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Abstract: Rust fungi in Pucciniales have caused destructive plant epidemics, have become more
aggressive with new virulence, rapidly adapt to new environments, and continually threaten global
agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools,
genomics research on many of the devastating rust fungi has generated unprecedented insights into
various aspects of rust biology. In this review, we first present a summary of the main findings in
the genomics of rust fungi related to variations in genome size and gene composition between and
within species. Then we show how the genomics of rust fungi has promoted our understanding
of the pathogen virulence and population dynamics. Even with great progress, many questions
still need to be answered. Therefore, we introduce important perspectives with emphasis on the
genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and
population genomics of rust fungi will provide a further understanding of the rapid evolution of
virulence and will contribute to monitoring the population dynamics for disease management.
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1. Introduction

Rust is a group of destructive plant diseases. These diseases have caused severe
epidemics, damaging crops and even leading to famines in human civilization. Notoriously,
many crops of staple foods are subject to rust diseases, e.g., wheat, maize, sorghum,
and legumes. Numerous other crops also suffer from rust diseases, including vegetables
(e.g., green beans and asparagus), fruits (e.g., apples and pears), ornamentals, (e.g., daylilies
and carnations), fiber plants (e.g., cotton and flax), beverage plants (e.g., coffee), and trees
(e.g., poplar and pines). Due to the economic importance, extensive efforts have been
dedicated to these diseases and many milestones have been achieved in the last century
or so [1]. For example, studying wheat, Biffen discovered the resistance to stripe rust
following the Mendelian law at the turning point of the last century, beginning with
combatting plant diseases through breeding resistant varieties of crops [2]. Working
on flax rust, Flor formulated the gene-for-gene hypothesis in the 1940s, which laid the
foundation for studying vast pathogen–host interactions [3]. The example of wheat stem
rust demonstrated how severe disease epidemics impacted national policies [4]. The
emergence and reemergence of more aggressive races, e.g., the Ug99 race group of the stem
rust pathogen (Puccinia graminis tritici), which was first detected in Uganda in 1998 [5,6],
and the coffee leaf rust in Central and South America [7], remind the pathology and
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breeding programs to continually monitor the rust pathogen populations and breed for
resistance. As the Nobel laureate Norman Borlaug said, “Rust never sleeps”.

Rust fungi belong to the order of Pucciniales, class Basidiomycetes in the kingdom of
Fungi. These fungi are diverse in life cycles with up to five spore stages, namely pycniospore
(or spermatia), aeciospore, urediniospore, teliospore, and basidiospore [8]. If a species has
all five spore stages in the life cycle, it is a macrocyclic rust fungus. While a microcyclic
rust fungus has teliospore and basidiospore stages (Table 1). Still, other rust fungi, such
as Hemileia vastatrix, which causes coffee leaf rust, have urediniospore, teliospore, and
basidiospore stages but do not produce pycniospores and aeciospores. These rust fungi
have hemicyclic life cycles. Most cereal rust fungi are heteroecious, meaning that they rely
on two taxonomically different plant hosts to complete their life cycles. For autoecious
rust fungi, only one plant host is needed. For the heteroecious rust fungi, the roles of
sexual stages on the alternate hosts in disease epidemiology and virulence variation vary
greatly in different species depending on environmental conditions as well as alternate
host phenology and teliospore dormancy [9]. Since the disease cycle and the five spore
stages of the rust fungi have been well reviewed previously [1], we only emphasize several
biological features of the rust fungi that are closely related to the current trends of the rust
genomics studies.

Table 1. General biology of rust pathogens with genomes available.

Species 1 Disease Primary Host Alternate Host Life Cycle Reference

Hv Leaf rust Coffee Unknown Hemicyclic [7]
Ml Flax rust Flax, linseed NA Macrocyclic, Autoecious [10]
Mlp Leaf rust Poplar Larch Macrocyclic, Heteroecious [11]
Pca Crown rust Oat Buckthorn Macrocyclic, Heteroecious [12]
Pgt Stem rust Wheat, barley Barberry Macrocyclic, Heteroecious [13]

Pt Leaf rust Wheat T. speciosissimum,
I. fumaroides Macrocyclic, Heteroecious [14]

Ph Leaf rust Barley Ornithogalum, Leopoldia,
and Dipcadi spp. Macrocyclic, Heteroecious [15]

Pn Switchgrass rust Switchgrass Euphorbia spp. Macrocyclic, Heteroecious [16]
Pst Stripe rust Wheat Barberry, Oregon grape Macrocyclic, Heteroecious [17]
Psh Stripe rust Barley Barberry Macrocyclic, Heteroecious [18]
Ap Myrtle rust Myrtaceae Myrtaceae Macrocyclic, Autoecious 2 [19]

1 Hv, Hemileia vastatrix; Ml, Melampsora lini; Mlp, Melampsora larici-populina; Pca, Puccinia coronate f. sp. avenae; Pgt,
Puccinia graminis f. sp. tritici; Pp, Puccinia psidii sensu lato; Pt, Puccinia triticina; Ph, Puccinia hordei; Pn, Puccinia
novopanici; Pst, Puccinia striiformis f. sp. tritici; Psh, Puccinia striiformis f. sp. hordei; T, Thalictrum; I, Isopyrum; Ap,
Austropuccinia psidii (syn. Puccinia psidii). 2 The life cycle of Ap is still unclear.

First, the lack of efficient axenic culture methods makes the rust fungi less tractable
and difficult to work with. The rust fungi are obligate biotrophs, depending on the living
tissues of host plants for growth and reproduction. Even though very few limited rust
fungi can be cultured axenically [20], the mycelia produced from the axenic culture are
aberrant [21]. Thus, the technique is not efficient and feasible for most other rust fungi.
Secondly, the most common materials for genomics study, urediniospores, have two nuclei
within a cell (dikaryotic), with each nucleus as haploid. The heterogeneous nuclei expose
the difficulty for genomic studies, as will be discussed later in this review. Thirdly, the
isolates (strains) within species vary greatly in the ability to attack different plant species
or genera, e.g., in cereal rust fungi. Within a species, different formae speciales are defined
according to different species or genera of the primary host that the fungus can attack [22].
Genomic studies at the forma specialis level have been initiated to study the evolution of rust
fungi, as will be discussed below. Moreover, the isolates (strains) within a forma specialis
may further vary greatly in virulence to infect different cultivars of the primary host crop.
Races are generally not distinguishable based on morphological features [23]. In these cases,
races are defined by testing isolates on a set of differential cultivars with known/unknown
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resistance genes. Monitoring the dynamics of races is essential for forecasting potential
epidemics and breeding programs.

The first plant pathogenic fungus was sequenced and published in 2005 [24]. Since
then, the number of fungi with genome sequences available has increased rapidly [25].
Some species have several to tens of isolates sequenced. One of the reasons contributing
to this rapid increase is the extraordinary advancement in genome sequencing technolo-
gies [26]. Comparative and functional genomics on plant pathogenic fungi have begun to
shed light on various aspects of fungal biology, such as the host range [27], life cycle [28–30],
mating behavior [31], the interactions with hosts [32,33], adaptation to hosts [34], and the
evolution of virulence [35,36]. Particularly, the rust comparative genomics projects were
initiated concomitantly in the first decade of the 21st century at the Broad Institute of
Massachusetts Institute of Technology Harvard University and the US Department of
Energy Joint Genome Institute (JGI) [37]. The rust genomics communities have generated
unprecedented insights into various aspects of rust biology. However, a comprehensive
and updated summary of these results from rust genomics is scarce. Even fewer reports
have guided our understanding of rust biology for future directions. In this review, we first
present a summary of the main findings in the genomics of rust fungi related to variations
in genome size and gene composition between and within species. Then we show how the
genomics of rust fungi has promoted our understanding of the rust pathogen virulence
and population dynamics. We finish this review by introducing important perspectives
with emphasis on genome evolution and host adaptation of rust fungi.

2. Current Status of Rust Genomics
2.1. Overview of Rust Genomes

Rust fungi, compared with most other plant pathogenic fungi, have larger genome
sizes. The average genome size was estimated as 305.5 Mb based on flow cytometric
data [38]. The sizes of the assembled genomes varied from 53 [39] to 1018 Mb [40] (Table 2).
This is much larger than the genome size of the smut fungi (around 20 Mb), close taxa of
the rust fungi in Basidiomycota [41,42]. The expanded genomes have also been observed
in plant pathogenic Ascomycetes and Oomycetes, e.g., 126 Mb in the wheat powdery
mildew Blumeria graminis f. sp. tritici [43], 81.6 Mb in downy mildew Hyaloperonospora
arabidopsidis [44], and 240 Mb in Phytophthora infestans [33]. Interestingly, these fungi and
oomycetes all exhibit biotroph stages, suggesting that the genome expansion might be a
convergent evolution towards the biotrophic life cycle. Within the rust fungi, there are large
variations in genome sizes among families, genera, species, and even isolates. It should
be noted that such variations might be caused by the different sequencing technologies
and assembly pipelines. So, the true differences, even though important in comparative
genomics to study specific biological questions, remain obscure.

There are large proportions of transposable elements and repetitive sequences in the
rust fungi genomes (Table 2). In general, a rust fungus has over 30% repetitive sequences
in its genome, with the highest percentage over 74%, in the genome of coffee leaf rust
fungus H. vastatrix. For comparison, the repetitive sequences in the Ascomycetes and other
Basidiomycetes are usually less than 20% of the genome. The contribution of repetitive
sequences to the expanded genome size has been reported in the oomycetes. For example,
given the similar number of coding genes in the oak sudden death pathogen Phytophthora
ramorum (65 Mb with 28% repetitive sequences) and the late blight pathogen P. infestans
(240 Mb with 74% repetitive sequences), both are Oomycetes, the expanded genome of
the latter is clearly explained by the expanded repetitive sequences. It is speculated that
the lack of genome defense systems in the rust fungi against the invasion of transposable
elements is responsible for the expanded repetitive sequences. Such defense systems
include the repeat-induced point (RIP) mutation [45–47], RNA interference [42,48], and
DNA methylation [49]. This hypothesis needs to be tested. Moreover, the activities of
transposable elements could contribute to genome evolution and the rapid adaptation to
different environments, which is particularly beneficial for asexual plant pathogens [50].
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Rust genomes encode a relatively large number of proteins, ranging from 14,000 to
32,000 (Table 2). As in the genome size, there are large variations among families, genera,
species, and even isolates. Again, these variations are likely generated from the differ-
ent genome sequencing technologies and gene model prediction methods. Irrespectively,
comparative genomics is still able to draw some general conclusions on the gene comple-
ment of the rust fungi. For example, rust fungi harbor large numbers of species-specific
genes. As high as 41% and 35% of the proteins in the P. graminis f. sp. tritici and M.
larici-populina genomes, respectively, did not show sequence similarities in the protein
database [28]. Although the species-specific genes decrease with more rust species se-
quenced, ~6000 genes are still species-specific when closely related species are compared.
Each species harbors ~3000 genes that do not share any similarities with the genes in the
updated databases [51–53]. Most of these species-specific genes do not have functional
domains, therefore with unknown functions. Secreted protein-coding genes are of special
interest among the species-specific genes, which will be discussed below.

Table 2. Genomes of rust pathogens reviewed in this review.

Species a Strain Genome
Size

No. of
Scaffolds

Scaffolds
N50/Mb GC (%) Coding

Genes
Secreted
Proteins

Repeat
(%) Reference

Hv HvHybrid 333 c 302,466 d 0.01 33 14,445 483 74.4 [54]
Hv Hv33 549.56 118,162 d 0.009 33.6 13,364 615 43.6 [55]
Ml CH5 189.5 21,310 0.031 41 16,271 1085 45 [56]

Mlp 98AG31 101.1 462 1.1 41 16,399 1184 45 [28]
Pca 12SD80 99.2 603 d 0.268 44.7 17,248 1532 52.76 [57]
Pca 12NC29 105.2 777 d 0.217 44.7 17,865 1548 53.66 [57]
Pca 203 101.69 18 b 5.8 44.64 17,877 1985 56.3 [58]
Pgt CDL 75-36-700-3 88.6 392 0.97 43.3 17,773 1106 45 [28]
Pgt 21-0 92.5 21,517 -f - 22,391 1924 - [59]
Pgt PGTAus-pan 94.54 26,417 0.030 43.42 21,874 - - [59]
Pgt 59KS19 93.30 28,091 d 0.007 - 18,166 - - [60]
Pgt 99KS76A-1 107.31 28,502 d 0.006 - 18,777 - - [60]
Ph Ph560 206.91 838 d 0.405 41.65 25,543 1450 - [61]
Pn Ard-01 99.93 11,088 0.013 44.9 16,622 [16]
Pp 115012-Mr 103–105 - - - >19,000 - 27 [62]
Ap Au_3 1018.08 66 56.243 33.80 18,875 - 91.55 [43]
Ps RO10H11247 99.62 15,722 0.019 43.14 21,087 1244 32.53 [63]
Pt Race 77 102.20 2651 0.1 46.64 27,678 660 37.49 [52]
Pt Race 106 93.99 7448 0.02 46.62 26,384 620 39.99 [52]
Pt Race 1 135.34 14,818 0.5 46.72 14,880 1358 50.9 [51]
Pt 77-1 95.12 49,980 d 0.004 46.71 32,824 - - [52]
Pt 77-2 97.25 64,740 d 0.004 46.71 32,769 - - [52]
Pt 77-3 97.33 64,499 d 0.004 46.71 32,894 - - [52]
Pt 77-4 97.22 64,739 d 0.004 46.71 32,745 - - [52]
Pt 77-5 97.25 64,735 d 0.004 46.71 32,851 - - [52]
Pt 77-6 97.22 64,853 d 0.004 46.71 32,822 - - [52]
Pt 77-7 97.26 64,534 d 0.004 46.71 32,757 - - [52]
Pt 77-8 96.41 65,595 d 0.004 46.71 32,366 - - [52]
Pt 77-9 96.14 67,081 d 0.004 46.71 32,211 - - [52]
Pt 77-10 93.66 49,962 d 0.004 46.71 32,180 - - [52]
Pt 77-11 93.54 50,331 d 0.004 46.71 32,203 - - [52]
Pt 77-a 97.02 65,649 d 0.004 46.69 32,772 - - [52]
Pt 77-A1 97.25 64,580 d 0.004 46.71 32,747 - - [52]
Pt Pt76 123.91 e 18 b 1.9 d 46.63 - - - [52]

Psh P3TX-2 77.36 e 562 0.218 44.40 15,976 1624 34.20 [64]
Pst 93-210 84.62 e 493 0.295 44.39 16,513 1517 36.03 [64]
Pst 104E137A- 83.35 e 156 1.3 d 44.40 15,928 1069 37.28 [65]
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Table 2. Cont.

Species a Strain Genome
Size

No. of
Scaffolds

Scaffolds
N50/Mb GC (%) Coding

Genes
Secreted
Proteins

Repeat
(%) Reference

Pst CYR34 82.67 e 18 b 0.791 d 44.35 17,095 1571 36.38 [66]
Pst 93-210 83.95 e 18 b 0.517 44.39 17,946 1678 35.67 [66]

Pst 104 E16 A+ 17+
33+ 80.45 e 18 b 4.77 16,272 - ~40 [67]

Pst PST-78 117.31 9715 0.5 44.43 19,542 2147 31.5 [51]
Pst CY32 130 4283 0.125 44.77 25,288 2092 48.91 [68]
Pst PST-130 64.8 29,178 d - - 22,815 1088 - [39]
Pst 11-281 84.75 e 427 d 0.385 44.37 16,869 1829 35.81 [69]

a Refer to the footnote of Table 1. b Chromosomal level. c A hybrid assembly of right isolates. d Contig level. e The
primary genome is presented. f Data not available.

2.2. Genomic Variation

As mentioned, each urediniospore of a rust fungus generally contains two genetically
distinct nuclei within a single cell. Until now, all genomic analyses have been conducted
from genomes generated from dikaryotic urediniospores. Unlike haploid genomes, vari-
ations between the two nuclei represent a level of intra-isolate genetic diversity. This
phenomenon is referred to as heterokaryosis, but for consistency with the literature, we
refer to it as heterozygosity, such as a diploid organism. There are four types of variations
in the rust fungal genomes, including single nucleotide polymorphisms (SNPs), insertions
and deletions (InDels), gene presence and absence polymorphisms, and segmental dupli-
cations. The intra-isolate heterozygosity is slightly different among different rust species.
Zheng et al. detected over 80,000 SNPs within the isolate CYR32 of Puccinia striiformis
f. sp. tritici (Pst), the wheat stripe rust fungus [68]. Pst has a high heterozygosity rate
at 5–8 SNPs/kb with large variations depending on the isolates and SNP-calling meth-
ods [39,51,70]. In contrast, P. triticina (Pt), the wheat leaf rust fungus, and P. graminis f.
sp. tritici (Pgt), the wheat and barley stem rust fungi, have relatively small heterozygosity
rates at 2–3 SNPs/kb. Melampsora larici-populina (Mlp), the poplar leaf rust, has the smallest
heterozygosity rate at 0.8 SNP/kb [51]. Generally, genic regions have higher heterozygos-
ity rates, around 1.5 times than the intergenic regions. Though mutations are important
evolutionary resources for heterozygosity, it is possible that heterozygosity raises from the
fusion of haploid nuclei through karyogamy. Regardless of the origin, the heterozygosity
provides high genetic diversity for the rust fungi, such as Pst, for which the sexual stages
are not common [9].

Other types of genomic variations have been reported in several rust fungi, but these
have not been studied intensively. These genomic variations include InDels, gene presence
and absence, and segmental duplication. In a recent study, Xia et al. estimated around two
InDels per kb between the two nuclei of urediniospores in two P. striiformis (Ps) isolates [70].
In contrast, Pt has an average of 0.32 InDels per kb estimated from 2 Indian isolates [52].
The gene presence/absence polymorphisms are studied even less. By mapping ion proton
reads to the reference genome PST-78, Xia et al. detected a total of 78 genes with the
presence/absence of polymorphisms among 14 US Pst isolates. Using the correlation
analysis with virulence phenotypes, one Avr candidate gene was identified from these
78 genes, highlighting the importance of the gene presence/absence in the virulence change
in rust fungi [53]. More recently, Miller et al. (2018) and Schwessinger et al. (2018) detected
intra-isolate gene presence/absence polymorphisms in Pst and P. coronate f. sp. avenae
(Pca), the oat crown rust fungus, showing that the allelic counterpart of a gene is absent
in one nucleus [65,71]. It will be interesting to test whether these genes are involved in
virulence. Moreover, Kiran et al. detected segmental duplications in both Pst and Pt
genomes [52,72]. However, only small segmental duplication regions, with sizes less than
10 kb, were defined. One major obstacle in identifying these complex genomic variations is
the high proportion of repetitive sequences in the rust genomes. Therefore, the complete
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genomes and the utilization of advanced sequencing technologies (e.g., the accurate long-
read HiFi platform) are needed to study the contribution of the complex genomic variation
in genome evolution.

2.3. Effectors in Rust Genomes

Effectors are usually small proteins or RNAs that are deployed by biotrophic pathogens,
including rust fungi, to manipulate the plant defenses and cellular processes to promote
invasion [73–75]. These effectors are delivered from the fungus to different subcellular loca-
tions in the host plants, e.g., apoplast and cytoplasm. At the target locations, these effectors
interfere with diverse processes, including host cellular metabolic pathways and signal-
ing cascades, RNA silencing, anti-microbial inhibition, and recognition machinery [76].
In the rust fungi, the effectors are secreted from the haustoria, after the germination of
urediniospores and penetration of host stomata. A haustorium is a specialized fungal
structure formed by the expansion of an infection hypha and invagination into the plant
cell plasma membrane [77,78]. A rust fungus encodes a substantial portion of secreted
proteins as effectors, around 10% of the proteome, which is in the upper range of the
general proportion of 4–14% and reflects its biotrophic lifestyles [56,79]. There are several
common features in the identified effectors in the rust fungi. For example, the effectors are
small secreted proteins enriched in cystines and haustorially expressed (Table 3). These
common features are used in many rust fungal genomics and transcriptomics studies to
identify effector candidates [80]. However, it should be noted that these broad criteria do
not guarantee the precise predictions of the effectors since there are exceptional cases [81].
Therefore, the bespoke bioinformatic pipelines encompassing multiple criteria are needed
to refine effector prediction. Some of the methods are particularly interesting. Saunders
et al. presented a hierarchical clustering approach to identify effectors in the rust fungi, in
which the proteins are grouped into families using the Markov clustering method, and then
the families are ranked according to their likelihood of being effectors using the hierarchical
clustering and effector annotation information [82]. This method has been applied to Pst
and Melampsora lini [39,56]. The second approach to identifying effectors was developed by
Sperschneider et al. based on machine learning and training on the characterized fungal
and oomycetes effectors; this approach has been implemented in the programs EffectorP
2.0 and ApoplastP [80,83]. The latter program was designed to predict effectors localized in
apoplasts. An additional approach is to integrate genome-wide association studies (GWAS),
quantitative trait locus (QTL) mapping, and even population genomics to discover effectors,
particularly the Avr effectors. Several studies will be discussed below.

Regardless of the effector candidate mining methods, a rust fungus has a large ef-
fector repertoire ranging from a few hundred to thousands, even much larger than the
obligate biotrophic powdery mildew fungi [30,43], but compatible with the hemibiotrophic
oomycetes Phythophthora spp. [33,84]. This raises the question, as noted by Thordal-
Christensen et al. [85], as to why the filamentous plant pathogens have so many effectors.
We can provide some insights into this question from the genomics and transcriptomics
studies of the rust fungi. First, the heteroecious rust fungi utilize distinct effector arsenals
during the infection of the two taxonomically unrelated hosts documented in Mlp [86]. In
this study, Lorrain et al. observed that 20% of all transcripts detected in the rust-infected
poplar and larch were specifically expressed on the respective hosts. Among these host-
specifically expressed genes, 17% and 25% were secreted protein-coding genes expressed
on larch and popular, respectively. These results clearly demonstrated that some of the
effectors are utilized specifically during different host infections by the rust fungi. Sec-
ondly, different infection stages require different sets of effectors, described as ‘expression
waves’ [87]. During the infection of wheat by Pst, manipulation of host immune responses
by the fungus followed a sequential and temporal manner, and expression waves were
observed for several gene clusters [88]. Thirdly, it is possible that the effectors in the rust
fungi may be redundant in function. This functional redundancy has been demonstrated in
the smut fungus Ustilago maydis [89], but not examined in the rust fungi.
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A large proportion of effectors in the rust fungi are genus-, species-, and even isolate-
specific. Working in the wheat-Pgt pathosystem, Rutter et al. revealed the convergent
interactions during the infection of wheat by different isolates [60]. Specifically, during the
compatible interaction, the same host pathways, e.g., the salicylic acid response pathway,
could be targeted by different sets of effectors from different virulent isolates. This study
demonstrated that the effectors in different isolates, and probably also in different species,
are under functional convergence. In this way, the pathogen makes a trade-off between
retaining virulence and diversifying the effectors to evade host defenses. In Pst, Xia et al.
speculated that the isolate-specific genes might be the remnants of gene loss since a) these
genes are redundant in the pathways and b) these genes have significantly lower expression
levels [70]. These studies demonstrated that the rust effectors are under diversifying
selections exerted from rapid ‘arms-race’ interactions between the rust fungi and their hosts.

Table 3. Characterized effectors in rust fungi.

Effector Species Expression
in Haustoria Function Localization Reference

RTP1p U. fabae; U. striatus Yes Protease inhibitor Cytoplasm [90]

PpEC23 P. pachyrhizi Yes Suppress HR and
basal defense Unknown [91]

PEC6 P. striiformis f. sp. tritici Yes Hamper ROS accumulation
and Callose deposition Nucleus, cytoplasm [92]

PST02549 P. striiformis f. sp. tritici Yes mRNA processing P-bodies [93]
MLP124017 M. larici-populina Yes Unknown Nucleus, cytosol [94]

CTP1 M. larici-populina Yes Unknown Chloroplast,
mitochondria [93]

MLP124266 M. larici-populina No Unknown Nucleus and cytosol [95]
MLP124499 M. larici-populina Yes Unknown Nucleus and cytosol [95]
AvrMlp7 a M. larici-populina Unknown Avirulence Unknown [96]

AvrM M. lini Yes Avirulence Plant cell [97]
AvrL567 M. lini Yes Avirulence Plant cell [98]
AvrP123 M. lini Yes Avirulence Plant cell [97]

AvrP4 M. lini Yes Avirulence Plant cell [97]
AvrL2 M. lini Unknown Avirulence Unknown [99]

AvrM14 M. lini Unknown Avirulence Unknown [99]
PGTAUSPE10-1 P. graminis f. sp. tritici Yes Avirulence Unknown [100]

AvrSr27 P. graminis f. sp. tritici Yes Avirulence Unknown [101]
AvrSr35 P. graminis f. sp. tritici Unknown Avirulence Unknown [102]
AvrSr50 P. graminis f. sp. tritici Yes Avirulence Unknown [103]

PSTha5a23 P. striiformis f. sp. tritici Yes PTI suppression Cytoplasm [104]
PstSCR1 P. striiformis f. sp. tritici Yes Activate plant immunity Apoplast [105]

Pst_12806 P. striiformis f. sp. tritici Yes Suppress HR and
basal immunity Chloroplast [106]

PstGSRE1 P. striiformis f. sp. tritici Unknown Suppress programmed
cell death

Cytoplasm and
nucleus [107]

PstGSRE4 P. striiformis f. sp. tritici Yes Suppress HR Cytoplasm [108]
AvrRppK P. polysora Unknown Avirulence/PTI suppression Unknown [109]

PSTG_01766 P. striiformis f. sp. tritici Unknown Suppress high-temperature
seedling resistance

Nucleus, cytoplasm,
and membrane [110]

a Not experimentally validated.

2.4. Avr Gene Identification

The concept of Avr gene was first proposed by Flor, who worked on the flax–rust
interactions [3]. An Avr gene encodes a product that can be recognized by the product of a
host resistance gene. The recognition subsequently leads to incompatible interactions in
which the pathogen shows avirulence and the host shows resistance. The first group of
characterized Avr genes in the rust fungi were from M. lini, the flax rust fungus (Table 3).
These first Avr genes in M. lini were cloned by Dodds et al. using the genetic map cloning
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along with co-segregated cDNA probes [98]. Two years later, still in M. lini, Cantazariti et al.
cloned another three Avr genes from the haustorially-expressed secreted proteins using the
same population as used by Dodds et al. [97]. Recently the Avr gene identification in the
rust fungi was significantly accelerated by genomics approaches. For example, again in M.
lini, over ten thousand markers were obtained for a genetic map construction by application
of the restriction site-associated DNA sequencing (RADseq) on the sexual population used
in Dodds et al. and Catanzariti et al. [99]. By aligning the co-segregated markers in the
genetic map to a reference genome, two Avr genes were successfully identified. Then
the avirulence functions were validated through transient expression assays. The gene
AvrM14 is of particular interest in that it corresponds to two resistance genes, M1 and
M4. The single Avr corresponding to multiple resistance genes is not uncommon in rust
fungi, e.g., AvrL567 in the study by Dodds et al. [98]. In fact, this phenomenon has also
been found in other fungi, e.g., Leptosphaeria maculans [111]. Besides the M. lini, the genetic
mapping of Avr genes coupled with genomics approaches has also been initiated, and
high-density genetic maps have been constructed in other rust fungi, such as Pst [112]
and Mlp [113]. In Pgt, the AvrSr35 gene was identified through whole-genome sequencing
and comparison of chemically mutagenized mutants with natural isolate [102]. Similarly,
analyzing the genome environment of another spontaneous mutant detected a large loss-
of-heterozygosity region of the AvrSr50 [103]. Moreover, comparative genomics integrated
with association or correlation analyses have also been used to identify candidate Avr
genes in the rust fungi [53,112,114]. For example, seven Avr loci were identified to be
associated with virulence towards fifteen resistance genes in Pca [57]. More recently, an
Avr gene corresponding to Yr26 was also identified using the genome-wide association
analysis [115]. In such approaches, instead of sexual populations, the isolates collected
from natural populations are used for genotyping and virulence phenotyping. Together
these studies show that genomic approaches are promising in studying Avr genes in
the obligate biotrophic rust fungi. Furthermore, the genotypes used for virulence gene
identification could also be valuable resources for further population and genome evolution
analyses (see the sections below) at the same time. We expect that more Avr candidates
will be functionally validated. The identification of Avr candidates will further assist the
development of molecular markers for diagnosing and monitoring various virulence genes
in the rust pathogen populations.

While only a limited number of Avr genes have been functionally characterized
(Table 3), the attempts to identify Avr genes in the rust fungi have revealed several features
that are helpful to guide further studies. Firstly, the inheritance of avirulence/virulence
phenotypes is complex in rust fungi. Several sexual populations have been constructed for
Pst, providing opportunities to investigate the segregation patterns of virulence to specific
resistance in this fungus [112,116–118]. These studies, and other rust fungi [57], suggested
that the inheritance of virulence to a single resistance could be controlled by either a single
gene or multiple genes. Meanwhile, the Avr genes in rust fungi could be either dominant
or recessive. The inheritance is even isolate-dependent for some genes [112]. Secondly,
the cloned Avr genes have shown multiple mechanisms underlying the transition from
avirulence to virulence phenotype. The most common one is amino acid changes in Avr
proteins caused by non-synonymous substitutions of Avr genes, e.g., AvrSr35 [102]. It is
worthy to note that the AvrSr35 protein has an exceptional length of 578 amino acids, which
is longer than the length of typical effectors. AvrSr50 exemplifies another mechanism in
which the virulence gene arises through the insertion of a DNA segment (~26.8 Kb) from
an avirulence allele [103]. AvrSr27 is a more interesting example in which the variation in
the Avr gene expression level is responsible for the avirulence/virulence phenotypes [101].
These examples also highlight the need to screen more types of polymorphisms to pinpoint
Avr candidates in the association studies. Thirdly, the Avr genes of cereal rust fungi reside
in the plastic regions in the chromosome. Recent studies have shown that many rust Avr
genes are tightly linked and form clusters in the genome [10,112]. One example is the
AvYr44-AvYr7-AvYr43-AvYrExp2 cluster in Pst. More interestingly, after reanalyzing the
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data using a chromosome-level reference genome, we clearly mapped this gene cluster to
the telomeric region (less than 5 Kb to the telomere repeats) of the short arm in Chr7 [66].
Given that the subtelomeric regions in the plant fungal pathogens are usually unstable
and contribute to the virulence diversity [119], this suggests that such a plastic region may
promote virulence evolving in Pst and other rust fungi.

2.5. Pathogenomics

Field pathogenomics is a robust and rapid strategy for surveillance and population
analysis of emerging and re-emerging pathogens [120]. In pathogenomics studies, infected
host tissues are collected from fields, RNA-seq is applied for genotyping, and then popu-
lation genetic approaches are used to analyze population structure and diversity. In the
pathogenomics study by Hubbard et al. [120], 35 Pst-infected wheat and four Pst-infected
triticale samples were collected from the UK in 2013. Phylogenetic and clustering analyses
clearly showed that the Pst population from 2013 was diverse, and a dramatic shift was
detected by comparing it with the pre-2013 populations. Moreover, the non-synonymous
SNPs were selected from polymorphic and differentially expressed effector genes to identify
putative effector genes that associate with virulence profiles. After filtering, 42 effector
genes were identified. The field pathogenomics approach rapidly detected the dramatic
shift of the Pst population in the UK in 2013 and suggested that the emerging population
might be introduced from more diverse exotic Pst lineages and rapidly replaced the previ-
ous population [120]. The same approach was applied to analyze the Pst population in the
UK in the following year [121]. Comparing the isolates of 2014 with that of 2013 suggested
a new genetic group present in 2014 but not in 2013, and a genetic group from 2013 was
displaced in 2014. These results suggested that the population shift occurred between these
two years in the UK. More interestingly, the pathogenomics approach could also detect the
seasonally specific genotypes, the genotypes being detected only in certain seasons but
not the others. Furthermore, several genetic groups of Pst isolates showed high degrees of
specificity to wheat varieties. In summary, this RNA-seq-based pathogenomics approach
has the power to detect the rapid shift of (re)emerging pathogen populations and, therefore,
could be used to timely monitor the changes in the pathogen populations.

3. Future Perspectives

Since the initial programs on rust fungi genomics, intensive studies have generated
a vast body of knowledge on general features of the rust fungi genomes, the genomic
basis for biotrophic lifestyle, and molecular mechanisms for infection and interactions with
hosts as mentioned above. However, due to the large size and the repetitive nature of the
rust fungi genome, the genomes of numerous rust fungi species are still lacking. Even for
the rust fungi that have been extensively studied, many fundamental questions are still
inconclusive. These questions include—but are not limited to—the composition of genes
and the content of transposable elements. We also have a limited understanding of the
impacts of the genome architectures on the rapid changes of pathogenicity, the adaptation
to the changing environment, etc. Therefore, we propose the following perspectives for
future research on rust fungi genomics (Table 4).

Table 4. Perspectives on genomics research of rust fungi.

Research Field Features Approaches

Rust fungal biology • Life-cycle transition
• Fungicide resistance Multi-omics, transcriptomics, gene regulatory networks

Rust–host interactions
• Pathogenicity
• Host resistance
• Regulatory mechanisms

Effectoromics, epigenomics, ATAC-seq, GWAS, genetic
mapping, Single-cell RNA-seq, single-nuclear RNA-seq
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Table 4. Cont.

Research Field Features Approaches

Genome evolution

• Genetic variations
• Hybridization
• Sexual reproduction
• Host adaptation

Whole-genome sequencing, genotyping-by-sequencing,
next-generation sequencing, long-reads sequencing,

comparative genomics

Epidemiology and disease
management

• Disease/strain diagnosis
• Disease monitoring
• Population diversity

Pan-genomics, population genomics; field pathogenomics

3.1. Complete Reference Genome

High-quality complete genomes are required for further genomics studies of the rust
fungi. Due to the complexity of fungal genomes, only a limited number of fungal genomes
are complete [122–126], especially in the rust fungi. The complete genomes can be achieved
through the combination of advanced whole-genome sequencing technologies, and optical
and genetic mapping methods. Emphasis should be paid to the importance of manual
curation of de novo genome assembly and annotation processes, which may introduce er-
rors [37]. The complete fungal genomes from other fungi have revealed many new genomic
features that are missing in the fragmented assemblies, such as telomere and centromere
regions. These plastic regions may play pivotal roles in the genome integration, evolution,
and environmental adaptations [127]. In fact, filamentous plant pathogens have inclinations
toward harboring large, plastic genome compartments that are enriched in effectors and
repetitive sequences. Such genomic compartments accelerate the fungal pathogen adaptive
evolution [119]. Comparing the complete genomes of different rust species and/or different
isolates within a species will enable us to identify such plastic genomes and determine their
roles in the rapid evolution of the rust fungi. Moreover, the complete genomes of the rust
fungi are needed to understand their genome complexities, e.g., to precisely estimate the
inter- and intra-species variations of genome sizes and the transposable elements. Some
biological questions, such as mating behavior and organization of mating type genes, could
only be answered with the availability of complete genomes [31,51].

The advanced long-read sequencing technologies with increased accuracy (e.g., HiFi
from PacBio), coupled with the sophisticated haplotype phasing algorithms, make it pos-
sible to generate high-quality complete genomes in the rust fungi [128]. One example of
the applications with the chromosome-level genome is the demonstration of the telomere
location of Avr gene cluster in the Pst genome [66]. Moreover, the high-quality genomes,
coupled with in-depth transcriptomic analyses, will help to decipher the regulatory mecha-
nisms underlying the complex life cycles of rust [129]. So far, chromosome-level genomes
are available for three wheat rust fungi, namely Pst, Pgt, and Pt (Table 2), but the genomes
of the rust fungi from wild hosts (representing different formae speciales) are lacking. Com-
parative genomics using these genomes will help to evaluate the contributions from more
diverse evolutionary forces that might shape the genetic diversity and adaptation of popu-
lations of the cereal rust fungi, e.g., hybridization and introgression, which in general are
currently underappreciated [130].

3.2. Pan-Genomics

So far, almost all the available reference genomes of the rust fungi were each generated
from a single isolate. The single reference genome cannot reflect the genetic diversity of a
species. Therefore, the pan-genome concept has been proposed and used to study various
organisms [131]. This concept was first adopted to study Streptococcus agalactiae, a human
bacterial pathogen causing neonatal infection, with the aim to explore the intraspecies gene
variability [132]. As summarized in this study, the pan-genome of a species “includes a
core genome containing genes present in all strains and a dispensable genome composed
of genes absent from one or more strains and genes that are unique to each strain” [132].
Although initiated from a human pathogen, the pan-genome concept is also highly relevant
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and applicable to plant pathogens, as many plant pathogens have highly flexible genomic
compositions, e.g., the core and accessory chromosomes in Fusarium spp. [17] and Zymo-
spetoria tritici [133]. Due to the relatively large genome size of fungal pathogens compared
to bacteria, the pan-genomes of only a few fungi are available [131]. In fact, the PGTAus
pan-genome database of Pgt is only one pan-genome available in the cereal rust fungi [59].
This pan-genome database was constructed from de novo assembles of unmapped reads
after mapping only five Pgt isolates to a reference genome, PGT21, resulting in 92 Mb
with 13 Mb not presented in the reference genome. Of course, this pan-genome should be
enlarged by including genomes of more Pgt isolates. Similarly, pan-genomes should be
established for many other rust fungi.

With the advancement of sequencing technologies, genomes of multiple isolates for
a species can be feasibly obtained. We foresee more pan-genomes will be generated.
Here, we briefly discuss several directions on how the pan-genome concept could be
applied to rust fungi. One of the advantages of a pan-genome is the composition of the
core and dispensable genes/segments. The core regions in a pan-genome present in all
strains of a pathogen are speculated to be ideal for targets of fungicides development. The
strain-specific dispensable regions, on the other hand, are the major contributor to the
intraspecific genome plasticity and encode pathogenicity-related genes. So, these regions
are important to identify pathogenicity factors and to reveal the pathogenic evolution.
Moreover, the pan-genomes display massive gene presence/absence variations (PAV) that
are usually underestimated in the analyses based on a single reference genome. These
PAVs provide unprecedented opportunities for identifying pathogenicity genes in the rust
fungi. For example, evidence has shown that PAVs might be associated with Avr genes in
Pst [53,115]. Further, the novel genes present in the specific lineages are excellent targets
for the development of diagnostic tools for pathogen monitoring, even at the forma specialis
and race levels in the rust fungi [69,131].

Lastly, we highlight two technical factors that might influence the quality of construct-
ing pan-genomes. First, while the selection of a sufficient number of samples is needed,
their phylogenetic relationships and genetic diversity should be far and diverse enough to
present the complete heterogeneity of the genomes. Second, each single sample genome
should be well-assembled and annotated to model the pan-genome. In-depth reviews of
other influencing factors and analytical tools are available [131,134].

3.3. Genome Evolution

Our understanding of the genome evolution of the rust fungi is still limited. Besides
the plastic genome compartments, there are several processes that may drive genome
evolution, but these processes have not been explored in the rust fungi. Recently, we
illustrated that gene loss might be an underestimated mechanism in shaping the genome
during P. striiformis adaption to wheat and barley [70]. More studies should be conducted
on the contribution of gene expression, genome rearrangement, transposable elements, etc.,
to drive genome evolution. Another research area is the importance of reproductive modes
during the genome evolution of the rust fungi. Most rust fungi can reproduce sexually.
However, asexual reproduction could be the predominant or even the only mode in local
regions. It will be necessary to investigate how genome evolution and adaptation occurred
in the asexual populations of the rust fungi.

It has been documented that the newly emerged rust fungal populations have adapted
to the changing climates and can produce more teliospores, such as the Pst [135,136].
Further research could be conducted using genomic approaches to identify genomic re-
gions or genes that are associated with such phenotypes. To this end, whole-genome
resequencing of diverse populations within the species is needed. Such research is helpful
for understanding the impacts of the changing climate on shaping the genome architecture.

Evidence from controlled conditions has proved the existence of somatic hybridization
in the rust fungi [137–139]. These studies demonstrated that somatic hybridization could
also contribute to genome evolution. However, detection of this process was mainly based
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on the changes in virulence profiles for known resistance genes or urediniospore colors as
phenotypic markers. By doing it this way, somatic hybridization, in many cases, is hard
to distinguish from sexual hybridization [140]. In the genomic era, the ever-accessible
genotyping methods and the sequenced genomes accelerated the detection and begin to
reveal details underlying this process [141]. For example, comparing the genomic segments
of different formae speciales of B. graminis, the cereal powdery mildew pathogen revealed the
hybridization between B. graminis f. sp. tritici and f. sp. secalis and gave rise to f. sp. triticale.
Interestingly, the host of B. graminis f. sp. triticale, Triticale, is also a hybrid between the hosts
of the former formae speciales, illustrating hybridization between pathogens specialized in
different species is a mechanism of adaptation to new crops introduced by agriculture [34].
Particularly in rust fungi, the near-complete phased haplotypes enable identifying the
exchanges of genome segments between isolates that give rise to novel virulence lineages of
Pgt [142]. We foresee more in-depth details underlying hybridization that could be explored,
e.g., identification of recombination breakage sites and their genomic environments, with
more high-quality haplotype-phased genomes from diverse hosts available.

3.4. Multi-Omics in Rust–Host Interactions

The system view of rust–host interactions was initiated using transcriptomic analyses
and demonstrated that the gene expression patterns follow temporarily coordinated waves
during the rust–host interactions [88]. However, the detailed regulatory mechanisms under-
lying gene expressions are still unclear. This might involve transcription, post-translation,
epigenetic modifications, etc. To this end, multi-omics is needed. In multi-omics, data
from genomics, transcriptomics, proteomics, and metabolomics are combined to quantify
gene expression, epigenome, transcript abundance, protein expression, and metabolites
at the system level, allowing a comprehensive understanding of the pathogen and host
biology and their interactions. While such studies are limited, we provide a recent example
in which genomics, transcriptomics, and epigenomics are integrated to reveal the folding
and dynamics of three-dimensional (3D) genome organization, which are fundamental for
eukaryotes executing genome functions, during the developmental transitions in Pst [66].
In this study, high-throughput sequencing coupled with chromosome conformation capture
(Hi-C) technology was used to reconstruct the 3D genome organization in the urediniospore
and germ tube stages. By comparing with gene expression differences, we found that the
regulation of gene activities might be independent of the changes in the genome organiza-
tion. In addition, the chromatin conformation conservation is independent of the genome
sequence synteny conservation in the fungi. While further study is needed to untangle
this regulatory mechanism, this study provides an example of understanding the rust–host
interactions using integrative analyses of multi-omics data.

3.5. Population Genomics

Technically, population genetics has been extended from dozens of loci to the genome
level with the accessibility to high-throughput genome sequencing data. Accordingly,
traditional questions on the demographic processes in population genetics can be answered
more robustly using a very large number of genome-wide markers [143]. Such a population
genomics study was conducted using 48 isolates of Pst collected from Canada [144]. Whole-
genome resequencing was used to generate 1,434,899 markers, and 5543 SNPs were used for
population genetic analyses. A subset of the isolates with 23 isolates was genotyped simul-
taneously using 17 microsatellite markers. Population differentiations revealed from the
two types of genotyping were consistent. With high-density genome-wide SNPs, this study
was able to further detect the existence of recombination events for each genetic lineage,
suggesting the capacity for sexual reproduction or somatic recombination in the Canadian
Pst lineages. Another example of population genomics was from the coffee leaf rust fungus,
H. vastatrix [145]. In this study, RADseq was used to generate around 19,000 SNPs from
37 isolates. Phylogenetic analysis and population structure analysis detected potential cryp-
tic species complex with host specialization, which was a striking finding since H. vastatrix
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was believed to be clonal before this study, and no sexual stages were observed. Moreover,
this study discovered the introgression events through the sharing alleles between lineages.
The detection of the (re)emergence and the origin of the rust fungi can be rapidly achieved
by whole-genome resequencing of the field isolates and comparing with the historical
isolates and isolates from potential origins [146,147]. Demographic history analyses could
be performed to estimate the impact of plant domestication and modern agriculture on
the evolution of rust fungi. For example, the intentional breeding and deployment of
single/major resistance genes have been demonstrated to continuously contribute to the
decline of Pst effective population sizes [148]. Further studies will be needed to explore
whether the deployment of multiple genes and even resistance genes from wild wheat
relatives impacts the Pst population demography. In summary, such studies have shown
the robustness of pathogen population genomics to reveal the demographic processes of
the pathogen populations.

In another aspect, comparative population genomics could also be applied to genome
evolution analyses, e.g., to decipher rust speciation and host adaptation. Rust fungi are
diverse at both the species and formae speciales levels, as mentioned above. Diversification
of the rust fungi within a species, the formation of formae speciales, is not clear. Several
evolutionary processes have been proposed, mostly from other pathosystems, including
hybridization [34,149], gene gain/loss events [70], amino acid substitution, and the change
of gene expression [150]. These processes could be examined by comparative genomics at
the population level. Within a forma specialis, the rust fungus rapidly evolves to be more
aggressive, e.g., more broadly virulent, and more adapted to various environments. More
studies utilizing comparative population genomics are needed to decipher the genomic
bases of these processes by identifying genes under selection. Further surveys on these
identified genes, potentially the effector genes, could be used to monitor the changing of
the rust population and to predict new potential epidemics.

4. Conclusions

So far, genomics of the rust fungi is still in its infancy. We expect to have more findings
and deep understanding of rust fungal genomics in the near future, especially in the
areas of population dynamics, genome evolution, and virulence determinants. Population
genomics or pathogenomics-based molecular epidemiology will enable us to detect the
sources of origin, identify the migration pathways, and monitor (re)emerging populations
more efficiently [151]. With more understanding of the molecular interactions between rust
fungi and their hosts, it is also plausible to exploit effector-assisted breeding to quickly
identify and deploy resistance genes in crops [152]. We foresee the genomic research
will enable us to untangle specific biological questions of the rust fungi, including but
not limited to: 1) what are the genomic factors that determine the diverse life cycles;
2) to what extent and how does the sexual reproduction contribute to the diversity of
the rust populations; 3) what are the regulatory mechanisms (e.g., transcriptional, post-
transcriptional, epigenomic modification, etc.) underlying the interactions between the
rust fungus and its hosts; 4) what are (and how do) the evolutionary forces and genomic
events drive the evolution of rust fungal populations; and 5) how to utilize effectoromics
to effectively enhance breeding new cultivars of the host crops with resistance to the rust
diseases. In summary, this fundamental knowledge will ultimately help us design more
sustainable management strategies to control rust diseases.
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DNA deoxyribonucleic acid
RNA ribonucleic acid
Mb megabase
RIP repeat induced point mutation
SNPs single nuclear polymorphisms
InDels insertions and deletions
CYR Chinese yellow rust
Pst Puccinia striiformis f. sp. tritici
Pt Puccinia triticina
Pgt Puccinia graminis f. sp. tritici
Pca Puccinia coronate f. sp. avenae
Mlp Melampsora larici-populina
GWAS genome-wide association study
QTL quantitative trait locus
Avr Avirulence
Sr Stem rust
Yr Yellow rust
PAV presence/absence variation
Hi-C high-throughput sequencing coupled with chromosome conformation capture
RADseq restriction site associated DNA sequencing
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