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Purpose. To investigate whether quantitative radiomics features extracted from dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) could be used to differentiate triple-negative breast cancer (TNBC) and nontriple-negative breast cancer
(non-TNBC). Materials and Methods. This retrospective study included DCE-MRI images of 81 breast cancer patients (44
TNBC and 37 non-TNBC) from August 2018 to October 2019. The MR scans were achieved at a 1.5 T MR scanner. For each
patient, the largest tumor mass was selected to analyze. Three-dimensional (3D) images of the regions of interest (ROIs) were
automatically segmented on the third DCE phase by a deep learning segmentation model; then, the ROIs were checked and
revised by 2 radiologists. DCE-MRI radiomics features were extracted from the 3D tumor volume. The patients were randomly
divided into training (N = 57) and test (N = 24) cohorts. The machine learning classifier was built in the training dataset, and 5-
fold cross-validation was performed on the training cohort to train and validate. The data of the test cohort were used to
investigate the predictive power of the radiomics model in predicting TNBC and non-TNBC. The performance of the model
was evaluated by the area under receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Results. The
radiomics model based on 15 features got the best performance. The AUC achieved 0.741 for the cross-validation, and 0.867 for
the independent testing cohort. Conclusion. The radiomics model based on automatic image segmentation of DCE-MRI can be
used to distinguish TNBC and non-TNBC.

1. Introduction

Breast cancer is a heterogeneous disease with different clini-
cal behavior, subtypes, and treatment responses [1, 2]. There
are four main intrinsic molecular subtypes of breast cancer:
luminal A, luminal B, human epidermal growth factor recep-
tor 2- (HER2-) enriched, and triple-negative [3]. Assessment
of molecular subtypes is currently based on either gene
expression profiling or immuno-histochemical (IHC) [4],
which all require invasive tumor sampling. However, because
of the heterogeneity of breast cancer, limited biopsy tissue
sometimes cannot represent the entire tumor, which will
affect the treatment effect. Triple-negative breast cancer

(TNBC) is a particular type of breast cancer defined by the
absence of estrogen and progesterone receptor expression
as well as the absence of ERBB2 amplification, which
accounts for 15% to 20% of breast cancers [5]. It is more
aggressive and has a low survival rate and lack of effective tar-
geted therapy. If we can accurately distinguish triple-negative
and nontriple-negative breast cancer, it will help our clinical
decision-making.

Magnetic resonance imaging (MRI) is the most sensitive
imaging technique for breast cancer detection. Recent studies
have found that imaging omics models based on breast MRI
have made a breakthrough in the differentiation of benign
and malignant breast tumors [6, 7] and molecular subtypes
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[8, 9]. Radiomics is a noninvasive imaging technology that
has great potential to evaluate the entire tumor features
through the extraction of a large number of quantitative
imaging features [10, 11]. In clinical practice, radiomics is
expected to become an imaging biomarker for different
tumors.

Precise segmentation of breast tumors as the mask is par-
ticularly important for radiomics model exploration and
affects the efficacy of radiomics models. The current image
segmentation methods include manual, semiautomatic, and
fully automatic. Prior studies in the breast mainly used man-
ual segmentation [8] or localizing region-based active con-
tours algorithm [12] to determine the boundary of interest
on images, which could be time and human consuming.

Deep learning is a kind of abstraction and simulation of
the basic characteristics of the human brain or natural neural
network. We have completed a preliminary study on the
automatic segmentation of breast tumors in DCE-MRI
images with deep learning models. The results show that this
method has good repeatability and accuracy and can be used
for automatic segmentation and measurement of breast
tumors [13]. The purpose of this study was to investigate
whether radiomics models based on automatic image seg-
mentation of DCE-MRI can predict TNBC in a population
of Chinese women.

2. Materials and Methods

This study was a retrospective study and was approved by the
responsible institutional review board of Peking University
First Hospital [IRB number: 2019(170)] with a waiver of
informed consent.

2.1. Patients. A consecutive group of patients who underwent
DCE-MRI before surgery from August 2018 to October 2019
was queried. All the patients had molecular subtype results
with surgery specimen pathology reports. The criteria for
exclusion from the study were as follows: (I) has received
any tumor-specific therapy before MRI exam include neoad-
juvant chemotherapy (NAC), hormonal therapy, and radio-
therapy; (II) stage 0 or ductal carcinoma in situ (DCIS) at
diagnosis; (III) heterogeneous tumor which contains two or
more molecular subtypes; (V) has artifacts on MRI exams.
Finally, 81 women were recruited, with ages between 36
and 85 years. Among them, 4 women with multiple unilateral
tumors were checked according to the pathological record,
and the largest tumor mass was selected for analysis. The data
were randomly divided into two datasets. Fifty-seven cases
were randomly selected as the training cohort (TNBC = 31,
non − TNBC = 26). The other 24 cases were left as the inde-
pendent testing cohort (TNBC = 13, non − TNBC = 11).
The patient enrollment process is depicted in Figure 1. Clin-
ical characteristics of the patients are shown in Table 1. There
was no significant difference in clinical characteristics
between the training and testing cohorts.

2.2. MR Imaging.MR imaging was performed on a 1.5TMRI
system (Signa Twinspeed; GE Medical Systems, USA) with
an eight-channel phased-array bilateral breast coil. The

MRI protocol included axial T1-weighted imaging T2-
weighted imaging, diffusion-weighted imaging, and DCE-
MRI. Three-dimensional axial T1WI volume sequence of
DCEMR imaging was performed every 58 s to scan 124 slices
(TR 6ms/TE 2.6ms; FOV, 32 cm × 32 cm; matrix, 384 × 288;
slice thickness, 2.4mm; intersection gap, 0mm; bandwidth,
62.5Hz; and NEX,1). The DCE-MRI acquisitions were
started after intravenous administration of 0.1mmol/kg of
Gd-DTPA (Magnevist, Bayer Schering Pharma, Germany),
followed by a flush of 20ml of saline solution with the flow
of about 2ml/s. The acquisition was repeated eight times,
and each phase took 58 seconds.

2.3. Image Segmentation. The homemade deep learning seg-
mentation model of breast tumor has been established and
published [13]. The model runs on a hardware platform with
GPU NVIDIA Tesla P100 16G, and the software includes
Python 3.6, Pytorch 0.4.1, Opencv, Numpy, and Simple ITK.

The segmentation model is 3D U-Net. The input is the
images of the third postcontrast of DCE-MRI, and the output
is the automatic segmentation of the tumor region. The
breast tumor was segmented at the third postcontrast of
DCE-MRI, to better distinguish it from background paren-
chyma. The algorithms use a Coarse-to-Fine segmentation
method, first to segment the bilateral breast, and then seg-
ment the tumor lesion (Figure 2).

ITK-SNAP Toolbox v. 3.6.0 (http://www.itksnap.org/)
was utilized for revising the automatically segmented tumor
areas. Two dedicated breast radiologists (reader A and reader
B, with and more than 17 years of experience in breast diag-
nosis, respectively) participated in the manual revision. The
rules for manual revision are as follows: (1) labeling the
tumor lesions with pathological record of molecular subtype;
(2) if there are multiple tumors in the unilateral or bilateral
breast, only the largest tumor was selected (Figure 3). After
the revision, the overlay of the automatic segmentation
tumor area and human annotation area was compared by
Dice Similarity Coefficient (DSC).

2.4. Radiomics Feature Analysis andModeling. The radiomics
pipeline includes the following steps: (1) image preprocess-
ing, (2) radiomics feature extraction, (3) radiomics model
development, and (4) results inspection.

Images were preprocessed before extracting radiomics
features and the pipeline of preprocessing was shown in Sup-
plement Material S1. All the MRI images were filtered by
Laplacian of Gaussian (LoG) filter, which was used to do
image denoising and image edges detection. All the images
were also performed wavelet transformation, which was used
to do image denoising and improve the image quality. So
there were three types of images, namely, “Original Images,”
“LoG Images,” and “Wavelet Images.” All the images would
be used for omics analysis.

The radiomics features were extracted utilizing the PyR-
adiomics software package in Python [14]. A total of 1,070
radiomics features were extracted from each ROI, containing
840 texture features, 216 first-order statistical features, and
14 shape-based features (Supplement Material S2 and Sup-
plement Table S3).
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In this research, the radiomics models were developed
followed the below steps: data normalization (four methods),
dimension reduction(two methods), feature selection(four
methods, 20 features), and classifier (10 methods). A detailed
list of available options can be found in Table 2. The 6400

(4 × 2 × 4 × 20 × 10) radiomics models were established
through all possible combinations of all the methods.
Cross-validation (CV) was performed with 5-fold on the
training cohort to train and validate.

The statistical result presented includes the area under
the curve (AUC), accuracy, sensitivity, specificity, and others
for the training cohort and test cohort. Statistics of all models
are sorted by the AUC on the testing cohort, hence, different
models can be easily compared to find the best model. All the
radiomics models were explored and tested on an open-
source platform of Feature Explorer Pro (FAEPro, V 0.3.4)
on Python (3.7.6) [15].

2.5. Statistical Analysis. Comparison of clinical characteristics
between the training and testing cohorts was achieved by the
Chi-square test or the Fisher’s exact test using the SPSS 23.0
software package (SPSS, Inc., Chicago, IL, USA). Statistical sig-
nificance was established at a p value < 0.05. The performance
of the model was evaluated using receiver operating character-
istic (ROC) curve analysis. The AUC was calculated for quanti-
fication. Graphpad Prism version 8 was used for analysis. The
accuracy, sensitivity, and specificity were also calculated at a
cutoff value that maximized the value of the Youden index.

Patients who underwent DCE-MRI before their surgical
procedure in the period of August 2018 October 2019 and

had pathology reports with molecular subtype result availabel

Exclusion (n = 31);
Receive NAC (n = 27);
DCIS at diagnosis (n = 1);
Heterogeneous tumor (n =1);
Artifact on MRI (n = 2);

Eventually included breast cancer patients (n = 81)

Training cohort (n = 57) Testing cohort (n = 24)

TNBC (n = 31) TNBC (n = 13)non-TNBC (n = 26) non-TNBC (n = 11)

Figure 1: Flow chart of patient enrollment. (DCE-MRI: dynamic contrast-enhanced magnetic resonance imaging; NAC: neoadjuvant
chemotherapy; DCIS: ductal carcinoma in situ; TNBC: triple-negative breast cancer; non-TNBC: nontriple-negative breast cancer.).

Table 1: Clinical features of the patients.

Characteristic Total
Training
cohort

Test
cohort

P
value

Number (%) 81 (100) 57 (70.4) 24 (29.6)

Age (year)a 52:5 ± 12:2 51:7 ± 12:4 53:7 ± 11:9 0.47

Molecular
subtypes

0.98

TNBC 44 31 (70.5) 13 (29.5)

Luminal A 13 9 (69.2) 4 (30.8)

Luminal B 12 8 (66.7) 4 (32.3)

HER2-
enriched

12 9 (75.0) 3 (25.0)

aQuantitative variables are expressed as mean ± standard deviation. (TNBC:
triple-negative breast cancer; HER2: human epidermal growth factor
receptor 2.).
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3. Result

The average DSC value of automatic segmentation for the
tumor was 0.82. Finally, the chosen model using 15 features
yielded the best performance in predicting TNBC or non-

TNBC in the CV training (AUC = 0:996), CV validation
(AUC = 0:741), training (AUC = 0:805), and testing
(AUC = 0:867) cohorts. The pipeline of the radiomics model
is listed in Table 3 and described in detail in Supplement
Material S4. The selected 15 features for the model are shown

Mask1 Mask2

Figure 2: Example of Coarse-to-Fine segmentation of the deep learning segmentation model on DCE-MRI. (a) A DCE-MRI of a 57-year-old
woman with TNBC on the third DCE phase. (b) Coarse segmentation (Mask 1, red) of bilateral breasts. (c) Fine segmentation (Mask 2, green)
of the breast tumor. (DCE-MRI: dynamic contrast-enhanced magnetic resonance imaging; TNBC: triple-negative breast cancer.).

(a) (b) (c)

(d) (e) (f)

Figure 3: Example of manual revision of multiple tumors in the unilateral breast, only the largest tumor was selected. (a–c) Different slices
including segmentation outlines by the deep learning segmentation model on DCE-MRI. (d–f) Manual selection of the largest tumor region.
(DCE-MRI: dynamic contrast-enhanced magnetic resonance imaging.).
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in Table 4, and the histogram of each selected feature in
TNBC and non-TNBC is shown in Figure 4. The statistical
values of diagnosis in the testing cohort are shown in
Table 5. The ROC curve is shown in Figure 5.

4. Discussion

DCE-MRI [16] is one of the main imaging methods for
detecting breast cancer at present. Breast lesions are mainly
diagnosed based on their morphologic and dynamic charac-
teristics on dynamic contrast-enhanced (DCE) MRI. Radio-
mics in breast cancer has been applied for predicting
molecular subtype, genomics, pathological complete
response after NAC, residual cancer burden, and lymph node
involvement [17–19]. Accurate segmentation is needed for
quantitative features extraction, and manual segmentation
by experienced radiologists is expected to be the “gold stan-
dard”, but it is very time-consuming and not suitable for
large databases [20]. Various semiautomatic and automatic
MRI segmentation methods have been developed [21, 22].
Nie et al. [21] reported a semiautomated tumor segmentation
method that required the operator to indicate the beginning
and ending slices containing the tumor and place an initial
square-shaped ROI on one imaging slice. But the limitation
of this study was that the square-shaped ROI may involve
other body parts, which would affect the accuracy of the
lesion segmentation. Lin et al. [22] pointed out that auto-
mated image segmentation provided a consistent criterion
without the need for operator’s help, but this might not work
well when there were artifacts inside the chest wall muscle.
Although the results of automated image segmentation are
promising, errors due to blurred contrast and bias-field are
common, and manual correction is often needed to ensure
accuracy [23].

In this study, a deep-learning model for breast tumor seg-
mentation was implemented. With our previous work, we
had trained the 3D U-net model and used it in our clinical
practice. We found that the deep learning segmentation is
feasible and time-saving to perform fully automatic segmen-
tation for the breast tumor on DCE-MRI images. After auto-
matic segmentation of the tumor, its size and volume were
automatically reported into a structured reporting system
[13]. The automatic segmentation and reporting process
could yield reasonable accuracy compared to the manual
measurement process of radiologists. In order to evaluate
the accuracy of the 3D mask of the automatic segmentation
model, we compared the coverage of the predicted area and

the manual segmentation through the DSC, which was as
high as 0.82.

The results showed that the radiomics model based on
automatic image segmentation could distinguish TNBC and
non-TNBC with the AUC of 0.867 in the testing cohort.
Wang et al. [23] had proved that the quantitative features
of the breast tumor segmented at DCE-MRI using a semiau-
tomated technique can predict triple-negative breast cancer
with an AUC of 0.878. Our research has achieved similar per-
formance, indicating that our method is feasible.

Our study has several limitations. First, it was a retro-
spective analysis of a small number of images from a single
institution, and the MRI images with obvious artifacts were

Table 2: Accessible methods for all steps in the radiomics pipeline.

Radiomics pipeline Method

Data normalization Min-max Zscore Mean None

Dimension reduction PCA PCC

Feature selection ANOVA KW RFE Relief

Classifier SVM LDA MP RF LR LASSO AB DT GP NB

(PCA: principal component analysis; PCC: Pearson correlation coefficient; ANOVA: analysis of variance; KW: Kruskal–Wallis test; RFE: recursive feature
elimination; SVM: support vector machine; LDA: linear discriminant analysis; MP: multilayer perceptron, RF: recursive feature; LR: linear regression;
LASSO: least absolute shrinkage and selection operator; AB: Adaboost; DT: decision tree; GP: Gaussian process; NB: naïve Bayes).

Table 3: The pipeline of the model with the best performance.

Modeling steps Method

Data normalization Min-max

Dimension reduction PCA

Feature selection KW

Classifier SVM

(PCA: principal component analysis; KW: Kruskal–Wallis test; SVM:
support vector machine).

Table 4: The selected features for the model according to validation
performance.

Features Coefficient in model

PCA_feature_1 0.932

PCA_feature_2 2.886

PCA_feature_4 -1.020

PCA_feature_7 0.329

PCA_feature_11 0.597

PCA_feature_15 1.014

PCA_feature_23 1.449

PCA_feature_24 0.980

PCA_feature_34 -1.338

PCA_feature_37 1.830

PCA_feature_39 -1.238

PCA_feature_41 1.412

PCA_feature_44 1.174

PCA_feature_46 0.932

PCA_feature_52 -0.897

(PCA: principal component analysis.).
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excluded. In some studies, it has been shown that Wiener or
Median filters were very useful for removing the artifacts
caused by the patient’s respiration motion [24, 25]. In the
future, we intend to use these filters to including images with
artifacts for research and perform a large multicenter study to
verify the feasibility of the radiomics model. Second, our
study focused on the characterization of the tumor itself.
Some studies had reported that analyses of the tumor and
its surrounding parenchyma may improve the performance
of subtype classification [14]. Third, Luminal A, Luminal B,
and HER2-enriched patients were mixed together and
compared with triple-negative patients in this study, but
the heterogeneity among nontriple-negative breast cancer
between the subtypes cannot be ignored. Thus, pairwise
comparisons between molecular subtypes should be made
in the future study.

5. Conclusion

In this paper, we used an automatic segmentation method
based on deep learning to segment breast tumor regions on
DCE-MRI. The radiomics model built by signatures
extracted from the tumor region on the DCE-MRI performed
well in distinguishing TNBC and non-TNBC. This showed
that our method was not only time-saving but also effective.
In the future, we intend to perform a multicenter study to
verify the feasibility.

Data Availability

The data of clinical information and radiomics results used to
support the findings of this study are included within the
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Figure 4: Histograms of selected features in TNBC and non-TNBC. (TNBC: triple-negative breast cancer; non-TNBC: nontriple-negative
breast cancer; PCA: principal component analysis.).

Table 5: Performance of the radiomics model in the test data.

Statistics Value

Accuracy 0.8333

AUC 0.8670

Sensitivity 0.9230

Specificity 0.7273

(AUC: area under the curve.).

Receiver operating characteristic curve
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Figure 5: ROC curves of the radiomics model on different datasets.
(ROC: receiver operating characteristic; AUC: area under the curve;
cv: cross-validation; val: validation.).
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article. The data of the radiomics pipeline used to support the
findings of this study are included within the supplementary
material.
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