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Genetic effects on gene expression across human tissues

GTEx consortium

Abstract

Characterization of the molecular function of the human genome and its variation across 

individuals is essential for identifying the cellular mechanisms that underlie human genetic traits 

and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in 

gene expression levels across individuals and diverse tissues of the human body, many of which 

are not easily accessible. Here we describe genetic effects on gene expression levels across 44 

human tissues. We find that local genetic variation affects gene expression levels for the majority 

of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On 

the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare 

local and distal effects, and evaluate the functional properties of the genetic effects. We also 
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demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways 

affected by human disease-associated variation, enabling a mechanistic interpretation of gene 

regulation and the genetic basis of disease.

The human genome encodes instructions for the regulation of gene expression, which varies 

both across cell types and across individuals. Recent large-scale studies have characterized 

the regulatory function of the genome across a diverse array of cell types, each from a small 

number of samples1–3. Measuring how gene regulation and expression vary across 

individuals has further expanded our understanding of the functions of healthy tissues and 

the molecular origins of complex traits and diseases4–9. However, these studies have been 

conducted in limited, accessible cell types, thus restricting the utility of these studies in 

informing regulatory biology and human health.

The Genotype-Tissue Expression (GTEx) project was established to characterize human 

transcriptomes within and across individuals for a wide variety of primary tissues and cell 

types. Here, we report on a major expansion of the GTEx project that includes publicly 

available genotype, gene expression, histological and clinical data for 449 human donors 

across 44 (42 distinct) tissues. This enables the study of tissue-specific gene expression and 

the identification of genetic associations with gene expression levels (expression quantitative 

trait loci, or eQTLs) across many tissues, including both local (cis-eQTLs) and distal (trans-

eQTLs) effects.

In this study, we associate genetic variants with gene expression levels from the GTEx v6p 

release. We found pervasive cis-eQTLs, which affect the majority of human genes. In 

addition, we identify trans-eQTLs across 18 tissues and highlight their increased tissue 

specificity relative to cis-eQTLs. We evaluate both cis- and trans-eQTLs with respect to their 

functional characteristics, genomic context, and relationship to disease-associated variation.

Study design

The GTEx project has created a reference resource of gene expression levels from ‘normal’, 

non-diseased tissues. Every tissue sample was examined histologically; the sample was 

accepted for the project if the tissue was non-diseased and in the normal range for the age of 

the donor. RNA was isolated from postmortem samples in an ongoing manner as donors 

were enrolled into the study. For this data release, 44 sampled regions or cell lines were 

considered, each from at least 70 donors, and thereby considered suitable for eQTL analysis: 

31 solid- organ tissues, 10 brain subregions including duplicates of two regions (cortex and 

cerebellum), whole blood, and two cell lines derived from donor blood and skin samples. We 

hereafter refer to these tissues, regions, and cell lines as the ‘tissues’ used in eQTL analysis. 

A total of 7,051 samples from 449 donors represent the GTEx v6p analysis freeze (Fig. 1a; 

Supplementary Information 1–5; Supplementary Figs 1–6; Supplementary Tables 1–10). 

RNA sequencing (RNA-seq) samples were sequenced to a median depth of 78 million reads. 

This is 4.3 times more samples than reported in the GTEx pilot phase10. DNA was 

genotyped at 2.2 million sites and imputed to 12.5 million sites (11.5 million autosomal and 

1 million X chromosome sites) using the multi-ethnic reference panel from 1000 Genomes 

Project Phase 1 v311. Sampled donors were 83.7% European American and 15.1% African 
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American. Whole-genome sequencing was performed for 148 donors to a mean coverage 

greater than 30×, and all donors were exome-sequenced to a mean coverage over captured 

exons of 80×. The resulting data provide the deepest survey of individual- and tissue- 

specific gene expression to date, enabling a comprehensive view of the impact of genetic 

variation on gene expression levels. All data are available from dbGaP (accession 

phs000424.v6.p1) with multiple data views publicly available from the GTEx Portal 

(www.gtexportal.org).

Expression QTLs across human tissues

We identified associations between the expression levels of all expressed genes (eGenes) and 

genetic variants (eVariants) located within 1 Mb of the target gene’s transcription start site 

(TSS), which we refer to as cis-eQTLs for convenience, without requiring evidence of allelic 

effects at each locus. However, the majority of cis-eQTLs do exhibit allele specific 

expression. We applied a linear model controlling for ancestry, sex, genotyping platform and 

latent factors12 in the expression data for each tissue that may reflect batch or other technical 

variables (see Methods; Extended Data Fig. 1, Supplementary Information 6 and 

Supplementary Figs 7–10). Considering all tissues, we found a total of 152,869 cis-eQTLs 

for 19,725 genes, representing 50.3% and 86.1% of all known autosomal long intergenic 

noncoding RNA (lincRNA) and protein-coding genes, respectively (Fig. 1a, b). We 

identified a median of 2,816 autosomal protein-coding or lincRNA eGenes at a 5% false 

discovery rate (FDR) within each tissue (Extended Data Fig. 2a). Protein-coding genes 

without a cis-eQTL in any tissue were more likely to be expressed at low levels or loss-of-

function intolerant and were enriched for functions related to development and 

environmental response, indicating specific contexts in which additional eQTLs may be 

identified (Extended Data Fig. 3). To identify cis-eGenes affected by more than one 

functional regulatory variant, we applied forward–backward stepwise regression (see 

Methods). This approach identified an additional 24,886 secondary cis-eQTLs, with 41.2% 

of protein-coding genes and 24.8% of lincRNAs having multiple, conditionally independent 

eVariants in at least one tissue (Supplementary Fig. 11).

To identify trans-eQTLs, we tested for association between every protein-coding or lincRNA 

gene and all autosomal variants where the gene and variant were on different chromosomes. 

To minimize false positives in trans-eQTL detection, we controlled for the same observed 

and inferred confounders as in the cis-eQTL analysis, and further removed genes with poor 

mappability, variants in repetitive regions, and trans-eQTLs between pairs of genomic loci 

with evidence of RNA-seq read cross-mapping due to sequence similarity. Applying this 

approach, we identified 673 trans-eQTLs at a 10% genome-wide FDR. This includes 112 

distinct loci (R2 ≤ 0.2) and 93 unique genes (94 total gene associations, including a trans-

eGene detected in both testis and thyroid) in 16 tissues (Extended Data Table 1, Extended 

Data Fig. 2b, Supplementary Information 7, 8, Supplementary Figs 12–15 and 

Supplementary Table 11). An alternative approach to quantifying FDR at the gene level 

(Supplementary Information 8 and Supplementary Table 12) identified 46 genes at 10% 

FDR, with estimated q values of less than 0.4 for all 94 gene associations identified using 

the genome-wide FDR16. By investigating long-range intra-chromosomal eQTLs (≥5 Mb 

from the TSS), we discovered an additional 33 eGenes (10% FDR; Extended Data Table 2 
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and Supplementary Information 9). We found decaying support for cis-regulation (or 

interaction between cis- and trans-effects) over increased genomic distances based on 

evidence of allelic effects (Extended Data Fig. 4). Evidence of cis-regulation fell below 

background levels between 0.85 and 1.3 Mb from the TSS, empirically supporting the 

conventional distance threshold of 1 Mb for cis-eQTL detection.

As expected, sample size greatly affects eQTL mapping. Discovery of eGenes increased 

with sample size with no evidence of saturation at the full sample size for each tissue (Fig. 

1c). The tissue with the highest number of identified cis-eGenes was tibial nerve, with 8,087 

eGenes in 256 samples. Testis had the most trans-eGenes, with 35 eGenes in 157 samples 

(Fig. 1d), consistent with the elevated number of expressed genes (16,853 protein-coding 

genes and 4,362 lincRNA genes) and cis-eGenes (6,796 genes). Continued discovery of 

eGenes with increasing sample size suggests that the expression of nearly all genes is 

influenced by genetic variation (Extended Data Fig. 5a, b). We further observed that, for 

sub-sampled data ranging from 70 to 250 donors, sample size was a more significant 

contributor than additional tissues to the discovery of novel cis-eGenes (Extended Data Fig. 

5c). For trans-eQTL mapping, we used informed subsets of variants to reduce the number of 

tests by one to three orders of magnitude (Supplementary Information 10 and 

Supplementary Table 13). We found statistical power to detect additional associations in 

these restricted tests, such as the test restricted to cis-eVariants. Our results indicate that 

ongoing increases in sample size will continue to yield additional eQTLs, both in the cis-

eQTL setting, where smaller and conditionally independent effects will be identified, and in 

the trans-eQTL setting, where statistical power is the main limitation.

Allele-specific expression across human tissues

The effect of cis-regulatory variation can also be quantified by allele- specific expression 

(ASE) analyses obtained by measuring the allelic imbalance of RNA-seq reads at transcribed 

heterozygous sites. A large-scale, multi-tissue resource of ASE estimates complements 

eQTL mapping by providing access to individual-specific effects, which assists in the 

interpretation of rare variants, somatic mutations and patterns of imprinting8,13,14. We 

measured ASE at more than 135 million sites across tissues and donors, with a median of 

over 10,000 genes quantified per donor (Supplementary Information 11 and Supplementary 

Fig. 16). In total, 63% of all protein-coding genes could be tested for ASE in at least one 

donor and tissue, with 54% exhibiting significant allelic imbalance (binomial test, 5% FDR, 

|effect size| ≥ 1, Extended Data Fig. 6a). Overall, 88% of testable genes had significant 

allelic imbalance in at least one donor (binomial test, 5% FDR), demonstrating an 

abundance of cis-linked regulatory effects. Per donor, a median of 1,963 genes had 

significant allelic imbalance in at least one tissue, with a median of 570 genes where the 

donor was not heterozygous for a top eVariant, suggesting more complex or rarer regulatory 

effects at these loci.

Tissue-sharing and specificity of eQTLs

The extensive and diverse tissue sampling allowed us to develop a global view of how 

genetic effects vary between tissues of the human body by evaluating the sharing of eQTLs 
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across tissues. We performed a meta-analysis across all 44 tissues for both cis- and trans-

eQTLs to assess eQTL sharing between tissues. To do so, we applied Meta-Tissue15, a linear 

mixed model that allows for heterogeneity in effect sizes across tissues and controls for 

correlated expression measurements that result from collecting multiple tissues from the 

same donors. For each eQTL, we estimated the posterior probability that the effect is shared 

in each tissue (m value). For both cis- and trans-eQTLs, we observed patterns that reflected 

relationships between related tissues and concordance between cis and trans in estimates of 

tissue similarity (Fig. 2a, Supplementary Information 12 and Supplementary Fig. 17). The 

strongest broad pattern observed was the high correlation among brain tissues (median 

Spearman’s ρ of 0.584 (cis) and 0.241 (trans)) and among non-brain tissues (median 

Spearman’s ρ of 0.606 (cis) and 0.165 (trans)), with much lower correlation observed 

between these two groups (median Spearman’s ρ of 0.499 (cis) and 0.096 (trans)). Within 

non-brain tissues, we observed strong correlation among closely related tissues, such as 

arterial tissues (median Spearman’s ρ of 0.743 (cis) and 0.264 (trans)), skeletal muscle and 

heart tissues (median Spearman’s ρ of 0.672 (cis) and 0.184 (trans)), and skin tissues 

(Spearman’s ρ of 0.804 (cis) and 0.365 (trans)). Overall, the median pairwise correlation 

between tissues was 0.547 (cis) and 0.138 (trans).

The patterns of sharing were also supported by replication between single-tissue cis-eQTLs, 

estimated by π1 (the proportion of true positives16) among the eQTLs identified in one 

tissue and then tested for replication in a second tissue (Extended Data Fig. 7a, median π1 = 

0.740). The patterns held even when accounting for variable number of overlapping donors 

among pairs of tissues in the GTEx study design (Extended Data Fig. 7b–e). cis-eQTLs 

exhibited a distinctly bimodal pattern of tissue sharing—they were likely to be either shared 

across most of the 44 tissues or specific to a small subset of tissues (Fig. 2b). This 

bimodality was further supported by three different methods: simple overlap of the single 

tissue eQTLs, a hierarchical multiple comparison procedure (treeQTL17), and an empirical 

Bayes model (MT-eQTL18; Extended Data Fig. 8a–c). Each method also demonstrated that 

cis-eQTLs discovered in tissues with larger sample sizes were more often tissue-specific; 

however, estimates of tissue-specificity for large sample-size tissues can be influenced by 

difficulty in replicating small effect-size eQTLs in tissues with fewer samples.

Overall, we observed much greater tissue specificity for trans-eQTLs than a set of FDR-

matched cis-eQTLs (Fig. 2c); this observation was robust to choices of m value threshold 

and selection criteria for matching cis-eQTLs (Extended Data Fig. 8d–g). While 3.8% of 

trans-eQTLs were shared across three or more tissues at m > 0.9, 25.3% of FDR-matched 

cis-eQTLs were shared. The extensive tissue-specificity of trans-eQTLs was also supported 

by a hierarchical approach for FDR control17, where we found no trans-eQTLs shared across 

more than one tissue (Extended Data Table 3). Our estimate of increased tissue specificity 

for trans-eQTLs agreed with the minimal sharing of trans effects reported in previous eQTL 

studies with fewer tissues4,19, and greatly exceeds what would be expected on the basis of 

replication between tissues for cis-eQTLs of matched minor allele frequency (MAF) and 

effect size (Wilcoxon rank sum test; P ≤ 2.2×10−16 for all choices of replication FDR; 

Extended Data Fig. 8h). Given the greater tissue-specificity of trans-eQTLs, we note that 

heterogeneity in cellular composition of bulk tissue samples is one important confounder 

that may reduce power to detect trans-eQTLs, or even lead to false positive associations6. 
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Despite the high tissue-specificity, we did observe a small number of tissue-shared trans-

eQTLs, including rs7683255, which was moderately associated in trans with NUDT13 
across most tested GTEx tissues with a consistent direction of effect (Extended Data Fig. 

9a). We also found examples of trans-eQTLs shared across a subset of related tissues, such 

as an association between rs60413914 and RMDN3, a gene with increased expression levels 

in brain regions as compared to other tissue types, and for which the trans-eQTL had 

moderate effects in all tested brain regions but no strong effect in other tissues (Extended 

Data Fig. 9b, c).

Multi-tissue cis-eQTL analyses have been shown to increase power by explicitly modelling 

sharing patterns across tissues15,18,20. We did not observe an improvement in power for 

trans-eQTL discovery, consistent with the limited sharing observed across tissues (Extended 

Data Table 3). However, we did observe improvements for cis-eQTL discovery, particularly 

among tissues with smaller sample sizes (Extended Data Fig. 10). To ensure that these 

findings did not depend on the modelling assumptions of Meta-Tissue, we analysed the P 
values for all genes and all tissues with treeQTL, which controls the FDR of eGene 

discoveries across tissues17. This procedure identified 17,411 cis-eGenes at 5% FDR, 2,314 

fewer eGenes than with the single-tissue analysis. Although this analysis is more 

conservative overall than the tissue-by-tissue analysis, we observed an increase in the 

number of eGenes detected in the tissues with the smallest sample sizes, including several 

brain regions, as well as an increase in the average number of tissues in which an eGene was 

detected (from 7.8 for single-tissue analysis to 8.3; Extended Data Fig. 10). Additional cis-

eGenes identified through meta-analysis were more likely to be significant as sample size 

increased compared to similar numbers of eGenes identified using a less stringent single- 

tissue FDR (Extended Data Fig. 10). This suggests that one strategy for increasing power in 

studies of inaccessible or sample-limited cell types would be to analyse them jointly with 

data from GTEx tissues.

Functional characterization of cis-eQTLs

To characterize the biological properties of multi-tissue cis-eQTLs, we annotated discovered 

eVariants using chromatin state predictions from 128 cell types sampled by the Roadmap 

Epigenomics project2. eVariants were enriched in predicted promoter and enhancer states 

across all Roadmap cell types (Fig. 3a). However, the eVariants exhibited significantly 

greater enrichment in promoters and enhancers from matched tissues (Wilcoxon rank sum 

test, P ≤ 9.3 ×10−4, Extended Data Table 4), illustrating consistent patterns of tissue 

specificity for cis-regulatory elements and eQTLs (Fig. 3a). Furthermore, eQTL activity was 

significantly more likely to be shared across pairs of tissues when the eVariant overlaps the 

same chromatin state in both tissues (Wilcoxon rank sum test, P ≤ 5.0×10−5, Fig. 3b).

Integration of genomic annotations such as chromatin state has been demonstrated to 

improve power for eQTL discovery8,21–23. For 26 GTEx tissues matched with cell-type 

specific annotations from the Roadmap Epigenomics project, we applied a Bayesian 

hierarchical model for eQTL discovery by incorporating variant-level genomic annotations24 

that provided a substantial boost to discovery power. Inclusion of genomic annotations 

(enhancers, promoters and distance to the TSS) increased the total number of cis-eQTL 
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discoveries by an average of 43% (or 1,200 genes) per tissue (Extended Data Fig. 10f), 

demonstrating the considerable advantage of integrating genomic annotations into eQTL 

mapping models.

Conditionally independent (secondary) cis-eQTL signals were located further from the TSS 

(median distance 50.1 kb from the TSS, compared to 28.9 kb for primary eQTLs; Wilcoxon 

rank sum test, P ≤ 2.2×10−16). However, similar to primary eVariant associations, secondary 

eVariants were enriched for chromosomal contact with target eGene promoters, as 

determined through Hi-C, compared to background variant–TSS pairs (Supplementary 

Information 6). This suggests that, despite their sequence-based distance from the TSS, 

primary and secondary eVariants are in close physical contact with their target gene 

promoters via chromatin looping interactions. While primary eVariants were significantly 

more enriched in promoters than enhancers, secondary associations exhibit increased 

enhancer enrichment, consistent with their increased distance from the TSS and tissue-

restricted activity (Wilcoxon rank sum test, P ≤ 2.2×10−16, Fig. 3c).

To identify causal variants that are likely to underlie cis-eQTLs, we applied two 

computational fine-mapping strategies25,26 (Supplementary Information 13 and 

Supplementary Figs 11, 18). First, we identified 90% credible sets (that is, the collection of 

variants with 90% probability of containing all causal variants) for each eGene in each tissue 

using CAVIAR25. Across all tissues, the mean credible set size was 29 variants (per tissue 

means ranged from 25 to 31). Second, we estimated the probability that each eVariant is a 

causal variant using CaVEMaN26. Across tissues, between 3.5% and 11.7% of top eVariants 

were predicted to be causal variants (causal probability P > 0.8). Consistent with variants 

with high causal probabilities being functional regulatory variants (as opposed to linkage 

disequilibrium proxies), 24.3% of eVariants with causal probabilities in the top tenth 

percentile (0.77 <P < 1) lay in open chromatin regions, while only 6.56% of eVariants in the 

lowest tenth percentile (0.0266 <P < 0.189) lay in such regions (Fig. 3d).

To determine the effect sizes of cis-eQTLs, we used allelic fold change, a method that 

assumes an additive model of eQTL alleles on total gene expression, allowing for 

interpretation of effect sizes as a fold change between alleles27 (Supplementary Information 

14). 17.4% of eGenes had cis-eQTLs with median effect sizes of at least twofold across 

tissues (Extended Data Fig. 11a, c). The prevalence of many ≥ twofold effects highlights the 

large impacts that common regulatory variants can have on gene dosage. cis-eVariants at 

canonical splice sites exhibited the strongest effects, followed by variants in noncoding 

transcripts, while variants in the 3′ UTR had the weakest effects (Fig. 3e).

Analysis of eQTL effect sizes around the TSS demonstrated that, as a group, upstream 

variants had the strongest effects, while those within transcripts had the weakest effects 

(Extended Data Fig. 11b). This suggests that eVariants that are likely to affect transcription 

have stronger effects on gene expression levels than variants that are likely to affect post-

transcriptional regulation of mRNA levels. A notable exception is splice site and stop-gained 

variants, which make up a small number of total eQTLs but have large effects on expression 

levels (presumably owing to nonsense-mediated decay). When genes are stratified by the 

number of tissues in which they are expressed, the average effect size decreases as the 
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number of tissues increases, indicating that genes expressed in greater numbers of tissues are 

less likely to have eQTLs with large regulatory effects (Spearman’s ρ =−0.29, P ≤ 

2.2×10−16; Fig. 3f).

ASE provides an independent measure of a cis-eVariant’s effect size. We estimated the 

effects of the primary eVariant for each eGene by applying allelic fold change to ASE 

measurements (see Methods). Effect size estimates from both total and allele-specific 

expression approaches were highly correlated (mean Spearman’s ρ =0.82, s.d.= 2%) with an 

average ratio of eQTL effect sizes to ASE effect sizes of 0.937 (s.d. =6%; Extended Data 

Fig. 6b, c). This observation suggests that cis-eQTLs and ASE capture the same regulatory 

effects.

Functional characterization of trans-eQTLs

To better understand the cellular mechanisms of trans-eQTLs, we characterized several of 

their functional properties. Of the 673 trans-eQTLs from the genome-wide analysis, 161 also 

had a cis-association (at a cis P value threshold of P ≤ 1.0×10−5) with 113 unique variants, 

yielding the set of 296 unique trios of an eVariant, a cis-eGene and a trans-eGene. This 

suggests a common mechanism for trans regulation in which the eVariant directly regulates 

expression of a nearby gene whose protein product then affects other genes downstream. 

Considering this observation, we ran a restricted test for trans-associations, limiting variants 

to the set of significant cis-eVariants (Extended Data Fig. 12a). From this, we identified a 

total of 33 trans-eGenes (10% FDR) among this subset of tests, 14 of which were not 

discovered in the genome-wide analysis (Supplementary Information 10). There were 

substantially more trans-eQTLs at 50% FDR from this cis-eVariant restricted test than 

random variants matched for MAF and distance to TSS and stratified by tissue (Cochran–

Mantel–Haenszel test, P ≤ 2.2×10−16).

We performed Mendelian randomization on the full set of 296 trans-eQTLs matched with a 

unique corresponding cis-eGene, measuring the causal impact of the cis-eGene on the trans-

eGene, using the eVariant as the randomized instrumental variable (Supplementary 

Information 15). For trans-eQTLs with a cis-eGene, we observed strong evidence for 

regulation of the trans-eGene expression via the cis-eGene (Fig. 4a; P values ranging from P 
≤ 3.0 × 10−5 to P ≤ 2.2 × 10−16). trans- eVariants with no cis-eGene may alter protein 

function, may reflect false negatives in the cis association test, or may arise from 

unmeasured regulatory mechanisms. Protein-coding loci were not enriched among our trans-

eVariants (odds ratio 0.94; Fisher’s exact test, P ≤ 0.80), suggesting that modification of 

protein function is not the dominant mechanism for trans-eQTL effects.

We investigated whether trans-eVariants were each associated with numerous target genes, 

which may reflect broad effects of regulatory loci, as have been reported in model 

organisms5,28. Disambiguating true broad regulatory effects from artefacts remains an 

important challenge29. In our primary analysis, we applied aggressive correction of potential 

confounders, controlling for 15–35 probabilistic estimation of expression residuals (PEER) 

factors12 capturing 59–78% of total variance in gene expression levels (Supplementary 

Information 5). However, PEER and related approaches30 may also remove variance in gene 
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expression levels arising from regulatory pathways and broad trans effects. Indeed, several 

loci with numerous associations were found in uncorrected data, but disappeared after 

controlling for PEER factors (Supplementary Fig. 13). Associations found in uncorrected 

data are likely to include many false positives for three reasons: 1) the PEER factors were 

strongly associated with known technical confounders (Extended Data Fig. 1 and 

Supplementary Figs 8, 9); 2) trans-eVariants identified from raw data and lost after 

correction were enriched for association with technical covariates (Supplementary Fig. 14); 

and 3) no other parameter setting clearly optimized trans-eQTL discovery (Supplementary 

Fig. 12). Even after PEER correction, we observed evidence of eVariants with multiple 

targets; at genome-wide significance, four separate loci were associated with more than one 

trans-eGene each (Supplementary Table 14).

We quantified the enrichment of trans-eVariants in promoter and enhancer regions using the 

same tissue-specific annotations from the Roadmap Epigenomics project1,2 used for cis-

eQTL analysis (Extended Data Table 4). trans-eVariants (10% FDR) were enriched in cell-

type matched enhancers (median Fisher’s exact test, P ≤ 2.2 ×10−3) but not strongly 

enriched for promoters (median P ≤ 0.22), compared to randomly selected variants matched 

by distance to nearest TSS, MAF and chromosome (Fig. 4b). trans-eVariants were more 

enriched than cis-eVariants at matched FDR (Wilcoxon rank sum test, promoter: P ≤ 4.6 

×10−7; enhancer: P ≤ 2.2 ×10−16). Stronger effect sizes are needed to detect trans-eVariants 

at the same FDR, but even comparing to a matched number of the strongest cis-eVariants, 

we observed greater enrichment in enhancer (but not promoter) regions among trans-

eVariants, consistent with greater tissue-specificity of enhancer activity and trans-eVariants31 

(Fig. 2c).

Given the large number of trans-eQTLs detected in testis, we investigated their possible 

regulatory mechanisms in more detail. Piwi-interacting RNAs (piRNAs) are small 24–31-bp 

RNAs that bind to piwi-class proteins and silence mobile elements by RNA degradation and 

DNA methylation. PiRNAs are strongly expressed in testis and may regulate gene 

expression and play a role in protection against transposable elements in germ line cells32. 

We tested for enrichment of trans-eVariants in piRNA clusters identified in testis33. We 

found that 38.6% of testis trans-eVariants, corresponding to 12 independent loci (R2 ≤ 0.2), 

directly overlapped piRNA clusters, a significant enrichment compared to the 2.5% of the 

genome covered by these regions (permutation test, P ≤ 1.0 × 10−4). In aggregate, eVariants 

from all tissues were enriched in piRNA clusters (permutation test, P ≤1.0×10−4), but this 

appeared to be almost entirely driven by testis eQTLs (Fig. 4c). This suggests a testis-

specific functional effect of genetic variation in piRNA clusters, consistent with their 

biological role.

Replication of eQTLs

To assess the replicability of the identified cis-eQTLs, we compared our results to four 

matched tissues from the Twins UK project34 (Supplementary Information 16). The vast 

majority of GTEx cis-eQTLs replicated at 5% FDR (Extended Data Fig. 13a; 84% in whole 

blood, 87% in subcutaneous adipose, 94% in lymphoblastoid cell lines (LCLs), and 93% in 

sun-protected skin). trans-eQTLs have not replicated consistently in human studies, 
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compared to cis-eQTLs21,35–37, owing in part to insufficient statistical power and a limited 

number of studies with comparable tissues and cohorts, but also reflecting potential false 

positive associations. We tested trans-eQTLs discovered at 10% FDR in GTEx for 

replication in the TwinsUK data. Five hundred and sixty GTEx trans-eQTLs were testable in 

the four TwinsUK tissues and, of these, three trans-eQTLs replicated at 10% FDR 

(Supplementary Table 15). Despite the small number that individually replicated, in 

aggregate, the full set of trans-eQTLs demonstrated significantly greater replication than 

expected by chance (Wilcoxon rank sum test on association P values compared to uniform; P 
≤3.05 ×10−5 for 16 tests in matched tissues; P ≤2.2 ×10−16 for 2,176 tests across all four 

TwinsUK tissues). In addition, aggregate replication of trans-eQTLs was significantly 

stronger for matched tissue types than for unmatched tissue types (Wilcoxon rank sum test; 

P ≤1.54×10−4; Extended Data Fig. 13b).

Finally, we replicated two tissue-specific trans-eQTLs highlighted in the TwinsUK Multiple 

Tissue Human Expression Resource (MuTHER) study38,39 (n = 845 donors in three tissues: 

subcutaneous adipose, LCLs and skin). First, in sun-exposed skin in GTEx, rs289750 was 

associated in cis with NLRC5 (association P ≤4.7 ×10 −16) and in trans with TAP1 
(association P ≤9.0 ×10 −10, 4.3% FDR in the cis-eQTL restricted trans-eQTL discovery 

set), while the TwinsUK study found rs289749 (located 469 bp away from rs289750; R2 

=0.918) associated in skin samples with NLRC5 in cis (association P ≤2.2 ×10 −16) (ref. 38) 

and TAP1 in trans (tensor association P ≤4.3 ×10 −7) (ref. 39). Second, the MuTHER study 

identified a master regulator in subcutaneous adipose, rs4731702, associated with the 

maternally expressed cis target gene KLF14, which encodes the transcription factor 

Kruppel-like factor38,40. cis-eQTL rs4731702 showed enriched association with genes that 

are relevant in metabolic phenotypes, such as cholesterol levels. In the GTEx data, 

rs4731702 is in strong linkage disequilibrium with two variants, rs13234269 and 

rs35722851 (R2 =0.98 and 0.99, respectively), that are cis-eQTLs for KLF14 in 

subcutaneous adipose (P ≤2.2×10−5 and P ≤4.7×10−5, respectively). We evaluated the 

association of rs13234269 with all expressed genes in GTEx subcutaneous adipose (17,633 

genes). Although we found no individually significant trans-eGenes, we found an 

enrichment of association with distal gene expression in subcutaneous adipose tissue (π1 

=0.07, after PEER correction), replicating the results of the MuTHER study.

Expression QTLs and complex disease associations

Overlaps between genome-wide association study (GWAS) associations and eQTLs have 

provided important insights into regulatory genes and variants for a wide range of complex 

traits and diseases5. As both the presence and extent of overlap between GWAS and eQTLs 

can be tissue- specific, the current phase of GTEx overcomes a major limitation in 

interpretation of disease variants by enabling analysis across a broad range of tissues.

We observed that the degree of tissue sharing of an eQTL is associated with several 

indicators of phenotypic impact. Tissue-shared eGenes are depleted from loss-of-function 

mutation-intolerant genes (as curated by ExAC41) (Fig. 5a), consistent with purifying 

selection removing large-effect regulatory variants that involve many tissues. Tissue-shared 

eGenes were also less likely than tissue-specific eGenes to be annotated disease genes 
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(Fisher’s exact test, nominal P ≤10−6 for GWAS, Online Mendelian Inheritance in Man 

(OMIM), and loss-of-function-intolerant gene sets; Fig. 5a, Extended Data Fig. 14), 

highlighting the importance of broad tissue sampling for GWAS interpretation.

This broad tissue sampling affects the use of eQTL data for the interpretation of GWAS 

variants. We observed that a GWAS variant of interest is likely to be a cis-eQTL by chance. 

Of all common variants assayed within GTEx, 92.7% are nominally associated with the 

expression of one or more genes in one or more tissues (P < 0.05) and nearly 50% are 

significant when correcting for the number of tissues tested (Fig. 5b). Furthermore, linking 

an eQTL signal to a specific gene becomes increasingly complicated with abundant eQTL 

data. Some variants are associated with more than 30 different nearby genes (Extended Data 

Fig. 15a). Furthermore, even restricting to strong associations (P <10−10 in each tissue), for 

over 10% of eVariants, the gene with the strongest association varies between tissues (Fig. 

5c; Extended Data Fig. 15b, c). These results reinforce the need for caution when using 

eQTL data to interpret the function of GWAS variants.

To assess the extent to which GTEx cis-eQTLs are responsible for common phenotypic 

variation, we applied co-localization analysis to examine local linkage disequilibrium and 

sharing of association signals using GWAS summary statistics across 21 traits42–44 

(Supplementary Table 16). Among tested loci, 52% of trait-associated variants co- localized 

with an eQTL in one or more tissues (Fig. 5d, e). Importantly, no single tissue explained the 

majority of trait-associated loci, but the breadth of GTEx tissue sampling identified more co-

localizations than any single tissue alone. Seven per cent and 93% of co-localizations are 

with lincRNA and protein-coding eGenes, respectively, suggesting that lincRNAs have a 

limited role in common disease pathogenesis. However, several findings complicate the 

interpretation of GWAS–eQTL overlaps. First, 26% of GWAS loci co-localize with more 

than one distinct eGene (that is, half of all co-localized loci). Second, GWAS co-localized 

eGenes are shared across an average of four tissues. Third, similar to lead eVariants, only 

40% of GWAS signals co-localize with their nearest expressed gene, a finding that has 

important implications for the functional characterization of GWAS results.

Genetic variants associated with complex traits have been suggested to be enriched for trans-

eQTLs6,44–47. Accordingly, we performed trans-eQTL mapping, restricting it to variants 

associated with a complex trait in a GWAS (Extended Data Fig. 12b). In this analysis, across 

the 44 tissues, we found 29 trans-eQTL associations involving 24 unique variants and 25 

unique genes (10% FDR; Fig. 4a), each specific to a single tissue. There were more trans-

eVariants at 50% FDR with association in at least one tissue when testing was restricted to 

trait-associated variants compared with random variants matched by MAF and distance to 

TSS (Fisher’s exact test, P ≤1.3×10−3).

Among trait-associated variants with trans-eQTL effects, we found two genome-wide 

significant trans-eVariants at the 9q22 locus (rs7037324 and rs1867277, R2 = 0.74) with 

thyroid-specific associations in trans with TMEM253 and ARFGEF3 (P ≤ 2.2 × 10−16 for 

both with rs1867277; Fig. 6a and Extended Data Fig. 16). The 9q22 locus has previously 

been linked to multiple thyroid-specific diseases including goitre, hypothyroidism and 

thyroid cancer48,49, and loss-of- function mutations in a thyroid-specific transcription factor 
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at this locus, FOXE1, manifest as ectopic thyroid tissue or cleft palate in developing mice. 

However, the mechanism of any cis-effects of these trans-eVariants remains uncertain from 

the GTEx data; a post hoc analysis demonstrated that PEER correction removed broad 

regulatory signals from the 9q22 locus, and particularly from cis- and trans-eQTL signals for 

FOXE1 (Supplementary Information 17). In PEER-corrected data, cis- and trans-eQTL 

signals co-localized for another cis-eGene in 9q22, TRMO, for both trans-eGenes43 

(posterior probability >0.99). Mendelian randomization analysis of the PEER-corrected data 

supported the idea that TRMO regulates TMEM253 (P ≤1.3×10−9) and ARFGEF3 (P 
≤2.1×10−11) based on trans-eVariant rs1867277. By contrast, FOXE1 had weak Mendelian 

randomization support in the PEER-corrected data. Despite the ambiguity of cis-mediation, 

the locus is one of the strongest trans-eQTL signals in GTEx. We further replicated both the 

broad regulatory effect and specific target genes of this locus in 498 primary thyroid cancer 

RNA-seq samples from The Cancer Genome Atlas50 (TCGA; Fig. 6b, Supplementary 

Information 18).

In a second example, two muscle-specific trans-eVariants at the 5q31 locus (rs2706381 and 

rs1012793; R2 = 0.84) were associated in trans with PSME1 (P ≤1.1×10−11) and PARP10 (P 
≤7.8×10−10), and in cis with IRF1 (P ≤2.0×10−10; Fig. 6c), a transcription factor that 

facilitates regulation of the interferon-induced immune response51,52. Both variants are 

associated with circulating fibrinogen levels53 and influence muscle injury, Duchenne 

muscular dystrophy (DMD), multiple sclerosis and rheumatoid arthritis54,55, and have been 

shown to drive fibrosis in DMD, where they promote expression of IL1B and TGFB156. 

These variants were moderately associated with numerous genes in skeletal muscle (50 

trans-eGenes at 20% FDR, assessed only among the three variants; Extended Data Fig. 17a). 

Additional candidate target genes (at 20% FDR) were enriched in multiple immune 

pathways from MsigDB57 (Extended Data Fig. 17b). Mendelian randomization analysis 

supported the idea that IRF1 regulates PSME1 (P ≤3.1×10−8) and PARP10 (P ≤1.9×10−7) 

through cis-eVariant rs2706381 with a consistent direction of effect (Fig. 6c). Moreover, the 

cis-eQTL signal for IRF1 co-localized with the trans-eQTL signals for both trans-eGenes 

(Fig. 6d; posterior probability >0.99)43. Together, these results suggest that cis-regulatory 

loci affecting IRF1 are regulators of interferon-responsive inflammatory processes involving 

genes including PSME1 and PARP10, with implications for complex traits specific to 

muscle tissue.

Discussion

Since the initial sequencing of the human genome, extensive effort has been devoted to the 

characterization of genome function and phenotypic consequences of genetic variation. 

Describing the effects of genetic variation on gene expression levels across tissues is a 

critical but challenging component of this goal. Here, we describe advances enabled by the 

GTEx project v6p data, which provide a comprehensive survey of gene expression and the 

impact of genetic variation on gene expression across diverse human tissues. We report 

widespread cis-eQTLs in 44 tissues and trans-eQTLs in 18 tissues. cis-acting genetic 

variants tend to affect either most tissues or a small number of tissues. By contrast, identified 

trans-eQTL effects tend to be tissue-specific and correspondingly show greater enrichment 

in enhancer regions. By integrating GTEx data with summary statistics from diverse GWAS, 
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we observed that half of complex trait- associated loci co-localize with a GTEx eQTL. 

GTEx data have already served as a valuable community resource for the identification of 

the tissue-specific regulatory effects underlying variants associated with human disease 

phenotypes58–61.

Additional papers from the GTEx consortium for the v6p data describe the impact of rare 

genetic variation on gene expression62, methods for analysis of transcriptome data27, the 

discovery and characterization of regulatory networks across tissues63, and analyses of 

diverse regulatory processes such as RNA editing64 and X-inactivation65. To enable ongoing 

use of the GTEx data, summary-level expression data and eQTLs across all tissues are 

available from the GTEx Portal (www.gtexportal.org), while all individual-level raw data 

have been deposited in dbGaP (accession phs000424.v6.p1).

There are both opportunities and challenges as efforts to characterize genome function grow 

in scope and scale. The discovery and characterization of eQTLs in these data required 

careful data modelling to account for confounders and to characterize statistical discovery. 

We anticipate that complementary analyses with novel methods, enabled by the public 

availability of these data, may reveal additional insights. Despite the scope of these data, we 

remain underpowered to detect trans-eQTLs. Larger cohorts of individuals with a smaller 

number of tissues have yielded hundreds of trans-eGenes4,6,8,9, and we similarly expect 

trans-eQTL discoveries to increase with additional samples in the final phase of GTEx. 

Furthermore, some genetic effects may manifest only within a specific cell type, rather than 

an entire heterogeneous tissue. Both computational and experimental methods, such as 

deconvolution methods and single-cell sequencing as part of the proposed Human Cell Atlas 

and related projects, promise to improve resolution to identify precise cell type-specific 

regulatory effects66. Future aims of the GTEx project include increased sample size, with 

cis-eQTLs from 53 tissues across 714 donors, now available in the v7 release, and plans to 

include approximately 1,000 donors in the final data release. Additional plans include the 

collection of complementary molecular data on subsets of samples, including epigenetic and 

protein data, with the Enhanced GTEx (eGTEx) project, enabling an increasingly complete 

picture of epigenetic and regulatory variant diversity across human tissues67. We expect that 

the continued expansion of the GTEx resource, and its integration with other efforts 

capturing diverse data types, will be an essential asset for the study of gene regulatory 

mechanisms and how these contribute to human traits and diseases.

METHODS

No statistical methods were used to predetermine sample size. The experiments were not 

randomized, and investigators were not blinded to allocation during experiments and 

outcome assessment.

Sample procurement

All human donors were deceased. Informed consent was obtained for all donors via next-of-

kin consent to permit the collection and banking of de-identified tissue samples for scientific 

research. The research protocol was reviewed by Chesapeake Research Review Inc., 

Roswell Park Cancer Institute’s Office of Research Subject Protection, and the institutional 
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review board of the University of Pennsylvania. Complete descriptions of the donor 

enrolment and consent process, as well as biospecimen procurement, methods, sample 

fixation, and histopathological review procedures, have been described previously10,67. In 

brief, whole blood was collected from each donor, along with fresh skin samples, for DNA 

genotyping, RNA expression, and culturing of lymphoblastoid and fibroblast cells, and 

shipped overnight to the GTEx Laboratory Data Analysis and Coordination Center 

(LDACC) at the Broad Institute. Two adjacent aliquots were then prepared from each 

sampled tissue and preserved in PAXgene tissue kits. One of each paired sample was 

embedded in paraffin (PFPE) for histopathological review and the second was shipped to the 

LDACC for processing and molecular analysis. Brains were collected from approximately 

one-third of the donors, and were shipped on ice to the brain bank at the University of 

Miami, where eleven brain sub-regions were sampled and flash-frozen. These samples were 

also shipped to the LDACC for processing and analysis.

All DNA genotyping was performed on blood-derived DNA samples, unless these were 

unavailable, in which case a tissue-derived DNA sample was substituted. RNA was extracted 

from all tissues and RNA sequencing was performed on all samples with an RNA integrity 

number (RIN) of 5.7 or higher and with at least 500 ng total RNA. Nucleic acid isolation 

protocols and sample QC metrics applied are as described10 (Supplementary Information 1–

5).

Data production

Non-strand specific, polyA+ selected RNA-seq libraries were generated using the Illumina 

TruSeq protocol. Libraries were sequenced to a median depth of 78 million 76-bp paired-end 

reads. RNA-seq reads were aligned to the human genome (hg19/GRCh37) using TopHat 

(v1.4) based on GENCODE v19 annotations. This annotation is available on the GTEx 

Portal (gencode.v19. genes.v6p_model.patched_contigs.gtf.gz, available at https://

www.gtexportal.org/home/datasets). Gene-level expression was estimated as reads per 

kilobase of transcript per million mapped reads (RPKM) using RNA-SeQC on uniquely 

mapped, properly paired reads fully contained within exon boundaries and with alignment 

distances ≤ 6. Samples with fewer than 10 million mapped reads or with outlier expression 

measurements based on the D statistic were removed10.

DNA from 450 donors was genotyped using Illumina Human Omni 2.5M and 5M 

Beadchips. Genotypes were phased and imputed with SHAPEIT268 and IMPUTE269, 

respectively, using multi-ethnic panel reference from 1000 Genomes Project Phase 370. 

Variants were excluded from analysis if they: 1) had a call rate < 95%; 2) had minor allele 

frequencies < 1%; 3) deviated from Hardy–Weinberg equilibrium (P <1.0×10−6); or 4) had 

an imputation info score <0.4. The final genotyped and imputed array VCF (file format 

v4.1) for autosomal variants contains genotype posterior probabilities for each of the three 

possible genotypes for 11,552,519 variants across 450 GTEx donors. The dosages of the 

alternative alleles relative to the human reference genome hg19 were used as the genotype 

measure for subsequent eQTL analysis. In addition to array-based genotyping, 148 and 524 

donors were whole-genome and exome sequenced, respectively. Additional details on 

genotyping, imputation and sequencing can be found in the Supplementary Information.
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cis-eQTL mapping

We conducted cis-eQTL mapping within the 44 tissues with at least 70 samples each. Only 

genes with ten or more donors with expression estimates > 0.1 RPKM and an aligned read 

count of six or more within each tissue were considered significantly expressed and used for 

cis-eQTL mapping. Within each tissue, the distribution of RPKMs in each sample was 

quantile-transformed using the average empirical distribution observed across all samples. 

Expression measurements for each gene in each tissue were subsequently transformed to the 

quantiles of the standard normal distribution. The effects of unobserved confounding 

variables on gene expression were quantified with PEER12, run independently for each 

tissue. Fifteen PEER factors were identified for tissues with fewer than 150 samples; 30 for 

tissues with sample sizes between 150 and 250; and 35 for tissues with more than 250 

tissues. The covariates that were most consistently associated with PEER factors include 

factors related to parameters of donor death, ischaemic time, RIN and sequencing quality 

control metrics. In addition, we have observed that little, if any, genetic signal is present in 

the PEER factors (Supplementary Information 6).

Within each tissue, cis-eQTLs were identified by linear regression, as implemented in 

FastQTL71, adjusting for PEER factors, sex, genotyping platform, and three genotype-based 

principal components (PCs). We restricted our search to variants within 1 Mb of the TSS of 

each gene and, in the tissue of analysis, minor allele frequencies ≥0.01 with the minor allele 

observed in at least 10 samples. Nominal P values for each variant–gene pair were estimated 

using a two-tailed t-test. The significance of the most highly associated variant per gene was 

determined from empirical P values, extrapolated from a Beta distribution fitted to adaptive 

permutations with the setting –permute 1000 10000. These empirical P values were 

subsequently corrected for multiple testing across genes using Storey’s q value method16. To 

identify the list of all significant variant–gene pairs associated with eGenes, variants with a 

nominal P value below the gene-level threshold were considered significant and included in 

the final list of variant–gene pairs.

trans-eQTL mapping

Matrix eQTL72 was used to test all autosomal variants (MAF > 0.05) using the same 

expression filters as cis-eQTL mapping, but restricted to variants and genes lying on 

different chromosomes, in each tissue independently using an additive linear model. For 

trans-eQTL mapping, we tested variants for association with expression of only protein 

coding or lincRNA genes. We included as covariates the three genotype PCs, genotyping 

platform, sex, and PEER factors estimated from expression data in Matrix eQTL when 

performing association testing. The correlation between variant and gene expression levels 

was evaluated using the estimated t statistic from this model, and corresponding FDR was 

estimated using Benjamini–Hochberg FDR correction72,73 separately within each tissue and 

also using permutation analysis. We performed restricted trans-eQTL association tests by 

filtering the set of variants considered in three ways. First, we filtered the final VCF files 

using linkage disequilibrium pruning (R2 > 0.5, plink parameters – indep 50 5 2), removing 

approximately 90% of variants. Second, from the original VCF file, we performed 

association mapping using only the most significant GTEx cis-eQTL per eGene per tissue. 

Third, from the original VCF file, we performed association mapping using only variants 
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that had been found to have a trait association in a genome-wide association study47 (P 
≤2.0×10−5). The three association mapping analyses and FDR estimation were performed in 

each tissue separately. For all trans association tests, we applied stringent quality control to 

account for potential false positives due to RNA-seq read mapping errors, repeat elements, 

and population stratification (Supplementary Information 7).

Multi-tissue eQTL mapping

We quantified the tissue-specificity and tissue-sharing of cis- and trans-eQTLs using Meta-

Tissue15. This tool extends Metasoft74, a meta-analysis package, by using a mixed effects 

model for eQTL sharing that accounts for correlation of expression between tissues driven 

by overlapping donors. All genotypes and gene expression quantification estimates were 

adjusted for covariates in accordance to the single tissue analysis as described in the 

previous sections. For each variant–gene pair, we calculated mixed model effect size 

estimates in each expressed tissue, thereby adjusting for partial sharing of signal between 

tissues. These effect size estimates were used in meta-analysis using Metasoft74 to assess the 

tissue-specificity of each variant–gene pair. For each variant–gene pair tested, Meta-Tissue 

estimates a global P value of association and the posterior probability that an effect exists in 

a tissue (m value). For computational feasibility, the Markov chain Monte Carlo (MCMC) 

method was used to approximate the exact solution.

Hierarchical agglomerative clustering was performed on trans-eGenes (50% FDR) and cis-

eGenes (5% FDR) using distance metric (1 − Spearman’s ρ) of Meta-Tissue effect sizes 

across all observed genes between tissue pairs. To supplement this analysis, we also 

performed multi-tissue analysis using 1) replication analysis (Extended Data Fig. 7); 2) 

hierarchical FDR control17 for both cis and trans analysis (Supplementary Information 8); 

and 3) an empirical Bayes approach18.

Allele-specific expression

For each sample, allele-specific RNA-seq read counts were generated at all heterozygous 

variants with the GATK ASEReadCounter tool75. Only uniquely mapping reads with a base 

quality ≥10 at the variant were counted, and only those variants with coverage of at least 

eight reads were reported. Variants that met any of the following criteria were flagged and 

removed from downstream analyses: 1) UCSC 50-mer mappability of <1; 2) simulation-

based evidence of mapping bias76; and 3) heterozygous genotype not supported by RNA-seq 

data across all samples for that donor and no significant (FDR > 1%) evidence that the 

variant is monoallelic in expression data75. Gene level measurements of haplotype 

expression were calculated by aggregating counts per sample across all heterozygous 

variants with ASE data within the gene using population phasing. Full ASE data are 

available through dbGaP.

Functional enrichment

We annotated discovered eVariants using chromatin state predictions from 128 cell types or 

cell lines sampled by the Roadmap Epigenomics project2. Genome segmentation was 

performed for each cell type or cell line using a 15-state hidden Markov model (HMM) over 

400 bp windows. Several of the learned states are labelled as enhancers, promoters, and 
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repressed regions. For the standard 15-state Roadmap segmentations, regulatory elements 

are labelled independently for each cell type. For enrichment analyses, we constructed 

background variants sets that matched eVariants to randomly selected variants based on 

chromosome, distance to nearest TSS, and MAF.

trans-eQTL analysis was restricted to protein-coding genes and to GTEx tissues that are 

composed of at least one Roadmap Epigenomics cell type (26 tissues), which included 85 

eVariants and 23 eGenes (10% FDR). We quantified enrichment of the trans variants relative 

to random variants in both enhancer and promoter elements in the GTEx discovery tissue’s 

matched Roadmap cell type (Extended Data Table 4). We then performed the same analysis 

with randomly matched cis-eGenes. Matching cis-eGenes were selected as follows: for each 

of the 23 trans-eGenes g, each having Ng associated eVariants (10% FDR), we randomly 

selected a cis-eGene that also had at least Ng associated variants (10% FDR). We then 

selected the top Ng variants associated with this gene based on P value. We then performed 

the same analysis using random sets of the strongest cis-eGenes, rather than random eGenes. 

Matching the strongest cis-eGenes was performed as follows: for each of the 23 trans-

eGenes g, each having Ng associated eVariants (10% FDR), we randomly selected a cis-

eGene amongst the ten strongest cis-eGenes in that tissue, based on the P value of the 

strongest associated variant that also had at least Ng associated variants (10% FDR). We then 

selected the top Ng associated variants with this gene based on P value. Selecting 23 random 

cis-eGenes a single time yields unstable results, so we ran cis-eGene selection and 

enrichment 70 times with different selections. This was done for both random cis-eGenes 

and random selections amongst the strongest cis-eGenes. We rank-ordered the 70 trials for 

both promoters and enhancers based on average odds ratio enrichment relative to 

background. We then used the trial that was closest to median rank for plotting both 

promoter and enhancer enrichment results.

For piRNA enrichment analysis, we obtained a list of 6,250 piRNA clusters that were 

experimentally determined from RNA sequencing of human testis34. When considering all 

unique trans-eVariants identified in all tissues, we identified an enrichment of trans-eQTLs 

overlapping a piRNA cluster (17.8%) compared to the null expectation that trans-eVariants 

are randomly distributed relative to piRNA clusters (2.5%). To further establish the 

statistical significance of this observation, we generated a null distribution of piRNA-

eVariant overlap by permutation. Using bedtools277, we permuted the location of piRNA 

clusters on the human genome 10,000 times, requiring the piRNA clusters to be excluded 

from centromeres and sex chromosomes. We also evaluated the proportion of trans-eVariants 

located within 10 kb of a piRNA cluster, and estimated the significance of this enrichment 

using the same permutation scheme.

Co-localization of GWAS and eQTL associations

In order to assess the probability that molecular traits as estimated by cis- and trans-eQTLs 

and physiological traits as estimated by GWAS share the same causal variant, we applied the 

coloc R package43. For each GWAS, we approximated the number of independent loci by 

extracting variants with at least genome-wide significance (P <5 ×10−8) and farther than 1 

Mb away from all other variants of higher statistical significance. For each genome-wide 
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significant variant, we extracted the list of all eGenes (q < 0.05 for cis-eGene) within 1 Mb 

for coloc analyses. For each eGene, we excluded any variants without either eQTL or GWAS 

association statistics (effect size estimate, standard error and P value). We obtained reference 

information such as MAF, sample size and case-to-control proportions (in case of binary 

traits) for each variant whenever available; otherwise, study-wide estimate was used as a 

proxy. We defined a region or an eGene as having evidence of co-localization when region- 

or gene-based posterior probability of co-localization .

Data and biospecimen availability

Genotype data from the GTEx v6p release are available in dbGaP (study accession 

phs000424.v6.p1; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000424.v6.p1). The VCFs for the imputed array data are available through 

dgGAP, in phg000520.v2.GTEx MidPoint Imputation.genotype-calls-vcf.c1.GRU.tar (the 

archive contains a VCF for chromosomes 1–22 and a VCF for chromosome X). Allelic 

expression data are also available in dbGaP. Expression data (read counts and RPKM) and 

eQTL input files (normalized expression data and covariates for 44 the tissues) from the 

GTEx v6p release are available from the GTEx Portal (http://gtexportal.org). Expression 

QTL results are available from the GTEx Portal. In addition to results tables for the 44 

tissues in this study (eGenes, significant variant–gene pairs, and all variant–gene pairs 

tested), the portal provides multiple interactive visualization and data exploration features 

for eQTLs, including:

• eQTL box plot: displays variant-gene associations

• Gene eQTL visualizer: displays all significant associations for a gene across 

tissues and linkage disequilibrium information

• Multi-tissue eQTL plot: displays multi-tissue posterior probabilities from meta-

analysis against single-tissue association results

• IGV browser: displays eQTL, across tissues and GWAS catalogue results for a 

selected genomic region

Residual biospecimens are available to all researchers according to the Genotype-Tissue 

Expression (GTEx) project biospecimens access policy. The policy and related forms can be 

found on the GTEx Portal under the Biobank tab.

Code availability

Software used to process the RNA-seq, genotypes, cis-eQTLs, and ASE is available at: 

https://github.com/broadinstitute/gtex-pipeline.
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Extended Data

Extended Data Figure 1. Association of known covariates with expression components removed 
by PEER
Each cell depicts the adjusted (R2) between a pair of variables. Scale bar specific to each 

panel is displayed at the bottom. Grey cells represent pairs of variables without sufficient 

data to estimate correlation. a, For each tissue, adjusted (R2) reflecting the proportion of 

variance explained by each covariate of the entire PEER component removed from the 

expression data. A selected set of the most relevant sample-specific covariates is shown here. 

b, For each tissue, adjusted (R2) reflecting the proportion of variance explained by each 

covariate of the entire PEER component removed from the expression data. A selected set of 

the most relevant donor-specific covariates is shown here. See Supplementary Information 

for complete set of covariates. c, Adjusted R2 between each PEER factor and known sample 

covariates in skeletal muscle. d, Adjusted R2 between each PEER factor and known donor 

covariates in skeletal muscle.
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Extended Data Figure 2. Controlling the discovery of cis- and trans-eGenes
a, b, The number of unique cis- (a) and trans-eGenes (b) across all tissues at varying FDR 

thresholds. c, The per cent change in the number of cis-eGene discoveries comparing FDR 

(Storey’s q value) calculated across all tested genes in each tissue to FDR calculated only 

across autosomal lincRNA and protein-coding genes. Results are shown for each tissue and 

are stratified by gene type. The per cent change for each tissue and gene type is calculated as 

100 ×(no. of cis-eGenes from q value on the restricted gene set – no. of cis-eGenes from q 
value on all tested genes)/(no. of cis-eGenes from q value on all tested genes). d, The per 

cent change in the number of cis-eGene discoveries comparing q value and the Benjamini–

Hochberg (BH) procedure applied to all tested genes in each tissue. The percent change for 

each tissue and gene type is calculated as 100 ×(no. of cis-eGenes from BH – no. of cis-

eGenes from q value)/(no. of cis-eGenes from q value). Box plots depict the IQR, whiskers 

depict 1.5× IQR.
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Extended Data Figure 3. Properties of cis-eGenes and non-eGenes
In these analyses, ‘non-eGenes’ refers to the set of genes with no significantly associated 

cis-eQTLs. a, Density of expression (mean across samples, median across tissues, in log10 

scale) for cis-eGenes and non-eGenes. The difference in mean expression for cis-eGenes and 

non-eGenes is significant (Wald test; P <1 ×10−16). b, Box plots comparing the probability 

of being loss-of-function-intolerant (pLI) scores41 for cis-eGenes and non-eGenes, stratified 

by expression percentile across all genes (mean across samples, median across tissues, in 

log10 scale). On average, highly expressed non-eGenes have higher pLI scores than highly 

expressed cis-eGenes (t-test for the difference in mean pLI score between cis-eGenes and 

non-eGenes; BH adjusted P = 8.3 ×10−4 and 2.1 ×10−9 for (50,75]% and (75,100]%, 

respectively) and lowly expressed non-eGenes (t-test for the difference in mean pLI score 

between highly and lowly expressed non-eGenes; BH adjusted P ≤7.8 ×10−46, P ≤5.5 ×10−17 

and P ≤2.1 ×10−3 for (75,100]% vs [0,25]%, (75,100 vs (25,50]% and (75,100]% vs 

(50,75]%, respectively). c, Gene Ontology (GO) analysis of tested protein-coding non-

eGenes. We used the PANTHER overrepresentation test78 (release 20160715) against 20,972 

human genes as background to test for enrichment in GO biological processes using the GO 

database release 2017-02-28. Significant GO IDs (Bonferroni adjusted P < 0.05) were 

selected for analysis with REVIGO79 to group similar ontological terms, which yielded 22 

over-represented GO IDs. d, GO analysis of a more stringent set of protein-coding non-

eGenes. Selected genes included those not tested in GTEx (532 genes) or those with a 

minimum nominal P value across tissues greater than 0.1 (692 genes). Of these stringent 

1,224 non-eGenes, 808 were mapped in the GO analysis. Using a similar approach as in c, 

20 over-represented GO IDs were identified. For both c and d, the x-axis represents the 

−log10 P value resulting from GO analysis. GO IDs are coloured by the broader enrichment 

category to which each corresponds. Box plots depict the IQR, whiskers depict 1.5× IQR.
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Extended Data Figure 4. Identification of cis-acting eQTLs using allele-specific expression at 
chromosome-wide distances
a, A logistic regression based model was developed to predict the probability of phasing 

error as a function of distance and variant minor allele frequencies. When applied to 

chromosome 2 of 1000 Genomes sample NA12878, this model had a receiver operating 

characteristic (ROC) area under the curve (AUC) of 0.87 using population phasing compared 

to transmission phasing. b, ROC when applying the beta-binomial mixture model to detect 

cis-acting regulation to the GTEx v6p subcutaneous adipose cis-eQTLs, with an AUC of 

0.88. As the null, eGenes were shuffled with respect to eVariants. c, Power analysis using all 

nominally significant (P <1.0 ×10−5) linkage disequilibrium pruned associations within 100 

kb of the TSS illustrating the number of eQTLs with nominally significant (P ≤ 0.01) 

evidence of cis-regulation as a function of phasing error and eQTL effect size. Expression 

QTL effect size was calculated using a companion method28, and uniform phasing error 

between 0 and 100% was introduced in silico. d, Proportion of nominally significant (P <1.0 

×10−5) linkage disequilibrium-pruned intrachromosomal eQTLs with nominally significant 

(P ≤ 0.01) ASE supported evidence of cis regulation in bins of increasing TSS distance. 

Observed indicates what is seen in the data, while Max Error indicates what would be 

expected in the worst-case scenario of phasing error (50%). e, Example of significant ASE 

supported cis-regulation at a distance of 52.7 Mb between eVariant rs17494053 and eGene 

ENSG00000108509 in whole blood. Each point represents allelic imbalance in a single 

eVariant homozygote (circle) or heterozygote (triangle).

Extended Data Figure 5. Effects of sample size and assayed tissues on cis-eGene discovery
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a, Number of significant cis-eGenes at 5% FDR (y-axis) discovered in 44 GTEx tissues 

versus sample size (x-axis). b, Number of significant eGenes at FDR 5% (y-axis) discovered 

in nine GTEx tissues each subsampled to various sizes where possible (n =70, 100, 125, 150, 

175, 200, 225, 250, 275, 300, 325, and 350; x-axis). We computed the number of cis-eGenes 

at each subsample size (circles connected by lines). We also plotted the number of cis-

eGenes discovered with no subsampling of donors (diamonds). c, Number of significant cis-

eGenes at FDR 5% (y-axis) as a function of sample size and number of tissues assayed (x-

axis). Each tissue was subsampled to 70, 100, 150, 200, and 250 donors, and a forward 

search was used to assess sequential combinations of tissues that maximize the total number 

of unique cis-eGenes discovered.

Extended Data Figure 6. Measuring cis-regulatory variation using ASE
a, Proportion of protein-coding genes with ASE data in at least one tissue as a function of 

donors (top row) and with significant imbalance (binomial test versus 0.5, 5% FDR) 

stratified by ASE effect size (|log2(hapa count/ hapb count)|) deciles. Gene-level 

measurements of haplotype expression were calculated by aggregating counts per sample 
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across all heterozygous variants with ASE data within the gene using population phasing. 

The following filters were applied on ASE data: total coverage ≥8 reads, no mapping bias in 

simulations76, UCSC mappability > 50, and no significant (FDR > 1%) evidence that variant 

is monoallelic in expression data75. b, log2 transformed cis-eQTL effect size (x-axis) versus 

log2 transformed ASE effect size (y-axis) for whole blood (Spearman’s ρ =0.82) and c, 

subcutaneous adipose (Spearman’s ρ =0.74).

Extended Data Figure 7. Replication of cis-eQTLs between tissues
a, π1 statistics for cis-eQTLs are reported for all pairwise combinations of discovery (y-

axis) and replication (x-axis) tissues. Higher π1 values indicate a stronger replication signal. 

Tissues are grouped using hierarchical clustering on rows and columns separately with a 

distance metric of 1 − ρ, where ρ is the Spearman’s correlation coefficient of π1 values. π1 

is calculated only when the gene is expressed and testable in the replication tissue. b, c, π1 

replication is reported between tissues subsampled down to 70 non-matched (b) and 

matched (c) donors. In (c), grey tiles indicate tissue pairs with fewer than 70 shared donors. 

d, Effect of sample size (x-axis) on average π1 replication (y-axis) across all replication 

tissues. e, Scatter plot of π1 scores among tissue pairs with matched (x-axis) and non-

matched (y-axis) donors.
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Extended Data Figure 8. Tissue-specificity of cis- and trans-eQTLs
a, Sharing of independently identified cis-eGenes across the 44 GTEx tissues (cis-eGenes 

are independently identified in each of the 44 tissues and then binned by the number of 

tissues in which they appear). b, Sharing of cis-eGenes across 44 GTEx tissues that were 

identified using the hierarchical multi-tissue analysis. c, The prior probabilities of having 

significant variant–gene association in different numbers of tissues, calculated using an 

empirical Bayes model. The prior probabilities are summed up on the basis of the Hamming 

weights of the corresponding cis-eQTL configurations. d–g, Meta-analysis performed using 

Meta-Tissue for trans-eGenes (50% FDR), randomly selected cis-eGenes (50 % FDR), and 

an equal number of the top cis-eGenes by P value. Distribution of the number of tissues that 

have Meta-Tissue m values greater than a given threshold (d, 0.5; e, 0.6; f, 0.9) across 

variant–gene pairs that have an effect (based on m value thresholding) in at least one tissue. 

g, The same distribution as d except that variant–gene pairs with predicted effect in zero 

tissues (based on the number of m values > 0.5) are included. Meta-Tissue predicts that 

many cis-eGenes (50% FDR) and trans-eGenes (50% FDR) will have an effect in zero 

tissues. The number of zero predictions is largely reduced for the top most significant cis-
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eGenes. h, Distribution of observed replication rate between pairs of tissues for trans-eQTLs 

(10% FDR) versus the predicted replication rate for trans-eQTLs (10% FDR) based on a 

negative binomial generalized linear model trained on cis-eQTLs (10% FDR0.1). This 

model directly accounts for effect size and minor allele frequency. Replication rates shown 

for a range of FDR thresholds in replication tissue. Box plots depict the IQR, whiskers 

depict 1.5× IQR.

Extended Data Figure 9. Examples of trans-eQTLs shared across tissues
a, An example of a trans-eQTL (rs7683255–NUDT13) originally identified in sun-exposed 

skin (10%, P ≤ 1.1 ×10−10, indicated by asterisk) that has a global effect across tissues. The 

lines represent 95% confidence intervals of the effect sizes. A thicker line indicates that this 

variant–gene pair is called significant at P ≤ 0.05 in the corresponding tissue. b, An example 

of a trans-eQTL (rs60413914–RMDN3) that is genome-wide significant in putamen (basal 

ganglia) (10% FDR, P ≤1.2 ×10−13, indicated by asterisk) that has an effect in all five brain 

tissues tested but shows little effect in other tissues. c, Expression levels (RPKM) of 

RMDN3 in all donors across 44 tissues. Box plots depict the IQR, whiskers depict 1.5× IQR.
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Extended Data Figure 10. Sharing information across tissues for cis-eQTLs
a, The proportion of expressed genes for which cis-eGenes are discovered in single tissues 

(5% FDR; origin) and the multi-tissue meta-analysis (m > 0.9; arrow), stratified by the 

sample size of individual tissues. In the meta-analysis, cis-eQTL discoveries are made using 

Meta-Tissue to identify tissues where the posterior probability a given cis-eQTL effect exists 

(that is, the tissue’s m value for the variant) is >0.9. b, The proportion of expressed genes 

that had a cis-eQTL in the subsampled data (n = 70) is shown on the y-axis, and the actual 

sample size of the tissue is shown on the x-axis. The proportion is shown for the tissue-by-

tissue approach (5% FDR; origin) and using Meta-Tissue (m >0.9; arrow). c, For each of the 

subsampled tissue data sets (n = 70), we identified the additional K discoveries that were 

made using Meta-Tissue but were not significant at the 5% FDR threshold in the tissue-by-

tissue analysis; we then identified the K most significant cis-eQTLs in the tissue-by-tissue 

analysis with a q value greater than 5% representing the additional discoveries we would 

make by simply relaxing the FDR. We then compared these two sets of K cis-eQTLs to the 

list of significant cis-eQTLs found in the full tissue-by-tissue analysis by calculating the 

proportion of the K cis-eQTLs that were significant in the full analysis (y-axis). The tissues 

are ordered along the x-axis by increasing sample size in the actual data set. d, The 

proportion of annotated and expressed genes that were found to be eGenes using the tissue-

by-tissue approach and the hierarchical selection procedure implemented by TreeQTL. e, 

The number of cis-eGene discoveries per tissue (y-axis) against sample size (x-axis). The 

number of discoveries for the tissue-by-tissue approach are represented by the origin of each 

segment, while the number of discoveries from the hierarchical selection procedure are 

shown as arrows. As with Meta-Tissue, the hierarchical procedure improves cis-eGene 
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discovery for tissues with low sample sizes, albeit fewer tissues overall have the benefits of 

this effect. Furthermore, an outcome of this procedure is that for tissues with high sample 

sizes, reported numbers of cis-eGenes are more conservative than those observed in the 

tissue-by-tissue analyses or Meta-Tissue. f, Improvement of cis-eGene discovery by 

incorporating genomic annotations. For the 26 tissues for which we can relate cell-type 

specific chromHMM annotations, we identify cis-eGenes accounting for the variant-level 

genomic annotations and corresponding enrichment estimates using the Bayesian FDR 

control procedure described previously80. For each tissue, the number of cis-eGenes 

identified by the Bayesian procedure (arrow) is plotted against the tissue-by-tissue results 

(origin).

Extended Data Figure 11. cis effect size analyses
a, For each autosomal protein-coding and lincRNA cis-eGene with eVariants discovered 

independently in at least five tissues, the median effect size was computed across these 
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tissues. The empirical cumulative distribution function (CDF) of these median effect sizes is 

depicted. b, Normalized effect sizes of cis-eVariants located upstream of the gene, within the 

transcript, and downstream of the gene. c, cis-eQTL effect distributions stratified by 

discovery tissue. Tissues are sorted from largest sample size (muscle-skeletal, n = 361) to the 

smallest (uterus, n = 70). Box plots depict the IQR, whiskers depict 1.5× IQR.

Extended Data Figure 12. trans-eQTL discovery restricted to informed subsets
a, Quantile–quantile (QQ) plot of trans-eQTL P values from all variants (x-axis) and the 

subset of trans-eQTL P values restricted to cis-eVariants (y-axis), illustrating enrichment of 

low trans-eQTL association P values for cis-eVariants. Data are plotted separately for 

skeletal muscle (pale blue) and adipose (red). trans-eQTLs with FDR ≤ 10% are shown as 

large circles, those with FDR > 10% are shown as small circles. b, QQ plot of trans-eQTL P 
values from all variants (x-axis) and the subset of trans-eQTL P values restricted to GWAS 

associated variants (y-axis), illustrating enrichment of low trans-eQTL association P values 

for cis-eVariants. Data are plotted separately for skeletal muscle (pale blue) and lung 

(green). trans-eQTLs with FDR ≤ 10% are shown as large circles, those with FDR > 10% 

are shown as small circles.
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Extended Data Figure 13. Replication of cis-eQTLs in TwinsUK data
a, All cis-eQTLs (5% FDR) from six tissues (adipose, subcutaneous; adipose, visceral 

omentum; cells, EBV-transformed lymphocytes; skin, not sun-exposed; skin, sun-exposed; 

and whole blood) were examined for replication in four closely matched tissues (LCLs, skin, 

whole blood, subcutaneous adipose) from the TwinsUK data. For each tissue pair (in facets), 

replication P value histograms illustrate strong enrichment of small P values. π1 statistics are 

provided for each tissue pair. b, All trans-eVariant–eGene pairs (10% FDR) from all tissues 

were examined for replication in four closely matched tissues (LCLs, skin, whole blood, 

subcutaneous adipose) from the TwinsUK data. Observed replication P values (y-axis) are 

plotted against the expected uniform P value distribution under the null hypothesis (x-axis). 

Replication P values are plotted separately for matched (grey) and unmatched (black) tissue 

pairs.
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Extended Data Figure 14. Disease gene enrichment for tissue-specific and shared cis-eQTLs
Enrichment of shared and tissue-specific cis-eGenes in different disease gene data sets. 

Enrichments and 95% CI in each data set are calculated via Fisher’s exact test, and the odds 

ratio is plotted after log10 transformation.

Extended Data Figure 15. General and replicated per-variant cis-eGene associations across 
tissues
a, Distribution of the number of unique cis-eGenes per variant within each tissue (points) or 

in the union of variant–eGene associations across all tissues. b, Proportion of variants with 

top-associated gene preserved between tissues for varying effect size thresholds, across all 

pairwise tissue comparisons. c, Proportion of variants with top-associated gene preserved 
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between tissues for varying nominal P value thresholds, across all pairwise tissue 

comparisons. Red distributions include all variants with an associated cis-eGene in one of 

the two compared tissues, and blue distributions require the variant to have at least two 

associated cis-eGenes in each tissue. Distributions for which more than half of the pairwise 

comparisons (points) are empty are not shown.

Extended Data Figure 16. Broad trans-regulatory locus 9q22 in thyroid tissue
a, FOXE1 expression is thyroid-specific. b, Correlation between FOXE1 expression levels 

and thyroid PEER factors, compared to 100 random genes. For every gene, absolute 

correlation was sorted in decreasing order. The correlation of FOXE1 with the fifth, sixth, 

seventh and eighth PEER factors was significantly higher than the correlation of random 

genes at those rank ordered PEER factors (empirical P ≤ 0.05). c–e, Variants in the chr 9q22 

locus were enriched for association with genes on other chromosomes in thyroid carcinomas 

compared to randomly selected variants nearby randomly selected genes. We used variants 

that were found within 35 kb upstream or downstream of the gene TSS. f, rs10759975 is 

associated with trans-eGene TMEM253. g, rs10759975 is associated with trans-eGene 

ARFGEF3. h, rs10759975 shows cis association with TRMO. i, rs10759975 is weakly 

associated in cis with FOXE1. Box plots depict the IQR, whiskers depict 1.5× IQR.
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Extended Data Figure 17. Trait-associated variants in skeletal muscle near interferon regulatory 
factor IRF1
a, rs1012793 has broad regulatory impact in skeletal muscle. b, Gene set enrichment for 

potential trans-eGene targets (identified at P ≤ 0.001) of skeletal muscle 5q31 locus.

Extended Data Table 1

trans-eVariant and trans-eGene discoveries for genome-wide FDr control, and trans-eGene 

discoveries for gene-level FDr control

Genome wide Gene-level FDR

Tissue No. of samples No. of trans-eGenes No. of trans-eVariants No. of trans-eGenes

Muscle – Skeletal 361 9 43 4

Whole Blood 338 1 2 1

Skin – Sun Exposed 
(Lower leg)

302 6 16 3

Adipose – Subcutaneous 298 2 7 0

Lung 278 2 2 2

Thyroid 278 21 181 3

Cells – Transformed 
fibroblasts

272 1 10 1

Nerve – Tibial 256 0 0 1

Esophagus – Mucosa 241 3 11 3

Artery – Aorta 197 1 1 1

Skin – Not Sun Exposed 
(Suprapubic)

196 1 1 2

Stomach 170 0 0 2

Colon – Transverse 169 2 10 2

Testis 157 35 267 16

Pancreas 149 2 12 1

Adrenal Gland 126 1 1 1

Brain – Putamen (Basal 
ganglia)

82 3 11 2
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Genome wide Gene-level FDR

Tissue No. of samples No. of trans-eGenes No. of trans-eVariants No. of trans-eGenes

Vagina 79 4 27 1

Total unique 93 602 46

Each tissue with non-zero values is included as a row; the columns include the number of samples for that tissue, followed 
by the number of unique trans-eGenes and trans-eVariants identified in the genome-wide tests, and the number of unique 
trans-eGenes found using gene-level FDR calibration (Supplementary Information 8). Ultimately, the set of 673 trans-
eQTLs identified in the genome-wide approach yielded 602 unique trans-eVariants.

Extended Data Table 2

Distal (>5 Mb) intra-chromosomal eQTLs across the GTEx tissues

Tissue No. of samples No. of trans-eGenes No. of trans-eVariants

Whole Blood 338 4 17

Skin – Sun Exposed (Lower leg) 302 2 12

Adipose – Subcutaneous 297 1 2

Lung 278 2 37

Thyroid 278 5 17

Cells – Transformed fibroblasts 272 4 17

Esophagus – Mucosa 241 15 184

Testis 157 4 30

Brain – Putamen (Basal ganglia) 82 1 2

Brain – Hypothalamus 81 1 2

Total unique 7047 33 284

Only tissues with at least one distal intra-chromosomal eQTL are listed.

Extended Data Table 3

trans-eVariant and trans-eGene discoveries with hierarchical FDr control

Tissue No. of samples No. of trans-eGenes No. of trans-eVariants

Whole Blood 338 1 1

Skin – Sun Exposed (Lower leg) 302 2 3

Lung 278 2 2

Thyroid 278 2 2

Esophagus – Mucosa 241 3 3

Artery – Aorta 197 1 1

Skin – Not Sun Exposed (Suprapubic) 196 1 1

Heart – Left Ventricle 190 1 1

Testis 157 4 5

Colon – Sigmoid 124 1 1

Brain – Cortex 96 1 1

Brain – Putamen (Basal ganglia) 82 1 1

Total unique 20 22

Page 35

Nature. Author manuscript; available in PMC 2018 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Only tissues with non-zero discoveries are shown. The three-level hierarchical procedure (see Methods) performs FDR 
control across tissues. More specifically, it controls the FDR of eVariants, the average proportion of false variant-gene 
associations across all eVariants, and a weighted average of false tissue discoveries for the selected variant-gene pairs 
(weighted by the size of the eVariant and eGene sets). The procedure was applied after linkage disequilibrium pruning.

Extended Data Table 4

GTEx tissue mapping with Epigenomics roadmap cell types

GTEx Tissue Epigenomics Roadmap Cell Type

Adipose – Subcutaneous Adipose Nuclei (E063)

Adipose – Visceral (Omentum) Adipose Nuclei (E063)

Adrenal Gland NA

Artery – Aorta Aorta (E065)

Artery – Coronary NA

Artery – Tibial NA

Brain – Anterior cingulate cortex (BA24) Brain Cingulate Gyrus (E069)

Brain – Caudate (basal ganglia) Brain Anterior Caudate (E068)

Brain – Cerebellar Hemisphere NA

Brain – Cerebellum NA

Brain – Cortex Brain Angular Gyrus (E067), Brain Inferior Temporal Lobe (E072), 
Brain Dorsolateral Prefrontal Cortex (E073)

Brain – Frontal Cortex (BA9) Brain Inferior Temporal Lobe (E072), Brain – Dorsolateral Prefrontal 
Cortex (E073)

Brain – Hippocampus Brain Hippocampus Middle (E071)

Brain – Hypothalamus NA

Brain – Nucleus accumbens (basal ganglia) NA

Brain – Putamen (basal ganglia) NA

Breast – Mammary Tissue Breast Myoepithelial Primary Cells (E027)

Cells – EBV-transformed lymphocytes Lymphoblastoid Cells (E116)

Cells – Transformed fibroblasts NA

Colon – Sigmoid Sigmoid Colon (E106)

Colon – Transverse Colonic Mucosa (E075), Colon Smooth Muscle (E076)

Esophagus – Gastroesophageal Junction Esophagus (E079)

Esophagus – Mucosa Esophagus (E079)

Esophagus – Muscularis Esophagus (E079)

Heart – Atrial Appendage Right Atrium (E104)

Heart – Left Ventricle Left Ventricle (E095)

Liver Liver (E066)

Lung Lung (E096)

Muscle – Skeletal Skeletal Muscle Male (E107), Skeletal Muscle Female (E108)

Nerve – Tibial NA

Ovary Ovary (E097)

Pancreas Pancreas (E098)

Pituitary NA

Prostate NA

Skin – Not Sun Exposed (Suprapubic) NA

Skin – Sun Exposed (Lower leg) NA
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GTEx Tissue Epigenomics Roadmap Cell Type

Small Intestine – Terminal Ileum Small Intestine (E109)

Spleen Spleen (E113)

Stomach Stomach Mucosa (E110), Stomach Smooth Muscle (E111)

Testis NA

Thyroid NA

Uterus NA

Vagina NA

Whole Blood Primary mononuclear cells from peripheral blood (E062)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sample size and eGene discovery in the GTEx v6p study
a, Illustration of the 44 tissues and cell lines included in the GTEx v6p project with the 

associated number of cis- (left) and trans-eGenes (right) and sample sizes. Each tissue has a 

unique colour code (defined in Supplementary Fig. 5). b, Fraction of genes that are eGenes 

across all tissues by transcript class. The three tissues highlighted are: testis, which has the 

highest proportion of trans-eGenes; skeletal muscle, which has the largest sample size; and 

fibroblasts, which have the highest proportion of cis-eGenes. Dark bars depict the fraction of 

all curated human genes in GENCODE v19. Light bars depict the fraction of genes 

expressed in one or more tissues. c, Proportion of expressed genes that are cis-eGenes (y-

axis) as a function of tissue sample size (x-axis). Colours represent tissues, as in a. d, 

Number of trans-eQTLs (x-axis) per tissue (y-axis), with sample size indicated by point size.
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Figure 2. Patterns of tissue sharing of eQTL effects
a, Similarity (Spearman’s ρ) of Meta-Tissue effect sizes between tissues for cis- (upper 

triangle, 5% FDR) and trans- (lower triangle, 50% FDR) eQTLs. Tissues (by colours as in 

Fig. 1a) are ordered by agglomerative hierarchical clustering of the cis-eQTL results. b, The 

number of tissues in which a given eQTL is shared as a function of tissue sample size. For 

each tissue, we estimated the degree of sharing (number of tissues with m >0.9) for all 

eQTLs identified in that tissue at a 5% FDR. Tissues were then binned into quartiles on the 

basis of sample size. A higher proportion of eQTLs identified in tissues with small sample 

sizes have shared effects across multiple tissues compared with more deeply sampled 

tissues. This pattern inverts at higher sample sizes where more of the effects are tissue-

specific. The median number of shared tissues is plotted for each quartile as a horizontal 

black line. c, Distribution of the number of tissues having Meta-Tissue m > 0.5 for the top 

variant for each trans-eGene at 50% FDR, and FDR-matched, randomly selected cis-eGenes 

(also 50% FDR). cis-eGenes were matched for discovery tissue to the trans-eGenes.
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Figure 3. Functional characterization of cis-eQTLs
a, Enrichment (x-axis) of eVariants in cis-regulatory elements (CREs) across 128 Roadmap 

Epigenomics project cell types, for each GTEx discovery tissue (y-axis). Enrichment 

estimated by comparing to random MAF- and distance-matched variants. Stronger 

enrichment was observed in matched tissues (coloured dots) than in unmatched tissues (box 

plots). b, Proportion of eQTLs shared between two tissues (m > 0.9) if the eVariant overlaps 

the same Roadmap annotation in both tissues (y-axis) or different annotations (x-axis). 

Points represent the mean across all tissues, coloured by the discovery tissue. c, Enrichment 

of eVariants (y-axis) in tissue-matched enhancers (black) and promoters (grey) for the first 

four conditionally independent eQTLs discovered for each eGene (x-axis). d, Proportion of 

eVariants overlapping tissue-matched DNase I hypersensitive sites (DHS; y-axis) as a 

function of the probability that a variant is causal (x-axis), coloured by the eQTL discovery 

tissue. e, Normalized absolute eQTL effect size (x-axis) for each eVariant annotation class 

(y-axis). f, Median (line) and interquartile range (shading) of normalized absolute eQTL 

effect size (y-axis), as a function of the number of tissues in which the eGene is expressed 

(x-axis). Box plots depict the interquartile range (IQR), whiskers depict 1.5× IQR. OR, odds 

ratio.
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Figure 4. Functional characterization of GTEx trans-eVariants
a, Frequency distribution of Mendelian randomization t-statistic, for 296 cis–trans-eQTLs 

and matched background variants. b, CRE enrichment (y-axis) of trans-eVariants (10% 

FDR), cis-eVariants (10% FDR, to match trans-eVariants), and top most significant cis-

eVariants. Box plots show promoter and enhancer enrichment (x-axis) in matched cell-type 

CRE annotations compared to MAF- and distance-matched background variants. c, 

Proportion (x-axis) of variants overlapping piRNA clusters, including randomly sampled 

background loci, trans-eVariants across all tissues, testis trans-eVariants, thyroid trans-

eVariants, and trans-eVariants from all tissues other than testis and thyroid. Asterisks denote 

significant enrichment (permutation test, P ≤1.0 ×10−4). Box plots depict the IQR, whiskers 

depict 1.5× IQR.
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Figure 5. Properties of cis-eQTL overlap with complex trait associated loci
a, Enrichment of tissue-specific and tissue-shared eGenes in disease and loss-of-function 

mutation intolerant genes. Tissue-specific and shared eGenes were defined as eGenes in the 

bottom and top 10% of the distribution of proportion of tissues with an eQTL effect. Bars 

represent 95% confidence intervals. b, Proportion of eQTLs (y-axis) discovered as a 

function of P cutoffs (x-axis). c, Proportion of variants (y-axis) with top associated protein-

coding gene shared between tissues at varying P thresholds (x-axis). d, Number of GWAS 

loci (y-axis) and their co-localization results for each of 21 traits (x-axis), coloured by 

whether the eGene is the closest expressed gene to the lead GWAS variant. e, Proportion of 

GWAS loci (y-axis) with a significant co-localization for each of 21 traits (x-axis). Box plots 

depict the proportion explained in each of 44 tissues, red dots depict the proportion 

explained by the union of all tissues. Box plots depict the IQR, whiskers depict 1.5× IQR.
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Figure 6. Characterization of complex trait-associated trans-eQTLs
a, Association of rs1867277 with PEER-corrected TMEM253 expression (P ≤ 2.2 ×10−16). 

b, Quantile–quantile plot of associations between 19 variants in the 9q22 locus and all genes 

in GTEx thyroid gene expression levels, compared to 19 random variants from the same 

chromosome, and associations between 23 variants in the 9q22 locus and all genes in TCGA 

thyroid tumour expression data, compared to 23 random variants from the same 

chromosome. c, Network depicting cis and trans regulatory effects of rs1012793 mediated 

through interferon regulatory factor 1 (IRF1). Rs1012793 affects expression of IRF1 in cis 
and PSME1 and PARP10 in trans (box plots). IRF1 is significantly co-expressed with the 

trans-eGenes. Colours in scatter plots refer to genotype at rs1012793. d, cis and trans 
association significance of variants within 1 Mb of the IRF1 TSS in the chromosome 5 locus 

with cis-eGene IRF1 (blue) and trans-eGene PSME1 (brown), showing concordant signal 

across the locus. Box plots depict the IQR, whiskers depict 1.5× IQR.
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