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Abstract: Poststroke hyperglycemia and inflammation have been implicated in the pathogenesis
of stroke. Janus Kinase 2 (Jak2), a catalytic signaling component for cytokine receptors such as
Interleukin-6 (IL-6), has inflammatory and metabolic properties. This study aimed to investigate
the roles of Jak2 in poststroke inflammation and metabolic abnormality in a rat model of permanent
cerebral ischemia. Pretreatment with Jak2 inhibitor AG490 ameliorated neurological deficit, brain
infarction, edema, oxidative stress, inflammation, caspase-3 activation, and Zonula Occludens-1
(ZO-1) reduction. Moreover, in injured cortical tissues, Tumor Necrosis Factor-α, IL-1β, and IL-6
levels were reduced with concurrent decreased NF-κB p65 phosphorylation, Signal Transducers and
Activators of Transcription 3 phosphorylation, Ubiquitin Protein Ligase E3 Component N-Recognin
1 expression, and Matrix Metalloproteinase activity. In the in vitro study on bEnd.3 endothelial
cells, AG490 diminished IL-6-induced endothelial barrier disruption by decreasing ZO-1 decline.
Metabolically, administration of AG490 lowered fasting glucose, with improvements in glucose
intolerance, plasma-free fatty acids, and plasma C Reactive Proteins. In conclusion, AG490 improved
the inflammation and oxidative stress of neuronal, hepatic, and muscle tissues of stroke rats as well
as impairing insulin signaling in the liver and skeletal muscles. Therefore, Jak2 blockades may have
benefits for combating poststroke central and peripheral inflammation, and metabolic abnormalities.

Keywords: hyperglycemia; IL-6; insulin resistance; neuroinflammation; stroke

1. Introduction

Cerebral vascular stenosis, occlusion, or rupture can cause insufficient blood flow
and perfusion in the brain, potentially leading to hypoxia, neurological deficits, physical
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disability, and even death [1]. In a recently published review, it is reported that in patients
with acute ischemic stroke, early intravenous thrombolysis improves the likelihood of
minimal or no disability by around one third within 3–4.5 h of presentation [2]. Besides
this, acute stroke patients due to large-vessel occlusions are more likely to be functionally
independent when treated with mechanical thrombectomy within 6 h of presentation.
However, in spite of these scientific advances for acute stroke treatment evolving rapidly,
either from clinical trials and the everyday experiences from different centers, only up to
10% of ischemic stroke patients actually receive these therapies due to constraints such as
narrow therapeutic windows, and many patients progress into persistent disability [3–6].
Therefore, there still is a huge unmet medical need for newer therapies for stroke.

Acute stroke is accompanied by the production of Reactive Oxygen Species (ROS),
inflammation, and transient hyperglycemia [7,8], all of which contributed to neuronal
injury, and correlated with outcomes in patients with stroke [9,10]. Notably, after the
permanent interruption of blood supply, the ischemic penumbra, a region vulnerable to
injuries, can still be salvageable. It has been proposed that an early intervention with
those deleterious responses following ischemic stroke may help to modulate the second
wave of brain injury. Experimental studies have shown that interventions involving ROS,
inflammation, and glucose metabolism diminish stroke-induced neuronal injuries in rodent
models [7,8,11].

Interleukin-6 (IL-6) is a pleiotropic cytokine, adipokine, and myokine [12]. Accumulat-
ing evidence indicates that IL-6 is involved in oxidative stress and inflammation in adipose,
skeletal muscles, and hepatic tissues [13–16] in association with insulin resistance and
impaired fasting glucose [17]. Receptors involved in the recognition of IL-6 include the
ligand-specific IL-6 receptor (IL-6R) and the signal-transducing receptor gp130 [12]. Once
engagement of ligands and receptors have occurred, the intracellular signal transduction
of IL-6 is delivered to the Janus Kinase 2 (Jak2) tyrosine kinase and the Signal Transducers
and Activators of Transcription 3 (Stat3) [12]. Signals from the gp130, Jak2, and Stat3 core
components have numerous impacts on cellular activities in a context-dependent manner,
such as inducing crosstalk with the Toll-Like Receptor (TLR), Mitogen-Activated Protein
Kinase (MAPK), and NF-κB, thus causing a pro-inflammatory commitment [12,18–21].
Conversely, IL-6 can also coordinate anti-inflammatory activities through the Suppres-
sors of Cytokine Signaling (SOCS) as a negative regulator of Jak2 and Stat3 [12]. Overall,
the context-dependent and complex properties of IL-6 underscore the necessity to gain a
more thorough understanding of its mechanisms of action prior to exploring its potential
translational roles in disease-oriented application.

In stroke patients, serum IL-6 levels are increased and positively correlated with
clinical outcome [22,23]. In rodent studies, cerebral ischemia causes an elevated expres-
sion of IL-6 in the injured brain and blood concentration. Furthermore, either with the
reduction of IL-6 levels through anti-inflammatory treatments or the intravenous injec-
tion of IL-6 neutralizing antibodies, cerebral ischemic damage can be alleviated [24–27].
Besides this, the inhibition of the Jak2/Stat3 pathway that can be activated with excess
IL-6 during the acute phase of cerebral ischemia confers neuroprotection in ischemic
stroke [28–33]. Taken altogether, these findings indicated the deleterious effects of IL-6 on
neuronal injury after cerebral ischemia. However, some other studies also show that the
early intravenous or intracerebroventricular injection of recombinant IL-6 can improve
cerebral ischemia [34–36], and the IL-6 signaling component, gp130, may mediate neu-
roprotective and anti-inflammatory effects against cerebral ischemia [37,38]. In addition
to involvement in neuronal damages in acute stroke, IL-6 has been reported to induce
skeletal muscle inflammation-associated insulin resistance and glucose intolerance in obe-
sity [15,16,39]. However, whether IL-6 contributed to metabolic abnormalities after acute
stroke was less clear.
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At our laboratories, we had published serial studies showing that through anti-
inflammation strategies, either directly (e.g., by Tumor Necrosis Factor-α receptor (TNFR)
antagonist) or indirectly (e.g., by propranolol), central neuronal injuries, hyperglycemia,
insulin resistance, as well as inflammation in the brain, liver, and skeletal muscles can be
reduced after acute stroke in a cerebral ischemia rodent model [40–43]. Accordingly, based
on the multiple pathophysiological effects of IL-6, we hypothesized that increased IL-6
expression after acute stroke may be involved in the poststroke inflammation of multiple
organs such as the brain, liver, and skeletal muscles, as well as in metabolic abnormalities.
This study centered on the IL-6 signaling Jak2/Stat3 pathway, in consideration of its impor-
tant role for the regulation of immune responses and involvement in many pathological
processes. We used a Jak2 inhibitor, AG490, to explore its effects on inflammation in the
cerebral cortical, hepatic, and skeletal muscle tissues, and in the changes of the insulin
signaling in a rat model of acute cerebral ischemia. The results of this study may be helpful
for a better understanding of the pathogenic role of IL-6 in inflammatory and metabolic
disorders after acute stroke.

2. Materials and Methods
2.1. Animal Allocation and Cerebral Ischemia

The Animal Experimental Committee of Taichung Veterans General Hospital re-
viewed and approved all animal protocols (IACUC approval code: La-1071584; IACUC
approval date: 1 August 2018). Adult male Sprague–Dawley rats (10 weeks old and
weighing 300–330 g), purchased from BioLASCO (Taipei, Taiwan), were allocated to four
groups: Sham/Saline (n = 32); Ischemia/Saline (n = 32); Sham/AG490 (n = 32); and
Ischemia/AG490 (n = 32). Under anesthesia with isoflurane (2–4%), the two common
carotid arteries and the right middle cerebral artery of the rats were occluded to produce
permanent cerebral ischemia using the method described in our previous study [40]. The
sham groups were treated with all surgical procedures except for the arterial occlusion.
Ischemia and sham groups received an intraperitoneal injection of normal saline or AG490
(5 mg/kg) 30 min prior to surgery. AG490 was administered according to the protocol
and dosage described in a previous study of cerebral ischemia reperfusion injury in rats
and evaluated in pilot tests [34,36]. The duration of ischemia was 24 h and all rats were
euthanized for analyses. To further demonstrate the altered tissue expression of IL-6 in
cerebral ischemia rats, β-adrenergic receptor antagonist propranolol (2 mg/kg) and TNF-α
receptor inhibitor R-7050 (5 mg/kg) were delivered as per the same protocol of AG490.
Under anesthesia with isoflurane (4%), rats were euthanized and decapitated according
to our previous reports [40,43]. The obtained brain cortexes, livers, and gastrocnemius
muscles were allocated to further analyses. The blood was withdrawn from the left femoral
artery and frozen at −70 ◦C.

2.2. Neurological Evaluation

The neurological deficit was evaluated based on the sensorimotor performance (n = 8
per group) in accordance with our previous study [40]. The performance was evaluated by
a blind evaluator using a modified six-point scoring criteria graded by neurological deficit.

2.3. Quantification of Ischemic Infarction

The dissected brains (n = 8 per group) were placed in a cooled Brain Slicer Matrix,
and cut coronally at 2-mm intervals. The cut brain tissues were incubated in a 2% Triph-
enyltetrazolium Chloride (TTC) solution at 37 ◦C for 30 min to stain the viable tissues [40].
The infarct areas were delineated using Image J software (National Institutes of Health,
Bethesda, MA, USA).
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2.4. Brain Edema

The ipsilateral cortical tissues of ischemic brains (n = 8 per group) were weighed and
then dried at 110 ◦C for 24 h in an oven. A wet/dry weight was measured to determine
water content [40].

2.5. Measurement of Oxidative Stress

The malondialdehyde (MDA) levels of ipsilateral cortical tissues, gastrocnemius
muscles, and livers (n = 8 per group) were measured with a Thiobarbituric Acid-Reactive
Substance (TBARS) assay kit (Abcam, Cambridge, UK) according to the manufacturer’s
instructions, and were used as an index for the lipid peroxidation product.

2.6. Caspase-3 Activity Assay

The caspase-3 activity in the ipsilateral cortical tissues was measured with a Fluoro-
metric Assay Kit (BioVision, Mountain View, CA, USA) according to the manufacturer’s
instructions.

2.7. Glucose Tolerance Test

After 8 h fasting, Intraperitoneal Glucose Tolerance Test (IPGTT) was performed
through the administration of a glucose solution (2 g/kg) in the rats (n = 8 per group). A
hand-held Accu-Check glucometer (Roche Diagnostics, Indianapolis, IN, USA) was used
to measure the glucose levels over a 2 h period from the tail veins. The total Area Under
Curve (AUC) of the glucose and time was calculated.

2.8. Blood Sample Analyses

The plasma insulin (Shibayagi, Gunma, Japan), C-Reactive Protein (CRP), and free
fatty acids (R&D Systems, Minneapolis, MN, USA) levels (n = 8 per group) were measured
with Enzyme-Linked Immunosorbent Assay (ELISA) kits according to the manufacturer’s
instructions.

2.9. Measurement of Tissue Cytokines

The levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), and IL-6
in ipsilateral cortical tissues, gastrocnemius muscles, and livers (n = 8 per group) were
measured with ELISA kits (R&D Systems, Minneapolis, MN, USA).

2.10. Western Blot Analysis

The ipsilateral cortical tissues, gastrocnemius muscles, liver tissues, and bEnd.3 cell
lysates were homogenized using a Tissue Protein Extraction Reagent (Pierce Biotechnol-
ogy, Rockford, IL, USA). Equal amounts of extracted proteins were separated through a
standardized SDS-PAGE (8% and 12%) and transferred onto PVDF membranes, which
were sequentially incubated with 5% skim milk, corresponding with primary antibodies,
IgG-HRPs, and enhanced chemiluminescence Western blotting reagents (n = 8 per group).
The chemiluminescence on the membranes were visualized using a G:BOX mini multi
fluorescence and chemiluminescence imaging system (Syngene, Frederick, MD, USA) and
quantified by Image J software (National Institute of Health, Bethesda, MD, USA). Pri-
mary antibodies were recognized, which included Receptor-Interacting Protein Kinase 1
(RIPK1, 1:1000), Microtubule-Associated Protein 2 (MAP-2, 1:1000), Cluster of Differenti-
ation 68 (CD68, 1:1000), Glial Fibrillary Acidic Protein (GFAP, 1:1000), Ubiquitin Protein
Ligase E3 Component N-Recognin 1 (Ubr1, 1:1000), Tumor Necrosis Factor-α Receptor
Type I (TNFRI, 1:1000), IKK-α/β (1:1000), p65 (1:1000), phospho-p65 (Serine-536, 1:500),
Stat3 (1:1000), phospho-Stat3 (Tyrosine-705, 1:500), Zonula Occludens-1 (ZO-1, 1:1000),
c-Jun N-terminal Kinase (JNK, 1:1000), phospho-JNK (Threonine-183/Tyrosine-185, 1:500),
Akt (1:1000), phospho-Akt (Serine-473, 1:500), Janus Kinase 2 (Jak2, 1:1000), phospho-
Jak2 (Tyrosine-1007, 1:1000), Insulin Receptor Substrate-1 (IRS1, 1:1000), phospho-IRS1
(Serine-307, 1;500), Suppressors of Cytokine Signaling 3 (SOCS3, 1:1000), Synaptosome
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Associated Protein 25 (SNAP25, 1:1000), Glyceraldehyde 3-Phosphate Dehydrogenase
(GAPDH, 1:3000) (Santa Cruz Biotechnology, Santa Cruz, CA, USA), phospho-IKK-α/β
(Serine-176/180, 1:500), and phospho-IRS1 (Tyrosine-895, 1:500) (Cell Signaling, Beverly,
MA, USA).

2.11. Zymography Assay

Equal amounts of extracted proteins (the same as Western blot) from ipsilateral cortical
tissues were separated through a standardized SDS-PAGE (8%) (n = 8 per group). The
electrophoretic gels were washed with 2.5% Triton X-100, incubated in a buffer (25 mM Tris,
150 mM NaCl, 10 mM CaCl2, 0.2% Brij-35, pH 7.5), and stained with Coomassie brilliant
blue R-250 (0.2%). The intensities of the visualized bands were quantified by Image J
software (National Institutes of Health, Bethesda, MA, USA).

2.12. Cell Cultures

The immortalized mouse brain bEnd.3 endothelial cells purchased from the Biore-
source Collection and Research Center (BCRC number: 60515, Hsinchu, Taiwan) were main-
tained in Dulbecco’s Modified Eagle Medium (DMEM) with 10% Fetal Bovine Serum (FBS)
at 37 ◦C and 5% CO2. Cells were treated with a vehicle of recombinant IL-6 (50 ng/mL),
AG490 (50 µM), MG132 (5 µM), or in combination, for 24 h.

2.13. Measurement of Endothelial Barrier Integrity

Transendothelial Electrical Resistance (TEER) and transendothelial permeability to
dextran-FITC were measured in a Transwell apparatus [43,44]. The bEnd.3 cells were
seeded onto Transwell inserts and grown to confluence. The TEER of the cell monolayer
was measured with a Millicell ERS ohmmeter (Millipore, Billerica, MA, USA). The upper
chambers were loaded by dextran-FITC (0.1 µg/mL) for 30 min, and its content in the
lower chambers was measured using a fluorometer (Ex 492 nm and Em 520 nm).

2.14. Statistical Analysis

All the data were expressed as Mean ± Standard Deviation. A two-way analysis
of variance, followed by Dunnett’s or Tukey post-hoc test, was performed for a group
comparison using GraphPad Prism software (San Diego, CA, USA). A p value less than
0.05 was considered statistically significant.

3. Results
3.1. AG490 Alleviated Poststroke Brain Injury

The Jak2 inhibitor AG490 has been used in investigations of cerebral ischemia to
explore the role of IL-6 [34,36,45]. In this study, the blockade of potential IL-6/Jak2 signaling
was produced through the intraperitoneal introduction of AG490 30 min prior to cerebral
ischemia. As with previous studies [34,36,45], the impaired sensorimotor performance
(Figure 1A) and ipsilateral development of brain infarction (Figure 1B), brain edema
(Figure 1C), and caspase-3 activation (Figure 1D) in rats with cerebral ischemia were
alleviated by AG490. Elevated expression of necroptotic RIPK1 has been implicated in
cerebral ischemia brain injury [46]. Its elevated expression was alleviated by AG490
(Figure 1E). The findings indicate a neuroprotective effect of AG490 pretreatment against
ischemic brain injury.
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Figure 1. AG490 improved cerebral ischemia injury: (A) neurological deficits after permanent cerebral ischemia for 24 h in
sham and stroke rats receiving normal saline or AG490 (5 mg/kg); (B) average infarction volume of ipsilateral hemisphere
by TTC staining; (C) water contents in the ipsilateral cortical tissues; (D) caspase-3 activity by an enzymatic assay in the
ipsilateral cortical tissues; and (E) Western blot of the ipsilateral cortical tissue proteins with the indicated antibodies and
the quantitative results. * p < 0.05 vs. sham/saline; # p < 0.05 vs. ischemia/saline, n = 8.

3.2. AG490 Alleviated Poststroke Oxidative Stress and Inflammation

Since oxidative stress and inflammation have substantial roles in the expansion of
poststroke brain injury [7,8], changes in the accompanying biochemical events were investi-
gated in cortical tissues ipsilateral to cerebral ischemia with the aim of further exploring the
neuroprotective effects of AG490. The injured cortical tissues of rats with cerebral ischemia
exhibited decreased protein expression of neuron-related MAP-2 and SNAP25, though
there was evidence of the increased protein expression of macrophage/microglia-related
CD68 and astrocyte-related GFAP (Figure 2A). Concurrent alterations were found with
an elevation of MDA (Figure 2B), and increases of TNFRI protein expression, NF-κB p65
protein phosphorylation, Jak2 protein phosphorylation, and Stat3 protein phosphoryla-
tion (Figure 2A), as well as tissue TNF-α, IL-1β, and IL-6 protein expression (Figure 2C).
Conversely, there was a reduction of Akt protein phosphorylation and tight junction ZO-1
protein expression (Figure 2A). The reduction of ZO-1 was paralleled by increased protein
expression in ubiquitin Ubr1 E3 ligase (Figure 2A), along with enhanced MMP-9 activity
(Figure 2D). The changes in ipsilateral cortical tissues were reversed by AG490 (Figure 2).
Our findings suggested that AG490 induced a reversal effect on poststroke neural cell
alteration, oxidative stress, inflammation, and Blood–Brain Barrier (BBB) disruption.
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Figure 2. AG490 diminished poststroke brain oxidative stress and inflammation: (A) Western blot of the ipsilateral cortical
tissue proteins with the indicated antibodies and the quantitative results in sham and stroke rats receiving normal saline or
AG490 (5 mg/kg); (B,C) MDA contents, and TNF-α, IL-1β, and IL-6 protein levels in the ipsilateral cortical tissues; And
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* p < 0.05 vs. sham/saline # p < 0.05 vs. ischemia/saline, n = 8.

3.3. AG490 Improved Poststroke Hyperglycemia

The IL-6/Jak2 inflammatory axis has been implicated in the impairment of insulin
signaling [12,14,39]. Therefore, the effects of AG490 on poststroke glucose metabolism were
investigated. As shown in our previous reports [40–43], rats with cerebral ischemia devel-
oped hyperglycemia (Figure 3A), hyperinsulinemia (Figure 3B), and glucose intolerance
(Figure 3C,D). AG490 displayed an alleviative effect on hyperglycemia (Figure 3A) and
post-load glucose levels (Figure 3C,D), and augmented hyperinsulinemia (Figure 3B). In
systemic parameters linked to glucose metabolism, cerebral ischemia resulted in increased
circulation levels of CRP (Figure 4A) and free fatty acids (Figure 4B) in rats, and the incre-
ments were alleviated by AG490. These findings suggest AG490 confers a beneficial effect
against poststroke hyperglycemia and impaired glucose tolerance.
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ischemia/saline, n = 8.

3.4. Cerebral Ischemia Impaired Insulin Action in Gastrocnemius and Liver as Well as a Reversal
Effect of AG490

Skeletal muscles are targets of peripheral insulin and are central to postprandial blood
glucose uptake. IL-6/Jak2 signaling adversely interferes with the action of insulin, resulting
in glucose intolerance and insulin resistance [12,15,16,47]. There was a reduction in active
IRS1-associated tyrosine phosphorylation and Akt phosphorylation, and an increase in
inhibitory IRS1-associated serine phosphorylation in the gastrocnemius muscles following
cerebral ischemia, and the changes were alleviated by AG490 (Figure 5A). The decreased
insulin signaling and reversal effects of AG490 were paralleled by alterations in Jak2
protein phosphorylation, Stat3 protein phosphorylation, SOCS3 protein expression, TNFRI
protein expression, JNK protein phosphorylation, IKK-α/β protein phosphorylation, NF-
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κB p65 protein phosphorylation, CD68 protein expression (Figure 5A), MDA production
(Figure 5B), and tissue protein expression in TNF-α, IL-1β, and IL-6 (Figure 5C). The
altered parameters in the postischemic gastrocnemius muscles were alleviated by AG490
(Figure 5). The liver is also critical to stroke-associated dysmetabolism [42]. Cerebral
ischemia impaired insulin action, and a reversal effect of AG490 was duplicated in the liver
(Figure 6). Therefore, cerebral ischemia has an adverse effect on the insulin signaling in the
gastrocnemius muscles and liver involving oxidative stress and inflammation, with AG490
improving the impairment.
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3.5. Propranolol and R-7050 Alleviated Tissue IL-6 Expression

Our previous studies revealed that both propranolol and R-7050 protected rats against
cerebral ischemia-induced metabolic and inflammatory changes as well as brain injuries.
The elevation of IL-6 expression in brain cortical tissues and gastrocnemius tissues was
alleviated by R-7050, while the effects of propranolol on tissue IL-6 expression remained
undetermined [40,43]. Tissues in both previous studies revealed an elevated IL-6 expression
in the brain cortex, liver, and gastrocnemius of cerebral ischemia rats. Propranolol had
an alleviative effect on IL-6 expression in brain cortical tissues (Figure 7A), liver tissues
(Figure 7B), and gastrocnemius tissues (Figure 7C). In addition to the brain cortex and
gastrocnemius [40,43], R-7050 also caused a reduction in liver IL-6 expression (Figure 7D).
Therefore, the reduction of tissue IL-6 expression appears to be common upon beneficial
intervention after cerebral ischemia.
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Figure 7. Propranolol and R-7050 alleviated tissue IL-6 expression in cerebral ischemia rats. IL-6
protein levels in: (A) brain cortex; (B) liver; and (C) gastrocnemius muscles in sham and stroke rats
receiving normal saline or propranolol (2 mg/kg) intraperitoneal injection. * p < 0.05 vs. sham/saline;
# p < 0.05 vs. ischemia/saline, n = 6. (D) Liver IL-6 protein levels in sham and stroke rats receiving
normal saline vehicle or R-7050 (5 mg/kg) intraperitoneal injection. * p < 0.05 vs. sham/saline;
# p < 0.05 vs. ischemia/saline, n = 8.

3.6. AG490 Alleviated IL-6-Induced Endothelial Barrier Disruption

IL-6 is a disruptor of endothelial barrier integrity [44,48]. Therefore, the potential
contribution of AG490 on endothelial cell permeability was explored in a bEnd.3 endothelial
cell model. Sustained IL-6 exposure caused endothelial barrier disruption, as evidenced
by decreased TEER (Figure 8A), increased permeability to dextran-FITC (Figure 8B), and
lowered ZO-1 protein (Figure 8C). The presence of AG490 alleviated endothelial barrier
disruption caused by IL-6 (Figure 8). Moreover, the proteasome inhibitor MG132 [44] also
displayed alleviative effects against IL-6-disrupted endothelial barrier integrity (Figure 8).
The findings suggest that the prevention of endothelial dysfunction and BBB disruption
by decreasing the reduction of tight junction ZO-1 protein is probably a neuroprotective
mechanism of AG490.
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Figure 8. AG490 reduced endothelial permeability increased by IL-6 in bEnd.3 cells: (A) TEER,
(B) permeability to dextran-FITC in bEnd.3 cells pretreated with vehicle, AG490 (50 µM), or MG132
(5 µM) for 30 min before incubation with recombinant IL-6 (0 and 50 ng/mL) for an additional
24 h; (C) Western blot of bEnd.3 extracted proteins with ZO-1 antibody and the quantitative results.
* p < 0.05 vs. untreated control; # p < 0.05 vs. IL-6 control, n = 4.

4. Discussion

In our study, rats with cerebral ischemia exhibited increased IL-6 expression and
Jak2 downstream Stat3 protein phosphorylation in the injured cortical tissues, livers, and
gastrocnemius muscles. The introduction of the Jak2 inhibitor AG490 blocked IL-6/Jak2
signaling, resulting in the amelioration of the poststroke neurological deficit, brain infarc-
tion, brain edema, oxidative stress, pro-inflammatory cytokine expression, and caspase-3
activation. The neuroprotective effects of AG490 in the injured cortical tissues correlated
well with a reduction of Stat3 signaling, TNFRI signaling, NF-κB signaling, ubiquitin Ubr1
E3 ligase signaling, and MMP-9 signaling, as well as an increased tight junction ZO-1
protein expression. Furthermore, the endothelial barrier protective effects of AG490 were
demonstrated in in vitro IL-6-exposed bEnd.3 endothelial cells which showed a decrease
in ZO-1 decline. Besides this, the administration of AG490 decreased fasting glucose,
glucose tolerance impairment, plasma CRP, and plasma-free fatty acids, with a parallel
improvement of insulin action in the liver and gastrocnemius muscles as well as reduced
oxidative stress, Stat3 signaling, JNK signaling, NF-κB signaling, and inflammation. The
overall findings provide experimental evidence of using Jak2 blockade therapy, which
can modulate central and peripheral inflammatory responses and metabolic disorder after
acute ischemic stroke.

The recruitment of Jak2 by IL-6R and the gp130 receptor complex, and communi-
cation with Stat3, are essential to the biological execution of IL-6 [12,16,19]. However, it
should be noted that in addition to IL-6, other factors such as leukemia inhibitory factor,
ciliary neurotrophic factor, growth hormones, and leptin can also modulate the Jak2/Stat3
signal transduction system [49]. Hence, the currently observed increased Jak-Stat3 phos-
phorylation after acute ischemia might not exclusively be restricted to stimulation by
IL-6. Once cerebral ischemia occurs, dramatic changes in local cell metabolism create



Antioxidants 2021, 10, 1958 13 of 19

niches whereby numerous intracellular signaling cascades are triggered as an adaptive
response. If the adaption is imbalanced, these signals may gradually lead to the death of
neighboring parenchymal cells via apoptosis, autophagy, necroptosis, pyroptosis, or fer-
roptosis [46,50–52]. Among the surrogate candidates, the Jak2 signaling pathway is crucial
in cerebral ischemia cell adaption and death. Cerebral ischemia causes activation of the
Jak2 signaling pathway, which is closely related to the occurrence of poststroke brain injury.
Inhibiting activation of the Jak2 signaling pathway can inhibit neuronal apoptosis, thereby
alleviating brain injury [28–32]. Conversely, the activation of the Jak2 signaling pathway
is also pivotal in the cerebral ischemia neuroprotective actions of melatonin, resveratrol,
leptin, and erythropoietin derivatives [53–56]. In our rat model of permanent cerebral
ischemia, pretreatment with the Jak2 inhibitor AG490 protected brains from poststroke
apoptosis and injury, although the putative protective or deleterious roles of the Jak2
signaling pathway in cerebral ischemia have yet to be determined.

The IL-6/Jak2/Stat3 axis has also been implicated in endothelial permeability and post-
stroke BBB disruption involving the MMP- or ubiquitin proteasome-mediated degradation
of tight junction proteins [25,44,48]. Rats with cerebral ischemia had decreased endothelial
tight junction ZO-1 proteins, which was reversed by AG490 with increased ubiquitin Ubr1
E3 ligase and MMP-9 activity. In parallel, the endothelial barrier-protective effects of
AG490 via the targeting of ZO-1 protein content were demonstrated in IL-6-stimulated
bEnd.3 endothelial cells. Although antibody neutralization and exogenous addition studies
were not conducted, the combined in vitro and in vivo findings confirmed the blockade of
Jak2 inflammatory signaling and consequences through AG490, and implied a potential
involvement of the IL-6/Jak2/Stat3 axis.

Transcription factor Stat3 is a critical target of the Jak2 signaling pathway which
operates through tyrosine phosphorylation-mediated activation, and is central to cellular
adaption. Stat3 has been shown to be activated in in vitro and in vivo experimental models
of stroke and promotes transcriptional upregulation of numerous genes that may play a
critical role in both neural injury and repair [32,57]. The conflicting findings complicate the
specific role that Stat3 plays in the pathogenic processes of cerebral ischemia. Accumulating
evidence indicates that the aberrant-activated Stat3 can promote the transcription and
expression of pro-inflammatory mediators, including cytokines, chemokines, and adhesion
molecules through direct promoter targeting or via cooperation with an epigenetic modifier
such as Jumonji Domain-Containing Protein D3 (JMJD3) [24,58]. Additionally, its mutual
interaction with the TLR4 signaling pathway represents an alternative mechanism of Stat3
that drives inflammatory responses and oxidative stress [19]. Conversely, M2 macrophage
polarization and the protein expressions of SOCSs and TNF-α-induced Protein 3 (TNFAIP3
or A20) deubiquitinase contribute to the anti-inflammatory effects of the Stat3 signaling
pathway [21,28,59–61].

After cerebral ischemic damage, an increasing number of endogenous host-derived
molecules, termed damage-associated molecular patterns, and cytokines in the brain leak into
the circulation and trigger systemic immunity and inflammation in multiple peripheral organs,
such as bone marrow, the spleen, lymph nodes, and gut [62]. Additionally, this study showed
that inflammatory response also occurred in the liver and skeletal muscles in association with
an enhanced phosphorylation of Jak2/Stat3 and parallel increases in TNFRI, NF-κB signaling,
oxidative stress, and the cytokine proteins of TNF-α, IL-1β, and IL-6 soon after ischemic brain
injury, in line with our previous report [42,43]. It is proposed that infiltrated leukocytes or
activated resident macrophages in peripheral tissues may be one of the sources of peripheral
proinflammatory cytokine production after brain injury [62]. On the contrary, these hepatic
and muscular inflammatory changes were alleviated by AG490. However, whether decreased
peripheral inflammation was medicated by the direct effects of AG490 on the target organs,
or indirectly by less cerebral neuronal injury, requires further clarification.

Glucose intolerance and insulin resistance are closely linked to low-grade chronic
inflammation and higher circulating levels of free fatty acids [15,43]. Besides this, regarding
the inflammation-associated impairment of glucose metabolism, SOCSs, IKK-α/β, and
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JNK are plausible mechanistic links. Upon insulin binding, the Insulin Receptor (IR) is
phosphorylated at the tyrosine residue, which then causes tyrosine phosphorylation in
IRS1 leading to Akt activation, a process central to glucose transporter membrane shuttling
and glucose metabolism. SOCSs antagonize the activation of IR and IRS1, while IKK-α/β
and JNK interfere with the activation of IRS1 by adding a phosphate group to the inhibitory
Serine-307 (rodent)/Serine-312 (human) moiety in the liver and skeletal muscles, both
of which have fundamental roles in postprandial glucose uptake and storage through
conventional insulin actions [15,42,63]. In our study, AG490-mediated improvement in
fasting blood glucose and glucose intolerance was accompanied by reduction of the plasma
levels of CRP and free fatty acids, as well as an increased circulation of insulin after
acute stroke, which implies an anti-inflammatory mechanism attempts to resolve the
impairment of glucose metabolism. Furthermore, the metabolic improvement effects of
AG490 were evident in the signaling pathway in the liver and gastrocnemius muscles
of stroke rats. In stroke rats, it was shown that IRS1 tyrosine phosphorylation and Akt
phosphorylation were reduced along with increased IRS1 Serine-307 phosphorylation, Jak2
phosphorylation, Stat3 phosphorylation, SOCS3, TNFRI, IKK-α/β phosphorylation, JNK
phosphorylation, oxidative stress, and protein expression in TNF-α, IL-1β, and IL-6 in
the liver, and gastrocnemius muscles. In contrast, these alterations were alleviated by
AG490. Fbxo40, a muscle-specific E3 ubiquitin ligase targeting the IRS1 for degradation,
is activated by Stat3 and contributes to muscular insulin resistance [47]. We speculated
that there was relatively little involvement of Fbxo40 in cerebral ischemia-associated
hepatic and muscular insulin resistance because IRS1 content remained constant among
the groups. Overall, the positive effects of AG490 in terms of improving poststroke
hyperglycemia and glucose intolerance could be attributed to its inhibitory effects on
hepatic and muscular inflammation.

Regarding the inflammatory properties of cytokines, it should be noted that IL-6
has two opposing effects on glucose metabolism. Because plasma IL-6 level is higher
in subjects with obesity, metabolic disease, or insulin resistance, it is generally accepted
that depletion of IL-6 improves glucose regulation [13,64]. However, plasma IL-6 levels
are rapidly elevated during exercise, and exercise is an effective way to alleviate insulin
resistance [65]. Studies have reported that short-term treatment with IL-6 improves insulin-
induced glucose uptake in skeletal muscles, although sustained treatment with IL-6 causes
glucose intolerance and insulin resistance [15,39]. Our findings revealed that poststroke
hyperglycemia, glucose intolerance, and brain injury were linked to high IL-6 content,
and the Jak2 inhibitor AG490 reversed these alterations. Nevertheless, additional targets
of IL-6 signaling components, such as IL-6R and gp130, as well as Jak2/Stat3-associated
anti-inflammatory and metabolic resolving effects, remain to be investigated. Thus, a
deeper investigation highlighting the aforementioned phenomena is warranted.

There were some limitations in this study. During cerebral ischemia it has been reported
that neuronal intracellular calcium levels are increased, and thus overload mitochondria with
an increased production of reactive oxygen species, and oxidative stress and the necrotic death
of brain cells. A recent study shows that an antioxidant enzyme, peroxiredoxin-6 (Prx-6), can
protect oxygen–glucose deprived neuronal cells by reducing the expression of factors involved
in apoptosis activation, such as caspase-3, and pro-inflammatory cytokines. Particularly, it also
inhibits intracellular calcium increases, and thus alleviates neuronal injury [66]. Besides this,
there are increasing amounts of studies describing the role of anti-inflammatory regulators
for ischemic stroke. Interleukin-10 (IL-10), an anti-inflammatory cytokine, has been shown
to be beneficial for neurogenesis in the ischemic brain by attenuating pro-inflammatory
signals and upregulating anti-apoptotic proteins [67]. The transforming growth factor-β
(TGF-β), another neuroprotective and anti-inflammatory mediator produced by astrocytes
and microglia, when overexpressed, reduced ischemic brain injury in experimental studies,
while brain damage was exacerbated when TGF-β was blocked [68]. The IL-1 receptor
antagonist (IL-1Ra), a competitive antagonist of IL-1, was found to decrease the concentration
of IL-6 and downstream the products of IL-1, and thus confer neuroprotection [68]. However,
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our study was limited in that changes of intracellular calcium after cerebral ischemia as
well as the expression of IL-10, and the other anti-inflammatory factors were not examined.
Whether the neuroprotective effects of the Jak2 blockade by AG490 also derives from the
regulation of calcium signaling and anti-inflammatory cytokines needs further investigation.
Clinically, human studies showed that in patients with rheumatoid arthritis who received
the interleukin-6 receptor antagonist, the risk of myocardial infarction and stroke can be
decreased [69]. Besides this, use of the Jak Kinase or IL-6 inhibitor can be associated with
a reduction of carotid intimal thickness, and an improvement of microvascular endothelial
functions [70]. These clinical studies demonstrated somewhat the effects of anti-inflammatory
cytokines therapy on cerebrovascular diseases. However, despite our experimental study
showing the beneficial effects of the IL-6 pathway blockade on acute stroke, to be more closely
related to clinical practice, a design with an IL-6-blockade with different administration
time points (e.g., after acute insults) is necessary to elucidate its effect on stroke-induced
inflammatory and metabolic responses.

5. Conclusions

Hyperglycemia and inflammation are commonly linked to the expansion of poststroke
brain injury. The pro-inflammatory cytokine, IL-6, is a plausible mechanistic link between
chronic inflammation and glucose intolerance/insulin resistance via the IL6/Jak2/Stat3
axis. In this study, we provide experimental evidence in a rat cerebral ischemia model of the
suppressive effects of the Jak2 inhibitor AG490 on brain injury, apoptosis, oxidative stress,
neuroinflammation, hyperglycemia, glucose intolerance, skeletal/hepatic oxidative stress,
skeletal/hepatic inflammation, and insulin resistance (Figure 9). Our findings further
strengthen the concept that agents or strategies targeting inflammation, hyperglycemia, or
both, may have a promising effect in preventing disease progression in conditions such as
cerebral ischemia. These findings are encouraging, but further research is warranted to
elucidate the precise mechanisms of AG490 and to identify additional targets beyond IL-6.Antioxidants 2021, 10, x FOR PEER REVIEW 16 of 19 
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