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SUPPLEMENTARY FIGURE 1. SUMMARY OF THE RESULTS OF THE RISK OF BIAS 

ASSESSMENTS. 

  



SUPPLEMENTARY FIGURE 2. RISK OF BIAS TRAFFIC LIGHT PLOT. 

 

 

 

  



SUPPLEMENTARY FIGURE 3. PROPORTION OF PRIMARY ARTICLES ASSESSMENTS 

FLAGGED AS POSSIBLY REDUNDANT. 

 
  



SUPPLEMENTARY FIGURE 4. PREVALENCE OF DECLARED PRIVATE DATA 

SHARING SINCE 2016. 
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SUPPLEMENTARY FIGURE 5. PREVALENCE OF DECLARED PRIVATE CODE 

SHARING SINCE 2016. 
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SUPPLEMENTARY FIGURE 6. PREVALENCE OF SUCCESSFUL RESPONSES TO 

PRIVATE REQUESTS FOR DATA FROM PUBLISHED MEDICAL RESEARCH BY 

DECLARATION TYPE. 

 

  



SUPPLEMENTARY FIGURE 7. PREVALENCE OF DECLARED AND ACTUAL PUBLIC 

CODE SHARING BY JOURNAL CODE SHARING POLICY. 
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SUPPLEMENTARY FIGURE 8. ASSOCIATION BETWEEN DATA SHARING AND CODE 

SHARING (ACTUAL AVAILABILITY). 
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SUPPLEMENTARY FIGURE 9. PREVALENCE OF DECLARED PUBLIC DATA SHARING 

SINCE 2016 BY DATA TYPE. 
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SUPPLEMENTARY FIGURE 10. PREVALENCE OF ACTUAL PUBLIC DATA SHARING 

SINCE 2016 BY DATA TYPE. 
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SUPPLEMENTARY FIGURE 11. PREVALENCE OF PUBLIC DATA AND CODE SHARING 

AMONG STUDIES INVESTIGATING COVID-19. 
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SUPPLEMENTARY TABLE 1. DEVIATIONS FROM THE ORIGINAL REVIEW PROTOCOL. 

Original plan Revised plan Reason for modification 

Please refer to Table 1 in the 
review protocol 
(https://f1000research.com/arti
cles/10-491/v2 - T1).  

Two extra options were added to the 
‘risk of sampling bias’ (“Sampled 
whole population of interest”) and 
‘risk of article selection bias’ 
categories (“No article screening 
performed”). Both items were 
considered low risk of bias.  

The two options were added to account for meta-research articles that 
assessed all articles within a population of interest (e.g., assessed all articles 
indexed in PubMed Central a la Serghiou et al. (2021)) or did not perform article 
screening respectively. 

Prevalence estimates will be 
transformed using the Freeman-
Tukey double arcsine 
transformation and combined 
using standard inverse variance 
methods. 

We pooled prevalence estimates by 
first stabilising the variances of the 
raw proportions using arcsine square 
root transformations, then applied 
random-effects models using the 
Hartung-Knapp-Sidik-Jonkman 
method. 

Due to large sample size imbalances between included studies, and the 
negative influence such skewed ranges of sample sizes can have on the 
harmonic mean which is used to back-transform meta-analytic estimates 
transformed with the Freeman-Tukey double arcsine method (Schwarzer 2019), 
we decided to use the arcsine square root transformation instead. 

We did not plan to conduct 
sensitivity analyses to 
investigate differences in 
pooled risk ratios when using 
generalized linear mixed 
models. 

We examined differences in pooled 
risk ratios when using generalised 
linear mixed models to aggregate 
findings [32,33]. 

We decided post-hoc to check the robustness of the meta-analyses of risk ratios 
when using bivariate generalised linear mixed effects models as proposed by 
Chu et al. (2012) [33]. Like the meta-analyses of proportions, we chose this 
method as it has been specifically recommended in situations when the event 
of interest is rare, and individual study sample sizes are small and circumvent 
the need to add arbitrary continuity corrections allowing the analysis of both 
single-zero and double-zero events [27; 165]. 

We did not plan to collect 
information on data type, nor 
perform a subgroup analysis to 
explore its effects on the study’s 
findings. 

We collected data on data type and 
conducted a sub-group analysis to 
investigate whether prevalence 
estimates of public data sharing 
differed depending on the data type 

We decided to collect data on data type and perform a subgroup analysis 
exploring its effects on reported findings based on feedback from colleagues on 
the protocol. 

 

https://f1000research.com/articles/10-491/v2#T1
https://f1000research.com/articles/10-491/v2#T1


SUPPLEMENTARY TABLE 1 (CONTINUED). DEVIATIONS FROM THE ORIGINAL REVIEW PROTOCOL. 

Original plan Revised plan Reason for modification 

We did not plan to conduct 
sensitivity analyses to 
investigate differences in 
pooled prevalence estimates 
when excluding studies that 
used automated coding 
strategies. 

We conducted sensitivity analyses to 
investigate differences in pooled 
prevalence estimates when excluding 
studies that used automated coding 
strategies. 

We decided to include this sensitivity analysis to evaluate whether pooled 
prevalence estimates deviated when the results of meta-research studies which 
used automated coding strategies (methods have been shown to have inferior 
accuracy, positive predictive value (PPV), and negative predictive value (NPV) 
when compared to manual coding strategies) were removed. 

We originally planned to 
perform subgroup analyses to 
explore differences in public 
data sharing frequencies 
between primary articles 
reporting the results of clinical 
trials or not, as well as articles 
reporting the results of studies 
using human participants versus 
not. 

We conducted analyses of association 
for these outcomes rather than a 
subgroup analysis comparing pooled 
proportions between groups. 
Consequently, these two subgroup 
analyses have been included as 
secondary outcomes. 

We changed the analysis plan for these outcomes due to the availability of data 
that allowed us to directly explore associations between both of these factors 
(i.e. calculation of risk ratios)  

We originally planned to 
perform a subgroup analysis to 
explore differences in public 
data sharing frequencies 
between primary articles 
studying COVID-19 or not. 

We conducted a sensitivity analysis to 
examine how data sharing frequencies 
changed when analyses were 
restricted to meta-research studies 
examining COVID-19. 

We decided not to compare data and code sharing rates between COVID and 
non-COVID research because of the large amount of methodological 
heterogeneity in meta-research studies examining non-COVID research.  

  



SUPPLEMENTARY TABLE 2. RISK OF BIAS CRITERIA.  

Item Low risk of bias High risk of bias Unclear risk of bias 

Risk of 
sampling bias 

The meta-research study evaluated a 
random sample of primary articles or 
sampled the entire population of interest. 

The meta-research study included a non- or 
pseudorandom sample of primary articles. 

The sampling frame for the sample of 
primary articles was unclear. 

Risk of selective 
reporting bias 

Eligible outcomes and associations reported 
in the protocol for the meta-research study 
were fully reported in the results section of 
the publication. 

Not all eligible outcomes and associations 
reported in the protocol for the meta-
research study were reported in the results 
section of the publication. 

It was unclear if all eligible outcomes and 
associations were fully reported in the 
results section of the publication (e.g., 
because a study protocol for the meta-
research study was unavailable). 

Risk of article 
selection bias 

Details about which studies were excluded 
from the study and why have been shared 
and match the criteria described in the 
methods, or no article screening needed to 
be performed (e.g., because all articles 
identified by a literature search were 
analysed) 

Details about which studies were excluded 
and why were not reported. 

Details about the eligibility criteria and 
study selection process was unclear. 

Risk of errors in 
the accuracy of 
reported 
estimates 

All outcome data were either manually 
coded by at least two people independently 
in parallel or coded by one person and 
checked in full by another. 

Outcome data were manually coded by one 
researcher, an automated algorithm, or 
according to another methodology different 
from that outlined in the Low Risk category. 

The method used to extract data from the 
included primary studies was unclear. 

  



SUPPLEMENTARY TABLE 3. FINDINGS OF ELIGIBLE META-RESEARCH STUDIES WHERE SUMMARY DATA WERE NOT AVAILABLE 

FOR THE REVIEW (N=9).  

Study Year Discipline 
Journals 
examined 

Primary study 
date range Data types 

Sample 
size 

IPD 
available Exclusion reason 

Helliwell 2020b 2020 COVID-19, 
MERS 

Multiple 2019-2020, 
2018-2019 

Any 398,  
55 

Partial Reported prevalence estimates could not be 
coded in accordance with the study codebook 

Hemkens 2016 2016 General Medical Multiple 2012 Clinical data 124 No Reported prevalence estimates could not be 
coded in accordance with the study codebook 

Jiao 2022 2022 Multidisciplinary PLOS One 2014-2020 Any 127,935 No Prevalence estimates not reported separately 
for medical articles 

McDonald 2017 2017 General Medical BMJ 2015-2017 Clinical data 237 Partial Reported prevalence estimates could not be 
coded in accordance with the study codebook 

Ramke 2018 2018 Ophthalmology Multiple 2000-2014 Clinical data 153 No Prevalence estimates not reported 

Rustici 2021 2021 Biomedicine Multiple 2009-2013, 
2012 

RNA-Seq, 
Microarray 

1,114, 
347 

No Prevalence estimates not reported separately 
for medical articles 

Stodden 2018 2018 Multidisciplinary Science 2009-2010 Any 204 No Reported prevalence estimates could not be 
coded in accordance with the study codebook 
and are also not reported separately for 
medical articles 

Towse 202 2020 Clinical Psychology Multiple 2014-2017 Any 1,900 Partial Prevalence estimates not reported separately 
for medical articles 

Zhao 2017 2017 Multidisciplinary PLOS One 2014-2015 Any 50 No Prevalence estimates not reported separately 
for medical articles 

  



SUPPLEMENTARY TABLE 4. META-REGRESSION RESULTS. 

 Model Coefficients  Level 3 (Between-study)  Level 2 (Within-study)    

 Intercept SE β* SE 95% CI p  𝜏2 I2 k  𝜏2 I2 o  AIC BIC 

Declared data sharing                  

Three-level (All) -32.9763 8.4334 0.0165 0.0042 0.0082-0.0248 0.0001  0.0122 90.67% 27  0.0012 9.06% 117  -166.64 -155.66 

Three-level (Manual) -32.8099 14.1371 0.0164 0.007 0.0025-0.0303 0.0213  0.012 55.63% 25  0.0037 17.15% 105  -127.34 -116.8 

Actual data sharing                  

Three-level (All) -8.2121 9.0308 0.0041 0.0045 -0.0048-0.013 0.3589  0.0089 74.66% 26  0.0004 3.16% 111  -199.79 -189.02 

Three-level (Manual) -16.8115 11.1834 0.0084 0.0055 -0.0026-0.0194 0.1334  0.0088 62.28% 25  0.0006 4.01% 106  -180.64 -170.07 

Declared code sharing                  

Three-level (All) -22.7095 1.7921 0.0113 0.0009 0.0095-0.013 <0.0001  0.0011 95.31 24  0 1.54% 114  -294.16 -283.28 

Three-level (Manual) -1.5145 10.6961 0.0008 0.0053 -0.0098-0.0113 0.8852  0.0014 18.54 22  0 0% 102  -236.2 -225.78 

Actual code sharing                  

Three-level (All) -5.1997 10.5109 0.0026 0.0052 -0.0078-0.0129 0.6199  0.0009 15.15 21  0 0 99  -242.96 -232.66 

Three-level (Manual) NA NA NA NA NA NA  NA NA NA  NA NA NA  NA NA 

*Beta coefficients represent the arcsine-transformed change in availability rate each year, All = all eligible studies, Manual = studies that only manually assessed sampled primary articles 

  



SUPPLEMENTARY TABLE 5. SENSITIVITY ANALYSES FOR PRIMARY OUTCOMES. 

 Declared public sharing  Actual public sharing 

 % 95% CI 95% PI k I2  % 95% CI 95% PI k I2 

Public data sharing             

Low ROB - - - - -  - - - - - 

Provided IPD 7% 5-10% 0-25% 26 96%  2% 1-3% 0-11% 25 90% 

Assessed FAIR 5% 0-50% NA 3 98%  4% 0-43% NA 3 98% 

Manually coded primary articles 9% 5-12% 0-31% 24 90%  2% 1-3% 0-12% 23 90% 

COVID-19 9% 0-57% NA 3 95%  11% 0-76% NA 3 84% 

HKSJ method 8% 5-11% 0-30% 27 96%  2% 1-3% 0-11% 25 90% 

GLMM method 7% 5-10% 1-34% 27 95%  2% 1-3% 0-15% 25 91% 

Public code sharing            

Low ROB - - - - -  - - - - - 

Provided IPD 0.2% 0-0.4% 0-2% 25 86%  0.1% 0-0.3% 0-1% 21 52% 

Assessed FAIR 0.9% 0-12% NA 3 93%  - - - - - 

Manually coded primary articles 0.3% 0-1% 0-9% 23 82%  0.1% 0-0.3% 0-1% 21 52% 

COVID-19 9% 0-50% NA 3 82%  2% 1-3% NA 2 0% 

HKSJ method 0.3% 0-1% 0-8% 26 89%  0.1% 0-0.3% 0-1% 21 52% 

GLMM method 0.2% 0-1% 0-12% 26 91%  0.2% 0-0.9% 0-3% 21 0% 

CI – confidence interval, PI – prediction interval, k – number of included studies, HKSJ – Hartung-Knapp-Sidik-Jonkman method for random-effects meta-analysis, GLMM – generalised linear mixed-models, 
ROB – risk of bias, IPD – individual participant data 

  



SUPPLEMENTARY TABLE 5 (CONTINUED). SENSITIVITY ANALYSES FOR PRIMARY OUTCOMES (CONTINUED). 

 Declared public sharing  Actual public sharing 

 % 95% CI 95% PI k I2  % 95% CI 95% PI k I2 

Private data sharing            

Low ROB 0% 0-2% NA 1 NA  - - - - - 

Provided IPD 2% 1-4% 0-10% 23 80%  - - - - - 

Assessed FAIR 12% 9-16% NA 1 NA  - - - - - 

Manually coded primary articles 2% 1-4% 0-10% 23 80%  - - - - - 

HKSJ method 2% 1-4% 0-10% 23 80%  - - - - - 

GLMM method 2% 2-4% 0-12% 23 67%  - - - - - 

Private code sharing            

Low ROB 0% 0-2% NA 1 NA  - - - - - 

Provided IPD 0% 0-0.1% 0-0.5% 22 0%  - - - - - 

Assessed FAIR 0.7% 0-2% NA 1 NA  - - - - - 

Manually coded primary articles 0% 0-0.1% 0-0.5% 22 0%  - - - - - 

HKSJ method 0% 0-0.1% 0-0.5% 22 0%  - - - - - 

GLMM method 0.1% 0-0.4% 0-0.5% 22 0%  - - - - - 

CI – confidence interval, PI – prediction interval, k – number of included studies, HKSJ – Hartung-Knapp-Sidik-Jonkman method for random-effects meta-analysis, GLMM – generalised linear mixed-models, 
ROB – risk of bias, IPD – individual participant data 

  



SUPPLEMENTARY TABLE 6. SENSITIVITY ANALYSES FOR SECONDARY OUTCOMES AND SUBGROUP ANALYSES. 

 Declared public sharing  Actual public sharing 

 RR 95% CI 95% PI k I2  RR 95% CI 95% PI k I2 

Association between data and code sharing             

HKSJ method 8.03 2.86-22.53 0.33-194.43 12 32%  42.05 12.15-145.52 0.94-1879.62 7 0% 

BGLMM method (SZC) 7.88 2.44-18.01 NA 12 NA  40.42 15.45-120.39 NA 7 NA 

BGLMM method (DZC) 10.51 3.00-18.01 NA 23 NA  52.85 9.46-132.52 NA 17 NA 

Low ROB - - - - -  - - - - - 

FAIR studies 11.84 0-1.33x107 NA 2 82%  - - - - - 

IPD only - - - - -  - - - - - 

Manual coding 4.52 1.38-14.86 0.20-101.05 10 0%  - - - - - 

Trial versus non-trial            

HKSJ method 0.69 0.45-1.07 0.12-4.13 23 0%  0.96 0.53-1.72 0.15-5.95 19 0% 

BGLMM method (SZC) 0.55 0.35-0.77 NA 23 NA  0.67 0.26-1.39 NA 19 NA 

BGLMM method (DZC) 0.56 0.37-0.79 NA 25 NA  0.69 0.27-1.52 NA 24 NA 

Human versus non-human            

HKSJ method 0.65 0.42-0.99 0.12-3.61 19 57%  0.44 0.24-0.81 0.05-3.57 16 28% 

BGLMM method (SZC) 0.69 0.46-1.01 NA 19 NA  0.58 0.29-1.00 NA 16 NA 

BGLMM method (DZC) 0.69 0.48-1.00 NA 20 NA  0.59 0.30-0.97 NA 20 NA 

SZC – Included studies with no events in one group but not studies with no events in both groups in analyses, DZC – Included both studies with no events in one or both groups in analyses 
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SUPPLEMENTARY METHODS. 

Protocol and registration 

We registered our systematic review on May 28th, 2021 on the Open Science Framework (OSF), prior 

to commencing the literature search [1], and subsequently prepared a detailed review protocol [2]. We 

report seven deviations from the protocol in Supplementary Table 1. As the research subjects of interest 

were scientific publications, ethics approval was not required for this research. The findings of this 

review are reported in accordance with the Preferred Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) 2020 statement [3] and its IPD extension [4]. We summarise key aspects of the 

methods below; for further details, please refer to the review protocol [2].  

Eligibility criteria 

Any study in which researchers investigated the prevalence of, or factors associated with, data or code 

sharing (termed “meta-research studies”) across a sample of published scientific articles presenting 

original medical or health-related research findings (termed “primary articles”) was eligible for 

inclusion in the review. No restrictions were placed on the publication location (e.g., preprint server, 

peer-reviewed journal) or the format (e.g., conference abstract, research letter) of either group. Nor were 

restrictions placed on the strategy used to identify and select primary articles, the type of data assessed 

(e.g., trial data, review data) or the level of sharing assessed (e.g., partial versus complete sharing). 

Furthermore, we included studies that used either manual or automated methods to assess data and code 

sharing provided it involved some examination of the body text of sampled primary articles. Exclusion 

criteria for this review included meta-research studies that investigated data or code sharing: as a routine 

part of a systematic review and IPD meta-analysis; among scientific articles outside of medicine and 

health; or via avenues other than journal articles (e.g., clinical trial registries).  

Information sources and search strategy 

On July 1st, 2021, we searched Ovid MEDLINE, Ovid Embase, and the medRxiv, bioRxiv, and 

MetaArXiv preprint servers to identify potentially relevant studies indexed from database inception up 

to the search date. The full search strategies, bibliographic citation files, as well as snapshots of the 

medRxiv and bioRxiv databases are available on the project’s OSF page (https://osf.io/jgzsa/). Details 

on the development of the search strategy are outlined in the review protocol [2]. In addition to the 

database searches, other preprint servers (PeerJ, Research Square) and relevant online resources (Open 

Science Framework, aspredicted.org and connectedpapers.com) were searched to locate additional 

published, unpublished, and registered studies of relevance to the review. Backward and forward 

citation searches of meta-research studies meeting the inclusion criteria were also performed using 

citationchaser on August 30th, 2022 [5]. Finally, potentially relevant studies recommended by 

colleagues, discovered through collaborations, and seen at meta-research conferences were also 

screened for eligibility. No language restrictions were imposed on any of the searches. 

Study selection 

Results from all main database and preprint server searches were imported into Covidence (Covidence 

systematic review software, Veritas Health Innovation, Melbourne, Australia) and deduplicated. For 

the preprint searches, if a version of an eligible meta-research study was discovered in a peer-reviewed 

journal, it was included in place of the original preprint. All titles, abstracts, and full-text articles were 

then screened for eligibility in Covidence by DGH and another author (HF, ARF, or KH) independently, 

with disagreements resolved via discussion between authors, or by a third author if necessary (MJP). 

All literature identified by the additional preprint and online searches were screened against the 

eligibility criteria by one author (DGH). When multiple reports on the same dataset were identified, we 

https://osf.io/jgzsa/
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used data from the most up-to-date report. A spreadsheet containing all screening decisions is publicly 

available on the OSF (https://osf.io/6tj87). 

Data collection 

Once a meta-research study was found to be eligible, one member of the team (DGH) determined 

whether sufficiently unprocessed article-level IPD and article identifiers (e.g., digital object identifiers 

(DOIs), PubMed identifiers (PMIDs), article titles) for the included primary articles were publicly 

available. For meta-research studies where complete IPD were not available (i.e., no data or partial data 

had been shared), the corresponding author was contacted and asked if they would provide the complete 

or remaining IPD. If meta-research authors responded that they were either unable or unwilling to share, 

we then asked whether they would calculate the summary statistics necessary for the review. For meta-

research authors who were unable or refused to provide summary data for the review, did not respond, 

or did not provide the promised IPD by the census date of December 31st, 2022, summary data reported 

in the meta-research papers were independently extracted by two authors (DGH; MJP), with 

discrepancies resolved through discussion. A list of all the data that were extracted from each meta-

research study for the review can be found on the project’s OSF page (https://osf.io/mav89/). 

IPD integrity checks and harmonisation 

When complete IPD were obtained for a meta-research study, one author (DGH) performed the 

following integrity checks prior to harmonising the data: i) an evaluation of the completeness of the 

dataset (e.g., whether any variables or values were missing), ii) a check of the validity of the dataset 

(e.g., presence of out-of-range values, incorrectly coded values) and iii) a check that the overall sample 

size and data and/or code sharing prevalence estimates as stated in the report could be exactly 

reproduced (note that the checks for an included study led by the first author of this review (Hamilton 

et al 2022 [6]) were performed by another author (HF)). In instances where any of these checks failed, 

clarification was sought from the meta-research authors. We also checked for, and removed duplicate 

rows in datasets (i.e., checked if the same primary articles were sampled more than once). Additionally, 

for meta-research studies that sampled primary articles across multiple scientific disciplines, Digital 

Science’s Dimensions platform (https://app.dimensions.ai) was used to identify which were medical 

and health-related using their automated 2020 Australia and New Zealand Standard Research 

Classification (ANZSRC) Fields of Research (FOR) Codes classification service [7]. When primary 

articles were not indexed in Dimensions, the first author (DGH), who has close to a decade of experience 

working as an allied health professional, clinical trial coordinator and medical researcher, classified 

articles as being medical or health-related or not. Furthermore, for meta-research studies with sample 

sizes less than 500, primary articles not assigned medical FOR codes by the Dimensions platform were 

manually reviewed and recoded if deemed false negatives. 

Once the IPD checks were complete, one author (DGH) then manually extracted and reclassified 

required data in line with the study’s codebook. When all available IPD had been assembled and 

harmonised, datasets were then merged and the extent of overlapping primary articles between meta-

research studies was assessed for each outcome of interest by checking for duplicate DOIs and PMIDs 

in R (R Foundation for Statistical Computing, Vienna, Austria, v4.2.1) using the duplicated function. 

We decided to keep data originating from primary articles that were flagged as having been sampled by 

more than one meta-research study only for the study with the highest score for the fourth risk of bias 

domain (i.e., lowest risk of errors in the accuracy of reported estimates), or in the event of a tie, the 

overall lowest risk of bias judgement, or the most recent publication date. More details on the scoring 

system developed to resolve overlap can be found within the spreadsheet reporting the results of the 

risk of bias assessments (https://osf.io/a59vj). For eligible meta-research studies where summary data 

https://osf.io/6tj87
https://osf.io/mav89/
https://osf.io/a59vj
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were only available from study reports, but primary study identifiers were known, information from 

overlapping primary articles was removed from the meta-research studies that shared complete IPD. 

For meta-research studies where both primary study identifiers and article-level data were unavailable, 

we assessed the likelihood of overlap with other meta-research studies by comparing: i) outcome data 

collected, ii) primary article date range and iii) sampled journals. 

Outcomes of interest 

The following four pre-specified outcome measures for both research data and code availability were 

of primary interest to the review:  

i) the prevalence of primary articles where authors declared that their data or code are publicly 

available (‘declared public availability’);  

ii) the prevalence of primary articles in which meta-researchers verified that data or code were indeed 

publicly available (‘actual public availability’);  

iii) the prevalence of primary articles where authors declared their data or code are privately available 

(i.e., “available on request” statements) (‘declared private availability’), and;  

iv) the prevalence of primary articles in which meta-researchers confirmed that study data or code 

were released in response to a private request (‘actual private availability’). 

 

‘Actual public availability’ represented the results of the most intensive investigation of an availability 

statement by meta-researchers (e.g., checks that reported URLs were functional, that data could be 

freely downloaded and opened, that datasets were complete, that reported results could be 

independently reproduced). We also required data to be immediately available for it to be classified as 

actually publicly available (i.e., did not accept ‘intention to share’ and ‘under embargo’ statements), 

and took the strictest definition of actual availability when alternatives were available (i.e., if a study 

assessed both partial and complete sharing, we took the results of the ‘full’ data availability). Further 

information on how we defined ‘actual availability’ as well as all our other outcome measures can be 

found in the review protocol and the study codebook on the project’s OSF page (https://osf.io/u3yrp/).  

In addition to the primary outcome measures, we also included eight secondary outcome measures:  

i) the prevalence of formalised sections within primary articles dedicated to addressing data and/or 

code availability;  

ii) the association between the presence of a data availability statement and public sharing of data in 

primary articles;  

iii) the association between the presence of a code availability statement and public sharing of research 

code in primary articles;  

iv) the association between a journal’s policy on data sharing (any ‘mandatory posting’ policy versus 

other policy) and public sharing of research data in primary articles;  

v) the association between a journal’s policy on data sharing (‘make available on request’ policy 

versus other non-mandatory policy) and private sharing of research data in primary articles;  

vi) the association between study design (clinical trial versus non-trial) and public sharing of data in 

primary articles; 

vii) the association between the subjects of the research (human participants versus non-human 

participants) and public sharing of data in primary articles, and; 

viii) the association between public sharing of research data and the sharing of code in primary articles. 

Assessments of risk of bias 

https://osf.io/u3yrp/
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The risk of bias of included meta-research studies was assessed using a tool designed based on methods 

used in previous Cochrane Methodology reviews [8, 9]. The tool included four domains: i) sampling 

bias, ii) selective reporting bias, iii) article selection bias, and iv) the risk of errors in the accuracy of 

reported estimates (Supplementary Table 2). Each meta-research article was independently assessed by 

DGH and one other author (KH or ARF), with discrepancies resolved via discussion, or a third author 

(MJP) if necessary. Where domains were rated as unclear, clarification was sought from meta-research 

authors. Given the purpose of the tool was to differentiate between studies at a high risk of bias from 

those with a low risk, a study was only classified as low risk of bias if all criteria were assessed as low 

risk. We did not assess the likelihood of publication bias affecting the findings of the review (e.g., using 

a funnel plot), nor did we assess certainty in the body of evidence, as available methods are not well 

suited for methodology reviews such as ours. 

Statistical analysis 

A ‘two-stage’ approach to IPD meta-analysis was used, whereby summary statistics were computed 

from available IPD, abstracted from included study reports, or obtained directly from meta-research 

authors, then pooled using conventional meta-analysis techniques. We calculated proportions and 95% 

confidence intervals (CI) for all prevalence outcomes. Where possible, we calculated risk ratios with 

95% confidence intervals for all association outcomes. For primary outcome measures, we considered 

the methodological characteristics of the included studies to determine which were appropriate for 

aggregation and decided that we would pool studies that met the following criteria: i) did not use non-

random sampling methods, ii) did not restrict primary article evaluations to specific journals, preprint 

servers, funders, institutions, or data types, and iii) reported outcome data on primary articles published 

after 2016. These criteria were specifically chosen to minimise biasing of estimates (i.e., reduce upward 

or downward biasing of pooled estimates due to the overrepresentation of studies of journals with 

mandatory sharing policies, certain study designs, etc), and to provide a modern picture of data and 

code sharing (i.e., an estimate of sharing since the introduction of the FAIR principles [10]). The same 

criteria were applied to secondary outcome measures and subgroup analyses unless specified otherwise.  

We pooled prevalence estimates by first stabilising the variances of the raw proportions using arcsine 

square root transformations, then applied random-effects models using the Hartung-Knapp-Sidik-

Jonkman method which has shown to be preferable to the DerSimonian and Laird method when 

including a small number of studies, and when including studies with differing sample sizes [11]. The 

same approach was also used for meta-analyses of risk ratios; however, no transformations were used, 

and the ‘treatment arm’ continuity correction proposed by Sweeting and colleagues (2004) [12] was 

applied to studies reporting zero events in a single group (double zero-cell events were excluded from 

the main analysis). Statistical heterogeneity was assessed via visual inspection of forest plots, the size 

of the I2 statistics and their 95% confidence intervals, and via 95% prediction intervals (PI) where more 

than four studies were included. Data deduplication, preparation, analysis and visualisation was 

performed in R (R Foundation for Statistical Computing, Vienna, Austria, v4.2.1) using the meta (v5.5) 

[13], metafor (v3.8) [14] and altmeta (v4.1) [15] packages. Risk of bias plots were created using robvis 

[16]. The Python (v3.10.7) client Dimcli (v0.9.9.1) was used to access Dimensions Analytic’s API and 

retrieve required primary article meta-data (e.g., DOIs, PMIDs, ANZSRC FOR codes). All R and 

Python scripts are publicly available on the project’s OSF page (https://osf.io/p5ehb/).  

Subgroup and sensitivity analyses 

We planned to conduct the following subgroup analyses to investigate whether prevalence estimates of 

public data sharing differed depending on i) the data type, or whether primary articles: ii) were subject 

to any mandatory sharing policies by the funders of the research or not, or iii) posted a preprint prior to 

https://osf.io/p5ehb/
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publication or not. Furthermore, we also investigated the influence of publication year on data and code 

sharing rates by fitting three-level mixed-effects meta-regression models on arcsine-transformed 

proportions. A multi-level model was used to account for dependencies between effect estimates due to 

some studies contributing multiple yearly estimates. Due to substantially differing levels of variation of 

point estimates prior to 2014 and after 2020, to preserve assumptions of homoscedasticity we only 

modelled changes in sharing rates between 2014 and 2022.  

We also performed sensitivity analyses to assess changes in pooled estimates when excluding meta-

research studies that i) were rated as high or unclear risk of bias, ii) did not provide IPD for the review, 

iii) were at high risk of overlap with other meta-research studies, iv) did not assess compliance with the 

FAIR principles, v) did not manually assess primary articles and vi) did not examine COVID-19-related 

research. Finally, we also examined differences in pooled proportions and risk ratios when using 

generalised linear mixed models (GLMMs) to aggregate findings, which have been specifically 

recommended in situations when the probability of the event of interest is rare [17,18]. Such methods 

also circumvent the need to add arbitrary continuity corrections to zero events, which can produce 

biased results when most cases are zero events, and group sample sizes are highly imbalanced [12]. For 

meta-analyses of risk ratios, we report the results of analyses both excluding and including studies with 

no events in both groups. 
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SUPPLEMENTARY RESULTS. 

Study selection and IPD retrieval 

The search of Ovid MEDLINE, Ovid Embase and the medRxiv, bioRxiv and MetaArXiv preprint 

servers, once deduplicated, identified 4,952 potentially eligible articles for the review, of which 4,736 

were excluded following the screening of titles and abstracts. Of the remaining 216 articles, full-text 

articles were retrieved for all papers, and 70 were adjudicated as eligible for the review. Furthermore, 

the additional searches revealed another 44 eligible reports for inclusion, resulting in a total of 114 

eligible meta-research studies examining a combined total of 2,254,031 primary articles for the review 

[6, 19-134].  

Following confirmation of eligibility, we searched for publicly available IPD for the 114 meta-research 

studies. Of these studies, 70 had already made complete IPD publicly available (61%), 20 studies had 

posted partial IPD (18%), and 24 had not publicly shared any IPD (21%), with three of the latter articles 

declaring upfront that IPD could not be shared. Of the 70 complete datasets that were originally posted 

publicly, 60 (86%) were deposited into data repositories, 36 (51%) had a DOI, 26 (37%) provided a 

data dictionary, and 14 (20%) applied a license to the data. Most data were archived in Microsoft Excel 

(N=33, 47%) or CSV (N=25, 36%) formats, with a minority of meta-researchers storing their data in 

PDFs (N=5, 7%) and Microsoft Word documents (N=3, 4%).  

Of the 44 meta-research studies that had not posted complete IPD, three groups stated in the study report 

that data could not be released, and for one we were unable to source contact information. Consequently, 

we contacted 40 authorship teams and asked them to share article-level IPD for the review. We received 

32 responses to our 40 requests (80%), of which 20 meta-researchers (50%) shared the required IPD by 

the census date. The median time taken to receive IPD was 7 days (range: 0-216 days). For the 20 

articles where complete IPD was not assembled, 10 studies had useable IPD and/or summary data. The 

nine studies that were eligible for the review but could not be included in the quantitative analysis are 

outlined in Supplementary Table 3. They are also included in relevant forest plots, without providing 

usable data for the meta-analysis. Ultimately, 108 reports of 105 meta-research studies collecting 

information from a total of 2,121,580 primary articles were included in the quantitative analysis [6, 19-

125], with complete IPD available for 90 studies, a combination of partial IPD and summary data for 

10 studies, and only summary data available for 5 studies. Refer to Figure 1 for the full PRISMA flow 

diagram. 

IPD integrity checks 

In total, 100 meta-researchers’ datasets (90 complete and 10 partial) were obtained for the review. For 

the 90 complete datasets, sample sizes, as well as data and/or code sharing rates reported in study reports, 

were reproduced in all but five cases (94%), with the reasons for irreproducibility being due to simple 

typographical errors in the report (N=2), unclear data filtering steps (N=2) and an error in the meta-

researchers’ code (N=1). For the ten partial datasets, we were able to independently verify sample sizes 

and sharing estimates for all but one case due to the receipt of an incorrect version of the data. 

Of the 105 included meta-research studies examining 2,121,580 primary articles, we were able to 

retrieve identifying details (i.e., DOIs, PMIDs) for 2,121,197 primary articles (99.98%) from 100 

studies (95%). After the removal of non-medical articles and duplicate articles observed within each of 

the 100 datasets, we were left with 1,849,828 primary articles with which to explore the extent of 

overlap between eligible studies. Of these 1,849,828 primary articles, we observed that 704,310 (38%) 

were flagged as having been sampled by more than one included meta-research study (some articles 

being repeatedly sampled by up to five studies). Notably, articles examined by the three largest studies 
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by Serghiou et al [25], Colavizza et al [35] and Federer et al [42] were implicated in 681,595 of the 

704,310 flagged cases (96.77%). Further, for some studies, all sampled primary articles had been 

completely assessed by other included studies (e.g., Sumner et al [113], Strcic et al [114]), whereas 

others demonstrated zero overlap (e.g. Rufiange et al [20]) (see Supplementary Figure 3 for further 

details).  

For the five meta-research studies where identifying details for the primary articles were unavailable, 

only a single study was deemed to be at high risk of overlap [65]. Furthermore, for the nine meta-

research studies excluded from the quantitative analysis, 127,985 of the 132,451 observations (97%) 

would have come from two meta-research studies of articles published in PLOS One, which would have 

had a high risk of overlap with the included studies by Serghiou et al [25], Colavizza et al [35] and 

Federer et al [42]. Given the likelihood of high overlap, our inability to include these nine meta-research 

studies in the quantitative analyses is unlikely to have influenced our results. 

Study characteristics 

Summary information on the 105 meta-research studies that are included in the quantitative analysis of 

this review is outlined in Table 1. Eligible meta-research studies examined a median of 195 primary 

articles (IQR: 113-475; sample size range: 10-1,475,401), with a median publication year of 2015 (IQR: 

2012-2018, publication date range: 1781-2022). Meta-research studies assessed data and code sharing 

across 31 specialties. Most commonly, studies were interdisciplinary, examining several medical fields 

simultaneously (N=17, 16%), followed by biomedicine and infectious disease (each N=10, 10%), 

general medicine (N=9, 9%), addiction medicine, clinical psychology, and oncology (each N=5, 5%). 

Eleven studies (10%) examined COVID-19-related articles.  

Most meta-research studies did not set any restrictions concerning data types (N=63) or journals of 

interest (N=56). However, when data restrictions were imposed, they were most often limited to trial 

data (N=16), sequence data (N=6), gene expression data and review data (each N=5). When journal 

restrictions were incorporated, the scope was most often limited to papers published in ‘high impact’ 

journals (variably defined by authors) (N=18), one or two journals of interest (N=10 and 5 respectively), 

or multiple journals subjectively deemed relevant to a field (N=7). Of the 105 meta-research studies, 

31 and 4 also evaluated compliance with journal data and code sharing policies, respectively. However, 

none of the meta-research studies examined compliance with policies instituted by medical research 

funders or institutions. 

In total, 95 and 58 meta-research studies, respectively, examined the prevalence of public data and code 

sharing in primary articles, with five studies examining how compliant publicly shared data was with 

the FAIR principles. In contrast, 10, 4 and 2 studies, respectively, assessed whether study data, code, 

or both data and code could be retrieved in response to a private request (i.e., actual private availability). 

Of these 16 studies, the stated reasons underpinning requests were: to perform a re-analysis (N=6), for 

a meta-research study (N=5), to populate a registry (N=1), to validate their findings (N=1) and for 

interest and coursework (N=1), with the remaining two not reporting what reason they gave. Of the 14 

meta-research articles that shared the request templates they used, 12 meta-researchers provided 

primary article authors with an honest account of why they wished to source data and/or code, whereas 

two used deception. 

Risk of bias assessment 

The overall and individual results of the risk of bias assessments are reported in Supplementary Figures 

1 & 2. Most eligible meta-research studies were judged favourably on the first risk of bias domain 

(sampling bias), having randomly sampled primary articles from populations of interest, or assessed all 

eligible articles identified by their literature searches (N=95, 90%). In contrast, a minority of meta-
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research studies were judged to be at low risk of selective reporting bias (N=45, 42%) and article 

selection bias (N=24, 23%) (i.e., shared study protocols and information on which primary articles were 

excluded and why). Similarly, only half of meta-research studies (N=54, 51%) were judged to have 

used a primary article coding strategy considered to be at low risk of errors. Ultimately, only eight 

studies (8%) were classified as low risk of bias for all four domains. 

Public data and code sharing estimates 

Combination of eligible studies in a random-effects meta-analysis suggests that 8% of medical articles 

published since 2016 declare data to be publicly available (95% CI: 5-11%, 95% PI: 0-30%, k = 27 

studies, o = 700,054 primary articles, I2 = 96%; Figure 2) and 2% actually share data publicly (95% CI: 

1-3%, 95% PI: 0-11%, k = 25, o = 11,873, I2 = 90%; Figure 3). Despite the included meta-research 

studies following similar methodologies, we do note high I2 values for both analyses, with influence 

analyses showing that the greatest contributors to between-study heterogeneity for declared data sharing 

were the high precision findings of Uribe et al [117] and Serghiou et al [25], who used automated coding 

strategies. For actual data sharing, the high estimate by Hamilton et al [6], who assessed partial sharing 

of data rather than complete, was the largest contributor to between-study heterogeneity. However, 

when leaving these studies out of the meta-analyses I2 values did not drop meaningfully. Ultimately, 

given the consistency of the estimates, and the narrow width of the prediction intervals, and the low 

impact leave-one-analyses had on the reported I2 values, we do not believe this indicates concerning 

levels of variability. 

For public code sharing, declared and actual code sharing prevalence estimates since 2016 are estimated 

to be 0.3% (95% CI: 0-1%, 95% PI: 0-8%, k = 26, o = 707,943, I2 = 89%; Figure 4) and 0.1% (95% CI: 

0-0.3%, 95% PI: 0-1%, k = 21, o = 3,843, I2 = 52%; Figure 5), respectively. Like declared data sharing 

estimates, despite similar methodologies, declared code sharing estimates were also associated with 

high I2 values. Again, influence analyses revealed high precision estimates from Uribe et al [117] and 

Serghiou et al [25], in addition to the high estimate by Kobres et al [70], who evaluated the sharing of 

model code from Zika virus forecasting and prediction research, were the biggest contributors to 

between-study heterogeneity. However, for the same reasons reported above we do not believe this 

indicates concerning levels of variability. 

Private data and code sharing estimates 

In contrast to declarations of public availability, ‘available upon request’ declarations were not 

commonly observed in primary articles published since 2016 for data (2%, 95% CI: 1-4%, 95% PI: 0-

10%, k = 23, o = 3,058, I2 = 80%) or code (0%, 95% CI: 0-0.1%, 95% PI: 0-0.5%, k = 22, o = 2,825, I2 

= 0%) (refer to Supplementary Figures 4 & 5 for forest plots). For actual private data and code 

availability prevalence estimates, we could not combine the findings of eligible meta-research studies 

due to methodological differences, particularly in journal restrictions (i.e., policy differences), as well 

as the type of data being requested, both of which are explored via subgroup analyses below.  

Overall, we observed that the prevalence of success in privately obtaining data and code from authors 

of published medical research ranged between 0-37% (k = 12, I2 = 88%) and 0-23% (k = 5, I2 = 94%) 

respectively (Figure 6). However, we note that when authors who declared data and code to be 

‘available on request’ were asked for these products by meta-researchers, the upper limits of success 

increased to 100% (k = 7, I2 = 83%) and 43% (k = 4, I2 = 86%) respectively. In comparison, when 

requests for data and code were made to authors who did not include a statement concerning availability, 

the prevalence of success dropped to between 0-30% (k=7, I2 = 65%) and 0-12% (k=3, I2 = 89%) 

respectively. Lastly, and unsurprisingly, we also note that attempts to obtain data from authors explicitly 

declaring it to be unavailable were associated with a 0% sharing prevalence estimate (k = 2, I2 = 0%). 
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See Supplementary Figure 6 for the full results. Interestingly, we also noted during the IPD 

deduplication process that two of four primary article authors who were asked to share data by two 

independent meta-research teams on two separate occasions responded differently, providing some 

anecdotal evidence that requestor and requestee characteristics likely also play a role in success.  

Secondary outcomes 

Insufficient data were available to evaluate the first three secondary outcome measures (i.e., outcomes 

concerning data and code availability statements), due to only a single study recording information 

about both the prevalence of statements and journal policies across a random sample of articles [6]. 

Similarly, very few meta-research studies recorded information on compliance with multiple data 

sharing policies across random samples of primary articles. This review was therefore also unable to 

evaluate the fourth and fifth secondary outcomes measures (i.e., direct comparison of mandatory and 

‘share on request’ policies with non-mandatory data sharing policies).  

However, for journals implementing mandatory data sharing policies, we estimate that 65% of primary 

articles (95% CI: 36-88%, 95% PI: 2-100%, k = 5, o = 28,499, I2 = 99%) declared data to be publicly 

available and 33% actually shared data (95% CI: 5-69%, k = 3, o = 429, I2 = 93%). In contrast, we 

estimate the prevalence of success in retrieving data from authors subject to ‘share on request’ policies 

to be 21% (95% CI: 4-47%, k = 3, o = 166, I2 = 30%). For comparison, the prevalence of declared and 

actual data sharing under ‘encourage’ systems are estimated to be 17% (95% CI: 0-62%, k = 6, o = 

1,010, I2 = 98%) and 8% (95% CI: 0-48%, k = 3, o = 284, I2 = 90%) respectively. Similarly, the 

prevalence of declared and actual sharing for articles published in journals with no sharing policy are 

estimated to be 17% (95% CI: 0-59%, k = 4, o = 686, I2 = 95%) and 4% (95% CI: 0-95%, k = 2, o = 

198, I2 = 83%) respectively. Refer to Supplementary Figure 7 for the prevalence of declared and actual 

public code sharing according to journal policies.  

We were able to assess the last three secondary outcomes. Our data suggest that triallists are 31% less 

likely to declare data are publicly available in comparison to non-triallists (RR: 0.69, 95% CI: 0.45-

1.07, 95% PI: 0.12-4.13, k = 23, I2 = 0%). However, when examining actual data sharing, neither group 

appears more or less likely to share their data than the other (RR: 0.96, 95% CI: 0.53-1.72, 95% PI: 

0.15-5.95, k = 19, I2 = 0%) (see Figure 7). We also estimate that researchers using data derived from 

human participants are also 35% less likely to declare data to be publicly available than researchers 

working with non-human participants (RR: 0.65, 95% CI: 0.42-0.99, 95% PI: 0.12-3.61, k = 19, I2 = 

57%). However, this decreased likelihood became more pronounced when examining the prevalence of 

actual data sharing (RR: 0.44, 95% CI: 0.24-0.81, 95% PI: 0.05-3.57, k = 16, I2 = 28%) (see Figure 8). 

Lastly, we estimate that researchers who declare that their data are publicly available are eight times 

more likely to declare code to be available also (RR: 8.03, 95% CI: 2.86-22.53, 95% PI: 0.33-194.43, 

k = 12, I2 = 32%). Additionally, researchers who are verified to have made data available are estimated 

to be 42 times more likely than researchers who withheld data to share code as well (RR: 42.05, 95% 

CI: 12.15-145.52, 95% PI: 0.94-1879.62, k = 7, I2 = 0%) (Supplementary Figure 8).  

Subgroup analyses 

Insufficient data were available to evaluate whether prevalence estimates of public data sharing differed 

depending on whether primary articles were subject to any mandatory sharing policies by the funders 

of the research or posted as a preprint prior to publication. However, we did observe that the prevalence 

of both declared and actual public data sharing significantly differed according to the data type, with 

the highest prevalence of actual data sharing occurring among authors working with sequence data 

(57%, 95% CI: 12-96%, k = 3, o = 444, I2 = 86%), review data (6%, 95% CI: 0-77%, k = 2, o = 372, I2 

= 75%) then trial data (1%, 95% CI: 0-6%, k = 3, o = 235, I2 = 6%) (Supplementary Figures 9 & 10). 
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Additionally, we also observed substantial differences in compliance with journal policies depending 

on the data type (Table 2). For example, estimates from a single study by Page et al [89] showed that 

the prevalence of actual data sharing among systematic review authors decreased from 28% for 

mandatory sharing policies, to 1% and 0% for encourage and no policy systems, respectively. Whereas 

in the context of sequence and gene expression data, decreases in the prevalence of actual sharing 

between mandatory policies (67% and 43%), encourage policies (57% and 43%) and no policy (46% 

and NA) were much less apparent. 

Finally, changes in the prevalence of public data and code sharing over time were investigated by fitting 

three-level mixed-effect meta-regression models to arcsine-transformed data (refer to Supplementary 

Table 4 for the full results). Publication year was found to be a significant moderator of declared data 

sharing prevalence estimates (β=0.017, 95% CI: 0.008-0.025, p=0.0001, between-study I2 = 91%, 

within-study I2 = 9%) but not actual data sharing prevalence estimates (β = 0.004, 95% CI: -0.005-0.013, 

p = 0.3589, between-study I2 = 75%, within-study I2 = 3%). Specifically, we note an estimated rise in 

the prevalence of declared data sharing from 4% in 2014 (95% CI: 2-6%, 95% PI: 0-18%) to 9% in 

2020 (95% CI: 6-12%, 95% PI: 0-26%). Refer to Figure 9 for a bubble plot comparing declared and 

actual data sharing prevalence estimates over time. Comparatively, both declared and actual code 

sharing prevalence estimates did not appear to have meaningfully increased over time. 

Sensitivity analyses 

The results of the sensitivity analyses of the primary outcomes are reported in Table 3. For public data 

and code sharing outcomes, meta-analysis of prevalence estimates using GLMMs did not result in any 

substantial changes to combined estimates in comparison to the standard inverse-variance aggregation 

methods. Similarly, limiting analyses to meta-research studies in which authors manually coded articles 

(i.e., removal of meta-research studies that used automated or unclear coding methods) did not result in 

any meaningful changes. When limiting analyses to meta-research studies where summary data were 

only derived from available IPD, no changes were observed to the declared data availability analysis. 

Insufficient data were available to evaluate whether findings from meta-research studies that assessed 

compliance with FAIR or were classified as low risk of bias resulted in meaningful changes to pooled 

estimates. Similarly, with respect to the impact of overlapping primary articles, removing the only meta-

research study that was deemed to be at risk of overlapping with other included meta-research studies 

had no impact on any of the analyses. Lastly, we estimate declared and actual public data sharing 

prevalence estimates for studies investigating COVID-19 (including both preprints or peer-reviewed 

publications) to be 9% (95% CI: 0-57%, k=3, o = 7,804, I2 = 95%) and 11% (95% CI: 0-76%, k=3, o = 

934, I2 = 84%) respectively. Both of which compare favourably to our best estimates for declared (8%) 

and actual data sharing (2%) since 2016. The findings of the sensitivity analyses of secondary outcomes 

and subgroup analyses are reported in Supplementary Table 5. Most notably, we observed stronger 

associations between data and code sharing when including studies with no events in both groups. 
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