to the next higher level. A lookup for the second and third
level 2 query shape (blue coloured) results in the two can-
didate families RF00003 and RF00001. The exact but
expensive cmsearch is now applied to the candidates but it
turns out that they are not the right families. So the proc-
ess continues with level 3. This time all three shapes
match with the level 3 shape index and suggest six, two
and six candidate families. Two of the six candidates from
the upper shape have been checked already, so they can be
removed from the candidate list to save runtime. Again, a
cmsearch is performed for each of the remaining 13 candi-
dates. After the candidate RF00432 (bold blue coloured)

is identified as a true hit, the filter aborts the remaining
operations and reports the identified hit to the user. The
use of the shrep energies and the energy-indices is not
shown here, but one can imagine it as a second lookup
placed between the first query-shape look up and the
cmsearch in order to thin out the candidate list.

Results and Discussion
Leaving out the BLAST filtering, the existing search process
for a query sequence uses all available covariance models
from the Rfam database and compares them to the query
via the cmsearch program. The Rfam is an increasing set of
R covariance models, for Rfam 8.0 R is 574. So the runt-
ime for one query would be O(R * n4), in the worst case.
Our approach reduces R to rSifter, the number of models
that have to be considered for a cmsearch comparison.

A typical work flow of RNAsifterFigure 5
A typical work flow of RNAsifter. The filtering process is iterative. It starts with shape abstraction level 1 and ascends up
to level 5, if it is not terminated earlier by a successful cmsearch of some family. At first all kquery shapes in the current level are
computed for the query by RNAshapes. In the example, kquery is set to 3. Subsequently, each shape is used for a look-up in the
shape index. All three level 1 shapes are not contained in the corresponding level-1-shape index so the system goes to the next
higher level. A lookup for the second and third level 2 query shape (blue coloured) results in the two candidate families
RF00003 and RF00001. The exact but expensive cmsearch is now applied to the candidates but it turns out that they are not
the right families. So the process continues with level 3. This time all three shapes match with the level 3 shape index and sug-
gest six, two and six candidate families. Two of the six candidates from the upper shape have been checked already, so they can
be removed from the candidate list to save runtime. Again, a cmsearch is performed for each of the remaining 13 candidates.
After the candidate RF00432 (bold blue coloured) is identified as a true hit, the filter aborts the remaining operations and
reports the identified hit to the user. The use of the shrep energies and the energy-indices is not shown here, but one can
imagine it as a second lookup placed between the first query-shape look up and the cmsearch in order to thin out the candidate
list.

[[_[_[_[]]_[_[]_]_]_]_]_[]_

[[_[_[_[]]_[_[]_]_]_]_]_[]

[[_[_[_[]]_[_[]_]]_]_]_[]_

[_[_[[_[]][_[]_]]_]_][]

[[_[_[[_[]][_[]_]]_]_][]]

[_[]_][_[_[[_[]_][]]_]_]

[[[[[]][[]]]]][]

[[[[[[]][[]]]]][]]

[[]][[[[[]][]]]]
[][[[[]]]]

53,116 more shapes

[[[]][[[]]]]

[[[[]]]][[[]]]

[[[[[]][[]]]]][]

59,337 more shapes

[[[[[[]][[]]]]][]]

[[]][[[[[]][]]]]

[_[_[_[]_]_]_][_[_[]_]]

93,840 more shapes

[[_[_[[_[]][_[]_]]_]_][]]

[_[]_][_[_[[_[]_][]]_]_]

[[_[]]]_

112,489 more shapes

[[[_[_[]_]_]_]_]_

[[[_[[]_]_]_]]_

>
Q

u
er

y
:

h
g
1
7
_
ct

_
R

N
A

zs
et

1
9
0
_
s5

0
3
1

[]

12,156 more shapes

[[][[][]]]

[[][]][][]
Page 9 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
Construction of a testing set
Performance of a filtering system is governed by sensitiv-
ity and filtration ratio. To measure sensitivity, one needs a
set of queries with known family membership. We build
this set by dividing all Rfam full alignments into two dis-
joint sets. 60% sequences from each family are used for
constructing the shape index. From the remaining 40% of
the family-sequences we choose at most four sequences
for inclusion in the test set. This procedure yields 2030
test sequences in total, because some smaller families lack
sufficient members. This set is named "family".

The second value for filtering performance is filtration
ratio. In a whole genome screen, in most cases, a query
will not result in a match to Rfam. The filtering suggests
several possible families, which later have to be checked
by cmsearch. Queries that result in a true match may lead
to success after inspecting only a few suggested families,
but queries with no family membership could only be
rejected after checking each family that was recommended
by the filter. This is why for evaluating efficiency, non-
matching samples in the testing set are important. They
constitute the worst case in an application scenario.

The most obvious way of constructing non-matching
sequences is to generate them by random. Each nucleotide
occurs with a relative frequency of 1/4. The length of the
artificial sequences is uniformly distributed in the range
from the shortest to the longest sequence in the Rfam
database. 2000 random sequences build the
"random_uniform" testing set.

In order to achieve a biological more realistic scenario, 11
protein-coding genes, considered unlikely to form any
ncRNA, were selected from NCBI. Subsequently these
genes were verified to truly not contain any ncRNA struc-
tures via the Rfam sequence search. These genes serve as
source for further 2000 sequences, randomly cut out of
the original genes. Again, lengths are uniformly distrib-
uted relative to Rfam. This set is called "genes_uniform".
The chosen genes have the following accession-numbers:
gi|110225369, gi|85815826, gi|109148525,
gi|45219732, gi|79476965, gi|20804396, gi|40515,
gi|42568004, gi|23297153, gi|3005973 and
gi|46559395.

The energy-index depends on the folding energies and the
folding energies are related to the sequence lengths. The
previous sampling sets, namely "random_uniform" and
"genes_uniform", are based on uniformly distributed
sequence lengths in the Rfam database. But this is not true
for the database. Rfams longest sequence has approxi-
mately 850 bases, but the overwhelming majority has
around 50 to 150 nucleotides. The two further test sets
"genes_nonuniform" and "random_nonuniform" reflect

this imbalance, because their sequence lengths are distrib-
uted equally to Rfam. Each set is a composition of 2000
sequences. All test sets are provided on the RNAsifter web
site, the whole evaluation was done with the union of all
test sets (10030 sequences).

Testing
RNAsifter offers 11 parameters for choosing an acceptable
trade-off between sensitivity and filtration ratio:

• Five parameters for the numbers of shapes for the query

. One for each shape abstraction function π1, �, π5.

• Five parameters for the numbers of shapes for shape

index construction . One for each shape abstraction

function π1, �, π5.

• Percentage of tolerance between query- and shape index
energy ε.

We decided to freeze the number of shapes in each level
to the same value and to sample with the following energy
tolerances 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1. So kquery is the

number of shapes for a query in all five shape-levels. kfamily

is the same for shape index construction. This results in
5·5·7 = 175 different parameter settings. Each setting is
used for an RNAsifter invocation with the app. 10.000 test
sequences. The sensitivity (sen) is then calculated as the
ratio between true positive RNAsifter outcomes and the
overall number of positive test sequences, that is 2030:

.

Filtration ratio (eff) is the ratio between all candidate fam-
ilies suggested by the RNAsifter and the number of all
sequences multiplied with the number of families in

Rfam: . RNAalifold but with

suboptimal structures of different shape), and the results
from a complete run with the HMM filter (pink triangle in
the lower right corner). 175 different parameter sets, see
subsection Testing in the Evaluation, are used for the k-
best-shape-index. The blue coloured data point (kfamily = 3,

kquery = 5, ε = 0.4) displays our recommended parameter

settings as a practical trade-off between filtration ratio and
sensitivity.

kfamily for the k-RNAlishapes-shape-index is handled as
before, but the energy-index is switched off by a gigantic
value for ε. The other five shape-indices use only one

kquery
p

k family
p

sen TP= 2030

eff candidates
sequences families= ×

#

Page 10 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
shape per family or per family member, so their kfamily is
always set to 1. Their energy-index is switched off, too.

The results for all 175 parameter settings are depicted in
Figure 1. The relatively wide parameter space allows to
adjust RNAsifter for different applications. For a very accu-
rate search the given parameters could be set to very high
values, like our analysed maximum kfamily = 5, kquery = 5, ε
= 1.0 – this is the right uppermost data point in Figure 1.
This unbalanced setup results in a good sensitivity of
98.67%, but it must be bought by a poor filtration ratio of
only 27.58%. Vice versa, a fast runtime comes with a
lower sensitivity, e.g. the data point kfamily = 1, kquery = 5, ε
= 0.1 indicates a good filtration ratio of 5.99% and a low
sensitivity of 90.25%. Our recommendation (blue data
point in Figure 1) for a good trade-off between filtration
ratio (15.03%) and sensitivity (97.44%) is the parameter
setting kfamily = 3, kquery = 5 and ε = 0.4.

In the Filtering section we introduced two existing filter-
ing approaches. Table 1 compares their asymptotical runt-
ime with RNAsifter and the unfiltered procedure with
cmsearch. Figure 6 illustrates the differences of measured
runtimes for the four variants of retrieving the right fami-
lies. Once more, the app. 10,000 sequences of the testing
set are used for this analysis.

"BLAST-filter": the Rfam Perl script "rfam_scan.pl" from
the Rfam website is used. "RNAsifter" uses the k-best-
shape-index with the suggested parameter set. The consid-
ered sequences for this comparison is the whole testset.

Conclusion
We have introduced the idea of shape-index based filter-
ing for faster search in structural RNA databases. The
approach is based on the use of family shape spectra,
query shape spectra, and shape abstraction levels, each of
which can be computed in different ways. Central to all
combinations of these constituents is that the shape index
can be accessed with exact matching techniques, which
requires negligible computing time. Different parameter

settings have been explored systematically, with a filtra-
tion ratio ranging from 0.025 to 0.28, and sensitivity rang-
ing from 0.81 to 0.99. We recommend a particular setting
with filtration ratio 0.15 and sensitivity 0.974. Not all
possibilities have been explored yet. For example, one
could work with family-specific parameters kfamily when
constructing the index.

When (say) 15% of all family models must be searched,
the practical speed-up depends on which models these are.
miRNAs, for example, can be searched with CM models
much faster than (say) RNaseP. Therefore, we cannot sim-
ply derive a 40-fold runtime speedup from a filtration
ratio of 0.025. To provide a concrete example: The first
5003 ncRNA predictions from the RNAz screen [1] were
matched against Rfam, and RNAsifter reduced runtime
from 876.3 to 242.2 hours. Using the default parameters

in this experiment, the filtration ratio is , but runtime

only decreases to .

Two interesting observations can be drawn from the per-
formance curve in Figure 1. Consider the relative position
of the data points for (kfamily = 1, kquery = 5, ε = 0.8) and
(kfamily = 5, kquery = 1, ε = 0.8), where the former is better
both in terms of filtration ratio and of sensitivity. Hence,
it is more important to consider multiple structures in the
query than in the family. This has the plausible explana-
tion that the several members in a family normally do not
all fold into the same top-ranked shape, and this behav-
iour helps to find queries with similar behaviour. This
means that structural variation within the family, to a cer-
tain extent, is positive information.

The other interesting observation suggested by the curve is
that our method seems to hit the wall near 98% sensitiv-
ity. Assuming for a moment that shape-index based filter-
ing was a perfect method, a keen conclusion would be that
2% of Rfam sequences are misclassified. However, we
know that our filtering cannot be perfect when structures
are classified using pseudoknot features, which currently
cannot be handled by shape abstraction. A closer look at
the missed cases shows that these are mainly due to the
members of the "difficult" families. They include the fam-
ilies RF00177, RF00373, RF00009 (with and without
pseudoknots); a full list of 25 "difficult" families in the
present Rfam release is given in Additional file 1.

In a preliminary investigation of human ncRNA predic-
tions from the screen by Washietl et al. [1], applied to
35985 hypothetical ncRNAs of high RNAz score, our fil-
tering technique discovered 4 new Rfam hits. On the other
hand, it overlooked 43 hits found in the original study.
This can be traced back to cases where the candidate

1
6

1
4

Table 1: Asymptotic runtimes. Asymptotic runtimes for the
unfiltered cmsearch procedure and three filters, including our
Sifter approach. R is the number of families in the current Rfam
release. L is the target sequence length, N is the window size. |f|
is the number of sequences in all families. rp is the remaining set
of covariance models that have to be searched after the
application of the filtering program p, r ≤ R.

Program Asymptotic runtime

CM O(R·L·N3)
HMM O(R·L·N2 + rHMM·L·N3)
BLAST O(R·|f|·N + rBLAST·L·N3)
Sifter O(N3 + rSifter·L·N3)
Page 11 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
ncRNA was poorly embedded in the RNAz window. Nat-
urally, our structure based approach is more sensitive to
this than a filter that looks for a short stretch of sequence
similarity. Working with an adaptive window size is a cur-
rent research problem in RNA gene prediction. RNAsifter
will benefit from advances in this direction.

Comparing the different filtering techniques, the method
of choice depends on the scenario. If (say) a complete
genome is to be scanned, the HMM-based filtering [9,10]
provides a fast screening approach, where the faster
HMMs must be run for each family, but only a few CM
searches. Shape-index based filtering does not provide a
screening mode, and can only be applied when individual
ncRNA candidates have been predicted by (computa-
tional or experimental) methods. The two filters can also
be used in cooperation: The shape index can be used to
further restrict the number of CM searches that have to be

performed as the result of positive HMM filtering. Con-
versely, the HMM family model could be run prior to a
CM search triggered by a shape index hit. Here, we have
presented the shape indexing technique in its pure form.
The trade-offs achieved with filter combinations are a sub-
ject of future work.

second row family RF00017 is omitted, the third row
omits families RF00017 and RF00230 and so on. Note
that the testset shrinks, because the sequences of a skipped
family are also removed from the set.

Authors' contributions
RG had the initial idea for a shape filter. All three authors
participated in the conceptual development of the
approach. SJ analyzed the data and implemented all soft-
ware. All authors read and approved the final manuscript.

Runtime comparisonFigure 6
Runtime comparison. Average runtime in seconds vs. sequence length for the four different search methods: "cmsearch":
for all R families in the database a cmsearch is executed until a match or all families were searched. "HMM-filter": The same as
"cmsearch" but with activated "-hmmfilter" option. The measured time is just the runtime for the real search not for the con-
struction of the HMM. We assume that this could be done once for a fixed Rfam release. "BLAST-filter": the Rfam Perl script
"rfam_scan.pl" from the Rfam website is used. "RNAsifter" uses the k-best-shape-index with the suggested parameter set. The
considered sequences for this comparison is the whole testset.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900

RNAsifter

cmsearch

HMM-filter

BLAST-filter
Page 12 of 13
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:131 http://www.biomedcentral.com/1471-2105/9/131
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Additional material

Acknowledgements
SJ is grateful to PP Gardner and the Rfam group for in-depth discussions of
indexing strategies. SJ was partially funded as a research assistant by
Bielefeld University.

References
1. Washietl S, Hofacker IL, Lukasser M, Hüttenhofer A, Stadler PF:

Mapping of conserved RNA secondary structures predicts
thousands of functional noncoding RNAs in the human
genome. Nature Biotechnology 2005, 23(11):1383-90.

2. Pedersen J, Bejerano G, Siepel A, Rosenbloom K, Lindblad-Toh K,
Lander E, Kent J, Miller W, Haussler D: Identification and Classi-
fication of Conserved RNA Secondary Structures in the
Human Genome. PLoS Computational Biology 2006, 2(4):.

3. Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J:
Thousands of corresponding human and mouse genomic
regions unalignable in primary sequence contain common
RNA structure. Genome research 2006, 16(7):885-889.

4. Missal K, Zhu X, Rose D, Deng W, Skogerbø G, Chen R, Stadler PF:
Prediction of structured non-coding RNAs in the genomes of
the nematodes Caenorhabditis elegans and Caenorhabditis
briggsae. Journal of Experimental Zoology Part B: Molecular and Devel-
opmental Evolution 2006, 306B(4):1552-5007.

5. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman
A: Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Res 2005, 33(Database issue):D121-4.

6. Eddy SR, Durbin R: RNA sequence analysis using covariance
models. Nucleic acids research 1994, 22(11):2079-2088.

7. Nawrocki EP, Eddy SR: Query-Dependent Banding (QDB) for
Faster RNA Similarity Searches. PLoS Computational Biology
2007, 3(3):.

8. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Rfam:
an RNA family database. Nucleic acids research 2003, 31:439-441.

9. Weinberg Z, Ruzzo WL: Exploiting conserved structure for
faster annotation of non-coding RNAs without loss of accu-
racy. Bioinformatics 2004, 20(suppl 1):334-341.

10. Weinberg Z, Ruzzo WL: Sequence-based heuristics for faster
annotation of non-coding RNA families. Bioinformatics 2006,
22:35-39.

11. Giegerich R, Voss B, Rehmsmeier M: Abstract Shapes of RNA.
Nucleic acids research 2004, 32(16):4843-4851.

12. Voß B, Giegerich R, Rehmsmeier M: Complete probabilistic anal-
ysis of RNA shapes. BMC Biology 2006, 4(5):.

13. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster
P: Fast Folding and Comparison of RNA Secondary Struc-
tures. Monatshefte für Chemie 1994, 125:167-188.

14. Reeder J, Giegerich R: Consensus shapes: an alternative to the
Sankoff algorithm for RNA consensus structure prediction.
Bioinformatics 2005, 21(17):3516-3523.

15. Hofacker IL, Fekete M, Stadler PF: Secondary Structure Predic-
tion for Aligned RNA Sequences. Journal of molecular biology
2002, 319(5):1059-1066.

16. Voß B: Structural analysis of aligned RNAs. Nucleic acids research
2006, 34(19):5471-5481.

17. Reeder J, Giegerich R: Design, implementation and evaluation
of a practical pseudoknot folding algorithm based on ther-
modynamics. BMC Bioinformatics 2004, 5(104):.

18. Reeder J, Steffen P, Giegerich R: pknotsRG: RNA pseudoknot
folding including near-optimal structures and sliding win-
dows. Nucleic acids research 2007, 35(suppl 2):W320-324.

19. RNAsifter [http://bibiserv.techfak.uni-bielefeld.de/rnasifter/]

Additional file 1
Effects of skipping "difficult" families on sensitivity and filtration
ratio. The test- and training sets are constructed as above, but this time
we choose up to 1,000 sequences for each family instead of four. Random-
and gene- testsets are not considered, because we focus on the changes of
the sensitivity. RNAsifter is set to kfamily = 3, kquery = 5, ε = 0.4. One has
to read the rows in a accumulative fashion. In the first row no family is
skipped, in the second row family RF00017 is omitted, the third row omits
families RF00017 and RF00230 and so on. Note that the testset shrinks,
because the sequences of a skipped family are also removed from the set.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-131-S1.pdf]
Page 13 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-9-131-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16273071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16628248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16628248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16628248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16751343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16751343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16751343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17397253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17397253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15371549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16480488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16480488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16020472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17020924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15294028
http://bibiserv.techfak.uni-bielefeld.de/rnasifter/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	ncRNA
	Rfam and its usage
	Searching with covariance models

	Filtering
	Basic concepts of filtering
	BLAST-filter
	HMM-filter
	A new approach: shape based filtering

	A review of abstract shapes of RNA

	Methods
	Shape-based indexing framework
	Shape index construction
	1-SS cons-shape-index: fss(f) = {p(SS_cons)}
	1-consensus-shape-index: fss(f) = rankmin{>
	1-hybrid-shape-index
	union-shape-index: fss(f) = {p(RNAfold_
	k-best-shape-index: fss(f) = º

	Query shape spectrum construction
	1-shape-spectrum: qss(x) = RNAshapes(1, p, x)
	k-shape-spectrum: qss(x) = RNAshapes(k, p, x)

	Using multi-level abstraction
	Using folding energies
	Omitting "difficult" families
	Algorithm
	Method of choice

	Results and Discussion
	Construction of a testing set
	Testing

	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

