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Recent work suggests that collective computation of social structure can minimize

uncertainty about the social and physical environment, facilitating adaptation. We explore

these ideas by studying how fission-fusion social structure arises in spider monkey

(Ateles geoffroyi) groups, exploring whether monkeys use social knowledge to collectively

compute subgroup size distributions adaptive for foraging in variable environments. We

assess whether individual decisions to stay in or leave subgroups are conditioned on

strategies based on the presence or absence of others. We search for this evidence

in a time series of subgroup membership. We find that individuals have multiple

strategies, suggesting that the social knowledge of different individuals is important.

These stay-leave strategies providemicroscopic inputs to a stochastic model of collective

computation encoded in a family of circuits. Each circuit represents an hypothesis for

how collectives combine strategies to make decisions, and how these produce various

subgroup size distributions. By running these circuits forward in simulation we generate

new subgroup size distributions and measure how well they match food abundance in

the environment using transfer entropies. We find that spider monkeys decide to stay or

go using information from multiple individuals and that they can collectively compute a

distribution of subgroup size that makes efficient use of ephemeral sources of nutrition.

We are able to artificially tune circuits with subgroup size distributions that are a better fit

to the environment than the observed. This suggests that a combination of measurement

error, constraint, and adaptive lag are diminishing the power of collective computation

in this system. These results are relevant for a more general understanding of the

emergence of ordered states in multi-scale social systems with adaptive properties–both

natural and engineered.

Keywords: social systems, distributed computing, inductive game theory, social information, animal foraging,

collective intelligence

1. INTRODUCTION

In an influential framework for studying animal social organization, Hinde (1976) stressed
that both animal and human societies are multiscale. Short-term interactions between pairs of
individuals lead to longer-term social relationships and social structures, with social relationships
arising as individuals generalize from a history of social interactions. Hinde noted that individuals

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00090
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00090&domain=pdf&date_stamp=2020-07-21
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ramosfer@alumni.upenn.edu
https://doi.org/10.3389/frobt.2020.00090
https://www.frontiersin.org/articles/10.3389/frobt.2020.00090/full
http://loop.frontiersin.org/people/783759/overview
http://loop.frontiersin.org/people/899920/overview
http://loop.frontiersin.org/people/108789/overview


Ramos-Fernandez et al. Collective Computation in Animal Fission-Fusion Dynamics

classify social relationships into types (kin, matriline, etc.)
regardless of the individuals involved. The idea that primates use
abstraction to make sense of their world has been shown in a
number of studies subsequent to Hinde (1976) (e.g., Cheney and
Seyfarth, 1990, 2008).

Over a series of papers, Flack et al. (Flack, 2012, 2017a,b;
Flack et al., 2013; Daniels et al., 2017; Brush et al., 2018) have
been developing a theory of collective computation (inspired
in part by Hopfield’s collective computation in neural networks
Hopfield, 1982, 1984; Tank and Hopfield, 1988). In the context
of animal behavior, this work links Hinde’s (1976) generalization
and abstraction processes to the formation of collectives. In Flack
and Krakauer’s formulation, components (for the purposes of this
paper, individuals) reduce uncertainty about the environment or
state of a system by coarse-graining fast microscopic behavior
(Flack, 2017a). An example of uncertainty reduction would be
over the cost of social interaction (Flack, 2012). When coarse-
grainings converge (meaning the estimates of regularities are
largely shared by individuals), this can produce a coherent
mesoscale (e.g., a social network or circuit). This can then
function like an information bottleneck (Tishby et al., 2000;
Tishby and Zaslavsky, 2015; Flack, 2017a): the strategies, as
coarse-grainings, capture regularities individuals perceive in the
physical or social environment. The way individuals combine
strategies to make decisions in the collective captures the
regularities they perceive as most important. Emergent from
these slowly changing mesoscopic individual strategies and
collective metastrategies is social structure. As a social structure
consolidates and individuals start to “reference it” for decision-
making, it feeds back through effective downward causation
(Flack, 2017a) to modulate the cost of social interaction or
interaction with the environment. Once complete, this process
can give rise to a new scale, and under suitable conditions,
novel functions.

To make this concrete, consider as an example the
collective computation of power structure in macaque societies
(reviewed in Flack, 2012, 2017a). Individuals summarize
fight histories using unidirectional signals. The sender emits
the signal once it perceives it is likely to loose a fight.
The signal reduces uncertainty in the receiver that the
sender agrees to subordination—willingness to yield in future
interactions. Encoded in the consolidating network or circuit
of signals between group members is information about
the distribution of power. Hence the power structure is
computed as individuals estimate regularities about fighting
abilities and share these opinions with the receiver and other
group members via signals. Through this process, different
levels of organization arise at successively slower timescales:
fights (fast), signaling (slow), and power structure (slowest).
The process of generating coarse-grained, slow variables (the
signals, properties of the circuits) is the outcome of individual
strategic computations (interaction and signaling decisions)
that aggregate into an output collectively estimated to fit
the state of the environment (Flack, 2017a,b). This two-
part process of information accumulation and aggregation
makes up collective computation (Daniels et al., 2017; Flack,
2017a).

Among other examples in the animal behavior literature
that might result from collective computation are coordinated
foraging and predator avoidance in animal groups (Couzin
et al., 2003; Gordon, 2016; Sosna et al., 2019), rapid direction
changes during collective motion in fish schools and bird flocks
(Hein et al., 2015), and distributed foraging in social insects
(Gordon, 2016).

Fission-fusion social dynamics, in which individuals fission
and fuse into subgroups of varying size, is a collective pattern
arising from individual decisions (Sueur et al., 2011; Ramos-
Fernández et al., 2018). These dynamics are thought to be
adaptive, as they allow individuals to forage more efficiently
in heterogeneous environments, share information about the
location of resources, and adjust the size of their subgroups
to resource availability (Aureli et al., 2008; Sueur et al., 2011;
Palacios-Romo et al., 2019). The individual, strategic decisions to
leave or join subgroups, how these decisions influence subgroup
size distributions, and whether these are a good fit or even
predicted by environmental states, are open questions. Previous
work on spider monkeys suggests individuals change their
strategies based on environmental states to include the rate at
which they encounter fruit and the presence of knowledgeable
individuals in social networks (Ramos-Fernández and Morales,
2014; Palacios-Romo et al., 2019).

We study how individual spider monkeys use social
knowledge (information accumulation) to collectively compute
adaptive subgroup size distributions (information aggregation).
We use inductive game theory (DeDeo et al., 2010; Krakauer
et al., 2010) to extract stay-leave probabilistic strategies from a
time series of subgroup composition. The strategies constitute
the microscopic input to the collective computation. From
the microscopic input we construct a family of circuits in
which nodes correspond to individuals and edges, weighted by
probabilities obtained from the data, specify probabilistic rules—
strategies—for remaining in or leaving a subgroup. Circuits
capture variation in the way individuals integrate over their
strategies (see section 3) to decide to stay or go.

Each circuit serves as a mesoscopic hypothesis for how
strategies combine to produce decisions and how decisions
combine to compute subgroup size distributions. In a
computational language, the inputs (individual strategies)
combine to produce an output (a subgroup size distribution).
We run the circuits forward in simulation to determine how
individuals combine strategies and hence how many information
sources they take into account to make decisions. We construct
a food abundance index based on the size and abundance
of fruiting trees and calculate the transfer entropy between
this index and the distribution of subgroup size in order to
determine whether the circuit that best recovers the observed
subgroup size distribution is also optimally computing the state
of the environment.

2. DATA

Subgroup composition data were collected in Punta Laguna,
Yucatan, Mexico, as part of a long-term study of social behavior
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FIGURE 1 | Our dataset samples the process of fission-fusion dynamics in the entire group. Each row with colored circles on the top of the figure represents how the

47 individuals that conform the spider monkey group are sorted into subgroups at a given moment, with each color indicating subgroup membership. Thus, in the first

row or time step represented, the group is organized in 9 different subgroups and, throughout the remaining steps, subgroups change size and memberships by

individuals leaving (fission) and joining (fusion). Our sample includes only one subgroup followed at any time, so we have information on the presence or absence of

each group member on the observed subgroup. For example, the bottom part of the figure shows observations from one subgroup (turquoise dots on the top). Here,

rows represent 5 instantaneous scan samples taken every 20’ on individuals 17 thru 23, where each individual can be either present (full circles) or absent (empty

circles). In this case, the subgroup shows a fission of two individuals in the third scan and the fusion of three at the fifth scan. For analysis, we coded data as binary

vectors corresponding to each scan sample.

using identified individuals (details about study site and subjects
can be found in the Supplementary Information). Data consist
of scan samples of subgroup composition, taken every 20’ during
an average of 5 h. per day throughout 2 years (Jan. 2013–Dec.
2014), for a total of 5,780 scan samples. A total of 47 known
adult, sub-adult and juvenile individuals were observed during
this period (see Supplementary Table 1). Thus, each sample is a
vector of 47 binary digits, with 0 corresponding to an absence
of the individual in the ith position and 1 corresponding to a
presence (Figure 1). Continuous series of scans, averaging 8.4
scan samples (± 3.9 SD), include uninterrupted follows of a
subgroup in which at least one individual remained during the
full series. Given that the typical duration of a subgroup is 1.5 h.
(Pinacho-Guendulain and Ramos-Fernández, 2017), a subgroup
may persist over multiple scans. The temporal resolution of
this sampling regime was maintained in the analysis in order
to obtain a sufficient number of continuous series of scans.
Had we resampled the original dataset at a larger temporal
scale, we would have lost an important number of continuous
series. Also, the persistence of a subgroup over several scans
implies that individuals in a subgroup are tolerating one another,
which is informative about the weight of their mutual influence
(see below).

The raw data supporting the conclusions of this manuscript
will be made available by the authors, without undue reservation,
to any qualified researcher.

3. MICROSCOPIC STRATEGY
EXTRACTION AND DISTRIBUTION

We distinguish between strategies and decisions. A decision is
binary: to leave or stay in a subgroup (in the original inductive
game theory work, to join or avoid a fight, DeDeo et al., 2010).
Strategies (called1P, as in previous work, DeDeo et al., 2010) are
“above-null” probabilities (see below for calculation) describing
the weight of individual A’s presence or absence in the current
subgroup (as determined by scan sampling, see section 2) on
individual B’s decision to stay or go from the subgroup in the
subsequent sample. Here and in previous work (DeDeo et al.,
2010), multiple individuals can influence individual B. Hence B
will have multiple strategies and, in the limit, a strategy for every
other group member. We address how B integrates strategies to
reach a decision in section 4. Here we quantitatively describe
how we define and extract strategies from the time series. We
end up with a list of pair-wise strategies for which our extraction
method indicates above-null support in the time series. We do
not consider higher order strategies as in DeDeo et al. (2010).

For all pairs of individuals {A:B, A:C, A:D,...}, we calculate the
probability an individual B is present or absent in a sample if
individual A was present in the previous sample within the same
continuous series of scans:

P(A → B) =
N(Bt+1 | At)

N(A)
, (1)
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FIGURE 2 | Frequency distribution of the values of 1P for the different combinations of dyadic weights, as defined in Equations (2) and (4) (A,B) and for the total sum

of the incoming weights that each individual receives (C,D; this is the in-strength of nodes in Figure 3). The values of 1P(A → B) have a wider distribution around

zero, with correspondingly higher total values of in-strength, than in the case of 1P(!A → B).

where N(Bt+1 | At) is the total number of times B was present at
time t+1 given that A was present at time t within a continuous
series of scans and N(A) is the number of times A was present in
all samples.

As with previous work (DeDeo et al., 2010), to remove
time-independent effects from the transition probabilities (for
example, due to general differences in gregariousness), we
calculate the difference between the probability inferred from the
data and a null expectation:

1P(A → B) =
N(Bt+1 | At)− Nnull(Bt+1 | At)

N(A)
, (2)

whereNnull(Bt+1 | At) is the average number of times B is present
at time t+1 given that A is present at time t within a continuous
series of scans, calculated from 1,000 bootstrapped permutations
of the data.

Similarly, we consider the weight of A’s absence on the
presence of another individual B in a subsequent sample:

P(!A → B) =
N(Bt+1 |!At)

N(!A)
, (3)

and

1P(!A → B) =
N(Bt+1 |!At)− Nnull(Bt+1 |!At)

N(!A)
, (4)

where N(Bt+1 |!At) is the number of times B is present in
a sample when A is absent in the previous sample within a
continuous series of scans, N(!A) is the number of times A is
absent in all samples, and Nnull(Bt+1 |!At) is the average of the
same number for 1,000 bootstrapped versions of the original data.

These 1P constitute the pair-wise weight of each group
member on a given individual’s binary decision to leave or
join a subgroup.

Figure 2 shows the frequency distribution of the values of 1P
as defined in Equations (2) and (4). In all cases values are centered
around zero, with the values of 1P(!A → B) closer to zero
than in other cases. This is because the denominator in Equation
(4) is larger than in Equation (2), as it includes all instances of
individual A being absent from the observed scan. There are
proportionally fewer cases in which B is present after an absence
of A because there are many cases where A is absent. Thus, these
values of 1P(!A → B) should be interpreted with care. It is also
the case that most values of the total sum of weights received are
positive. In other words, most individuals receive a total positive
weight from the presence or absence of strategically connected
individuals. Only a few cases show a total negative weight of the
presence or absence of others.

We identified significantly positive dyadic weights as values
of 1P higher than the 95% percentile of the permuted values
for each dyad. Accordingly, significantly negative dyadic weights
were values of 1P lower than the 5% percentile of the permuted
values for each dyad.
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4. MESOSCOPIC CIRCUIT
CONSTRUCTION

We use the strategies obtained from the data to construct circuits
(i.e. the set of all significant1P values as weights between all pairs
of individuals; this is the mesoscopic level of our analysis) each of
which is a hypothesis for (1) how individuals integrate over their
strategies to arrive at a binary decision to join or leave a subgroup
and, (2) specify how the resulting decisions combine to produce
the distribution of subgroup size. The circuits in Figure 3 give a
qualitative summary of significant strategies. For each individual,
there are 46 potential weights (significant 1P values) from either
the presence or absence of others at scan time t, which could
determine its presence or absence at scan time t + 1. The circuits
in Figure 3 show only 31 individual nodes for 1P(A → B) and
36 for 1P(!A → B), who were involved in significant weights.
On average, each individual in these circuits is linked to 20.25
(± 1.98 SE) other individuals in the 1P(A → B) and to 31.67
(± 1.40 SE) in the 1P(!A → B) circuit (Figure 3). Similarly,
whereas each of the circuits in Figure 3 could have up to 1,260
links, the 1P(A → B) circuit has 314 and the 1P(!A → B)
circuit 570 links. Supplementary Figure 1 shows the values of
all significant weights included in these circuits, as well as the
individual instrength and outstrength.

The circuit for 1P(A → B) (upper panel in Figure 3)
represents significant weights of the presence of individual A
at scan t on the presence of individual B at scan t + 1. Most
of the values of 1P(A → B) were positive or close to zero
(see Figure 2A), therefore this circuit contains mostly positive
weights (gray links), corresponding to weights of attraction.
There is an apparent homophily by sex in this circuit, with
individuals influencing other individuals of the same sex more
than those of the other. Other attractive interactions are those
between some pairs of adult females and their subadult daughters
(e.g., females VE-VI and JA-LX in the upper panel of Figure 3,
CH-LO andME-KL in the lower panel). Individuals differ in their
in-strength values (as can be observed in Figure 2B) with the
individuals with the highest values of in-strength receiving many
different weights, some with high values of 1P, both females and
males. Only one individual (female BL) had a negative in-strength
value, implying that it received a total negative 1P(A → B)
higher than the total positive 1P(A → B).

The circuit for 1P(!A → B) shows a different picture
(lower panel in Figure 3). Here values were skewed below
zero, although overall they were much closer to zero than
the values of 1P(A → B) (Figure 2). Even considering that
the variation around zero is small, this circuit contains both
positive and negative weights, corresponding to repulsion and
attraction, respectively, but the most important links are negative
or attractive. There is, as in the previous circuit, evidence of
some degree of homophily, with individuals of the same sex
influencing each other through negative links more than those
of the opposite sex. Conversely, a high proportion of positive or
repulsive links occur between the sexes. Both males and females
have high values of in-strength, although those with a negative
in-strength (receiving many negative, attractive weights) in this
circuit were all females. Individuals with the highest values of

FIGURE 3 | Circuits showing the strategies (significant, pairwise negative and

positive weights) extracted from the data and as defined in Equations (2)

(upper panel, 1P(A → B)) and (4) (lower panel, 1P(!A → B)). Nodes

correspond to individuals indicated by two-letter codes and their shape

represents females (circles) and males (squares). Only for the purposes of this

visualization we removed the 11 juvenile individuals, who do not move

independently of their mothers. However, they were included in the analyses of

1P values. Edges correspond to significant 1P values, of a width proportional

to their value. Each circuit employs a different range of 1P values, as

1P(A → B) values range from −0.00076 to 0.3 and 1P(!A → B)) values from

−0.00033 to 0.00315 (see Figure 2). Node size is proportional to the

in-strength of the node, i.e., the total significant weight from others as defined

by the sum of the incoming 1P values. Node color corresponds to whether

the node has a positive (blue) or negative (purple) in-strength. The color of

edges corresponds to negative (red) and positive (gray) values.

positive in-strength (corresponding to a total sum of positive or
repulsive weights in this network) were males.

Each individual can have multiple strategies, and they can be
in conflict (DeDeo et al., 2010), with some weights positive and
others negative. In addition, the weight or importance (given by
1P) of each strategy varies. Hence individuals must integrate
over their set of strategies to make a decision about whether
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FIGURE 4 | Example of rules by which individuals integrate incoming weights to decide their state at scan t+ 1. In the upper panel, an individual B integrates

incoming weights using a decision rule. If B, who is not present in the focal subgroup at scan t, receives a significant weight 1P from the presence of A on its

presence at scan t+ 1, while receiving another significant weight from individual D’s absence on its presence, B will integrate both weights by a simple sum. If this

sum
∑

1P is above a certain threshold U, B will decide to join a subgroup where it was not present at time t. In the lower panel, each individual arrives to its own

value of
∑

1P, which will determine its presence or absence from the subgroup at time t+ 1, depending on the values of U and L. A sum of 1Ps greater than U or

smaller than L could lead an individual to either maintain (e.g., B was absent in time t and its
∑

1P is below L, leading to its absence in t+ 1) or change its previous

state (e.g., C was present in time t and
∑

1P is below L, leading to its absence in t+ 1).

to join or leave the subgroup. Figures 2B,D show frequency
histograms for these incoming values, corresponding to the in-
strength of the nodes in Figure 3. These in-strength values can be
understood as the likelihood that an individual will be influenced
by others: an individual with a high in-strength is more likely to
decide to be present due to another individual’s presence (in the
case of 1P(A → B) values, upper panel in Figure 3) or absence
(in the case of 1P(!A → B) values, lower panel in Figure 3) than
another individual with a lower in-strength.

We further assume that at any given time t, if the sum of
significant 1P values

∑

1P directed toward an individual B is
positive and greater than a threshold U, B will be present on the
sample at t+1 (irrespective of whether it was present or absent in
the previous sample; Figure 4). Conversely, if

∑

1P is negative
and smaller than a threshold L, individual B will be absent from
the following sample (again, independently of whether it was
present or absent in the previous sample). However, if L <
∑

1P < U, then there is no effect from others and B remains
in the same state as in the previous sample (i.e., present if it was
present at time t, absent if it was absent; Figure 4). Thus, U is
a threshold parameter controlling how likely it is for individuals
to be present in a subgroup based on the weight of others. The
value L controls the opposite, i.e., how likely it is that individuals
will be absent in a subgroup based on the weight of others.
Note that the total sum

∑

1P includes both the 1P(A → B)

and the 1P(!A → B) values, such that an individual would be
integrating the weights it receives across both circuits shown in
Figure 3. At higher values ofU, the presence of an individual in a
subgroup is less likely to be influenced by others. In that sense,
high values of U imply less interdependence of individuals in
their decisions to be present or not in a subgroup. Conversely,
L controls the opposite end of the range of values of

∑

1P, such
that at more negative values of L, an individual should be less
likely to be absent from a subgroup due to the previous weight
from others. We tested U = {0.0001, 0.001, 0.01, 0.1, 0.2, ..., 0.9}
and L = {−0.9,−0.8, ...,−0.1,−0.01, ...,−0.00001}.

Different individuals could actually be using a different value
of the U and L thresholds, or the values could change over time,
depending on slower ecological variables such as the dry and
wet seasons or even longer timescales related to the ecological
succession of the forest in the spider monkey’s habitat. In this
work we assume, as a first approximation, a single value of the
threshold parameters for all individuals and seasons.

There are also subtle points here concerning how strategies
are aggregated by individuals to produce binary decisions. In
previous work (DeDeo et al., 2010), higher order (triadic—C
only joins current fight if both A and B were present in the
previous fight) as well as pair-wise strategies (A joins if B was
previously present) were extracted from time series data and
a circuit was constructed for each strategy class. Preliminary
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FIGURE 5 | Subgroup size distribution for the original dataset (black thick line) and for the simulated datasets. Lines of a given color correspond to the resulting

distribution from 100 repetitions using different values of U, with L= −0.00001.

analyses in that work suggest these triadic strategies are non-
decomposible into two pair-wise strategies (i.e., not reducible to
additive individual or pair-wise interactions; Daniels et al., 2016;
Chen et al., 2019). Individuals typically had multiple higher-
order strategies and so, as with pair-wise, higher-order strategies
were pushed through gates to produce binary decisions. Here
we allow for the possibility that individuals take into account
multiple strategies and hence be under the influence of multiple
individuals, but we do not explore whether the interactions are
pair-wise or higher-order.

We use these circuits to generate, by simulation, new datasets
from the original dataset. In what follows, we restricted our
analyses and simulations to a subset of the original dataset that
included the same months for which food abundance data was
available (Sep. 2013–Sep. 2014; see section 6), corresponding to
3,032 scan samples. We started by randomly choosing a scan
sample (subgroup) that serves as the “seed” or first scan of a
sequence of n samples, where n is randomly drawn from the
frequency distribution of the number of samples per continuous
observation period in the original biweekly period. Thus, the
seed establishes which of the 47 monkeys in the group are
present or absent in the first sample. Because the seed and the
duration of continuous observation periods are selected within
observation periods, simulated data contain information about
the variation in subgroup size and composition between bi-
weekly periods. If an individual A is present in the first scan,
the simulation looks at values of 1P(A → B) and considers
any significant values or weights of A on others. If, on the
contrary, A is not in the seed, then the simulation looks for
significant values of 1P(!A → B). This applies to all 47
individuals.

These rules are used to determine subgroup composition of
the n samples in the continuous observation period. This is
repeated for 633 sequences, corresponding to the number of
continuous observation periods in the original dataset. In total,
we generated 100 simulated datasets for each combination of
thresholds U and L.

5. TESTING CIRCUITS IN SIMULATION

Here we assess how individuals integrate strategies to make
decisions 1P and how decisions combine to compute the
subgroup size distribution. We do so by asking which circuit,
given an integration threshold, produces a simulated data set with
a distribution of subgroup size that best recovers the observed
one. We used each set of 100 simulated datasets with different
values of U to evaluate the set of subgroup size distributions that
is in closest correspondence to the observed. We only show the
effects of varying U at L = −0.00001, since the variation in L
for any value of U does not have an effect on the subgroup size
distribution. This is likely because values of

∑

1P are mostly
positive (Figures 2C,D), so very few values are below the L
threshold. In other words, even the smallest negative value of
L has no effect on the tendency of individuals to modify their
presence based on the presence or absence of others.

For values of U = 0.4 and above the subgroup size
distribution from simulated datasets is similar to the observed
(Figure 5). Values of U < 0.4 generate distributions where
small subgroups are underrepresented and larger subgroups are
overrepresented. This is due to the fact that, at lower values of
U, individuals are more likely to be influenced by others, both
through the significant values of 1P(A → B) and 1P(!A → B).
The former dominate the dynamics of subgroup size change
because they have higher and positive values overall (Figure 2).
Thus, whenU < 0.4, individuals are aggregating more frequently,
deciding to join subgroups at higher frequency as in the observed
data. Values of U < 0.4 give rise to subgroups converging at a
single size for each value of U (Figure 5). This may be due to
all individuals deciding to join subgroups, even those without
significant weights, as must be the case in subgroups larger than
36, the number of nodes in the largest network in Figure 3

that depicts all individuals that are involved in significant
weights.

We compared the observed subgroup size distribution and
those obtained by simulation under different values of U using
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FIGURE 6 | Jensen-Shannon (JS) distance between the observed and simulated subgroup size distributions shown in Figure 5. Each dot corresponds to the JS

distance between an instance of 100 simulations for each value of U. For all simulations, L = −0.00001.

the Jensen-Shannon distance (Figure 6). This distance between
two random variables x and y is defined as:

JS(x|y) = H

[

x+ y

2

]

−
1

2
[H(x)+H(y)] (5)

where H is the entropy of each variable, p(x) 1
logp(x)

and X and

Y are, in this case, the observed subgroup size and the subgroup
size obtained in one run of a simulation, respectively. Figure 6
corroborates what is apparent in Figure 5, that simulations run
withU ≥ 0.4 yield subgroup size distributions that are closer and
indistinguishable from the observed distribution, with JS values
that are close to zero, while simulations run withU < 0.4 have an
increasing JS with respect to the observed. Simulations run with
all values of L forU=0.4 yield subgroup size distributions that are
equally close to the observed (data not shown).

6. FIT OF OUTPUT TO ENVIRONMENT

A central question is whether the collective computation output
is adaptive (Flack, 2017a; Brush et al., 2018). Previous studies
of spider monkeys suggest there is a weak relationship between
subgroup size and food abundance (Symington, 1988; Pinacho-
Guendulain and Ramos-Fernández, 2017). In general, subgroups
tend to be larger during periods of high food abundance. This
suggests that subgroup size can track the abundance of resources.
Here, we investigate whether subgroup size distribution is
predicted by the relative abundance of fruiting trees.

We use data from a 1-ha plot where all the trees (diameter at
breast height, D > 10 cm) from the 15 most consumed species
by the monkeys, were monitored bi-weekly for a year from
September 2013 to September 2014, comprising 25 monitoring
periods. A total of 487 trees were identified, theirDwas recorded,
and every 2 weeks they were assessed for the presence of fruit. The
data obtained were used to calculate the proportion of trees with
fruit available in a given period expressed in terms of the total tree

D rather than tree number. To do so we calculated the sum of the
D values of all the trees with fruit (Df ) in period p divided by the
sum of D values for all the trees in the plot (Di), giving an index
of food abundance for a period p, IFAp =

∑

Df /
∑

Di.
Figure 7 shows the time series for the IFA and subgroup size

during one year. As mentioned above, maintaining the temporal
resolution of the subgroup size time series was important in
order to maintain a sufficient number of continuous series of
observations. Despite the different temporal resolution of each
time series, it seems that subgroup size increases together with
IFA during the second wet season.

In previous work, the match between the collective
computation output and the environment was evaluated
using mutual information (Brush et al., 2018). Here we use
transfer entropy:

Tx→y(t) = H(yt|yt−1)−H(yt|yt−1, xt−1) (6)

This is a measure of how much uncertainty in a variable y is
reduced given past states of both y and a variable x that is assumed
to be independent of y. This dependence is over and above the
uncertainty about y reduced by consideration of its own past
state. Here transfer entropy is measuring how much subgroup
size uncertainty is reduced by considering past states of subgroup
size and IFA, conditioned on the uncertainty reduction by the
past states of subgroup size alone. Given the difference in time
resolution for the two time series (Figure 7), this implies that,
within a given bi-weekly period, we are measuring the transfer
entropy between a constant value of IFA and varying values of
subgroup size. We used the JIDT package (Lizier, 2014) in R
(R Core Team, 2017) to estimate the transfer entropy between
time series, using the Kraskov estimator with the number of
closest neighbors k = 4. The two observed time series have a
TIFA→SGS(t)=0.036 nats.

To explore whether spider monkeys collectively compute a
subgroup size distribution that is a goodmatch to the distribution
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FIGURE 7 | Time series for the index of food abundance (IFA; A) and subgroup size (B). The IFA measures the overall abundance of fruit in the spider monkey’s

habitat, considering their most preferred species, their fruiting status and the abundance and relative size of trees (see section 6). The temporal resolution of the

subgroup size data is 20 min, whereas food abundance was monitored biweekly. Thus, the IFA series has the same value throughout a given biweekly period, while

subgroup size fluctuates at a much finer temporal scale. Noted above are the seasons (wet or dry) to which each sample belongs. Panel (C) presents a fragment of

the subgroup size time series showing its variation between September 30 and October 31st 2013. Note that the time series was constructed with sets of scan

samples taken every 20’ collected throughout 4–8 h periods and that subgroups followed in consecutive days were not necessarily the same. Therefore, the spikes

and drops observed in the curve do not always reflect fission or fusion events.

of fruiting trees, we assess which of our circuits with different
strategy integration rules (described in section 4), computes a
distribution of subgroup size that is a good fit to the current
abundance of fruiting trees. Shown in Figure 8 is the time series
for the subgroup size values together with the subgroup size
time series of all simulated data sets generated for different
values of U. Figure 8 shows what was already apparent in
the subgroup size distributions shown in Figure 5, but in the

form of a time series: simulated data sets with U ≥ 0.4
generate a subgroup size distribution that is closest to the
observed distribution.

We calculated the transfer entropy between the IFA time series
and its corresponding subgroup size time series. We generated
simulated data sets that included the same values of IFA as in
the original dataset, but because the observation period length
could vary (as the length of each observation period, n, was
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FIGURE 8 | Time series for subgroup size as observed (black line) and simulated (lines of varying color). Each colored line corresponds to an instance of 100

simulations for different values of U and L = −0.00001. Wet and dry seasons are noted above.

FIGURE 9 | Transfer entropy between simulated IFA and simulated subgroup size. Each gray circle corresponds to an instance of 100 simulations run with varying

values of U and L = −0.00001. Red dots indicate the upper and lower limits of 99 percent confidence intervals of the mean. The dotted line corresponds to the value

of transfer entropy found for the observed IFA and subgroup size data in Figure 7.

sampled from the distribution of observed n) there is a certain
degree of variation around the observed data. Each simulated IFA
series was compared to its corresponding subgroup size series.
These values of TIFA→SGS(t) are presented in Figure 9, which
also shows the value of TIFA→SGS(t) obtained for the observed
IFA and subgroup size time series (Figure 7). The results suggest
simulated subgroup size data sets with 0.01 < U < 0.4
match the temporal variation in IFA values better than the
empirically observed subgroup size distribution and better than
the simulated distributions computed with U ≥ 0.4.

7. DISCUSSION

Social structure typically changes slowly compared to the
interactions giving rise to it. As such, social structure, whether
optimal for the environment or not, reduces uncertainty about
the future state of the system and provides a relatively stable

background against which individuals can tune their own
strategies (Flack, 2017a). Hence there are two challenges for
a group computing its social structure: that it changes slowly
enough to remain informative for decision-making and that it
adaptively tracks the environment.

Frugivorous spider monkeys are faced with two significant
sources of uncertainty related to foraging—to discover the
location of fruiting trees and to distribute themselves over these
fruiting trees to minimize conflict (Aureli et al., 2008) and the
costs associated with large groups (Asensio et al., 2009), as well
as to maximize resource intake (Symington, 1988). We have
used a theory of collective computation (see references in the
introduction) to explore how fission-fusion dynamics arises in
spider monkey groups and whether the resulting distribution
of subgroup size is a good match to the environment. We
found spider monkey collectives appear to be able to partially
match subgroup size to resource abundance. Our results suggest
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however that the collective computation of subgroup size is
not optimal with respect to food availability as measured by
our index.

In simulating the circuits of subgroup-joining strategies we
discover values of a sensitivity parameter U (a measure of the
degree of consensus among the incoming weights required for
an individual to make a decision about whether to stay or
go) leading to a distribution of subgroup size that is a better
match (than the observed distribution of subgroup size) to the
observed abundance of fruiting trees. This suggests collective
computation is under constraint and the system is experiencing
adaptive lag—that is, still learning the best collective strategy
to integrate information accumulated by group members. The
deviation might instead be spurious–an outcome of (1) the way
in which we calculate the food abundance index, (2) the fact that
the data used to construct the two distributions are noisy and
have different time resolutions: food abundance was measured at
a bi-weekly scale while subgroup size was observed every 20 min,
or (3) other factors besides social knowledge and relationships
contributing to subgroup size decision-making.

We should also be cautious in interpreting the power of
the collective computation at small U values. In these limits
subgroups converge to a constant size where food abundance
is expected to be somewhat predictive of size simply because
both values remain constant during each bi-weekly period. These
caveats aside, whereas collective computation in this system
is not optimal, it remains nonetheless predictive and able to
capture information about the environment. Specifically, the
circuits that capture subgroup joining strategies can aggregate
information about the environment. Although we did not study
longer timescales, the slowly changing structure of groups
provides a means for storing information accumulated by
individuals about food availability across years (Palacios-Romo
et al., 2019). With individuals that are more than 30 years
old (see Supplementary Information), who are using spatial
memory for their foraging decisions (Valero and Byrne, 2007),
the information made available to the group through their
experience is likely an important element to track long-term
changes in the foraging environment.

Some means by which computations can be refined
maximizing the match between group behavior and the
abundance of food, includes individuals changing the way
they accumulate information and/or compute strategies for
staying or leaving, tuning how individuals integrate over those
strategies, and tuning how the strategies interact in the circuit
to produce subgroup size distributions. For example, are some
individuals’ strategies (perhaps because they influence many
others) exerting a disproportionate effect on the output or do
many individuals contribute in small ways? The problem of
how collectives achieve optimal information processing is an
important one in biology (Tkačik and Bialek, 2016), and near
optimal information processing has been discovered in a number
of biological systems (e.g., Petkova et al., 2019). However,
these examples tend to be relatively simple developmental
mechanisms such as segmentation during development of
the fruit fly larval body plan. The circuit approach allows
the question of tuning to obtain optimal information

processing to be addressed through simulation in more
complicated systems.

Additional factors that could affect decision-making, thereby
shifting the subgroup distribution from optimal to suboptimal,
are a variety of social variables like sex and age, the previous
history of interactions, and kinship relationships (Ramos-
Fernández et al., 2009; Busia et al., 2017). However, because we
are extracting individual strategies directly from the data, these
modulating factors are already included in the weights between
individuals. Other factors that are currently implicit include the
risk of predation or location within the group’s home range,
which could also affect the subgroup size.

Our results shed light on how a group can best acquire
and share information about patchy and dynamic environments.
While individual foraging strategies based on spatial knowledge
have been well-documented (Janson and Byrne, 2007; Fagan
et al., 2013), group foraging strategies are less well-known outside
of social insects (Gordon, 2016; cf. Gil et al., 2018). Exchanging
information about available patches when foragers disperse and
learning about the location and availability of different patches
increases the foraging success of the whole group (Falcón-Cortés
et al., 2019). The circuit of individual strategies that we infer
here is, at least in part, a reflection of information sharing about
available patches. Following another individual when ignorant
is a simple mechanism of information sharing (Palacios-Romo
et al., 2019), that could be reflected in the dyadic weights we
have measured. This would lead to a fully connected circuit with
information about food sources promoting a flexible grouping
pattern that matches heterogeneity in the environment.

It is interesting to compare our approach to that of optimal
foraging theory, which would postulate an optimal subgroup
size distribution, based on a set of constraints and the best
compromise between costs and benefits, which for most cases
are unknown (Fretwell and Lucas, 1970; Stephens and Krebs,
1986). An empirical test of this postulate would consist of
the match or lack thereof of the observed distribution to the
food abundance and this would be interpreted in terms of
the unknown mechanisms for how subgroup size comes about
(e.g., Chapman et al., 1995). Our approach is more mechanistic:
we observe a series of stay-leave decisions resulting from the
interactions between individuals and construct a circuit of
strategies that serves as a hypothesis for how the subgroup
size distribution could emerge. We measure how similar these
emerging distributions are to the observed and then test how
well the time series matches the environmental variation. That
we find alternative circuits that could produce a better match
to the environment implies that the system is not necessarily
constrained, as would be postulated by optimal foraging theory.

Mutual information, as a measure of uncertainty reduction,
has some nice properties. It provides a robust way to
study how near optimal a collective behavior is, and this
provides a proxy for adaptiveness. We can also study different
kinds of uncertainty reduction: an endogenous one, that
involves collective computation of social structure that makes
the world more predictable for individuals within a system
(e.g., Brush et al., 2018); and an exogenous one, whereby
collective computation produces social structure that encodes
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knowledge about resource availability in the environment (this
paper). Uncertainty reduction is consistent with a cost-benefit
framework without requiring costs and benefits to be estimated.
And quantification of the quality of the output of collective
computation in information theoretic terms builds a technical
bridge to Boltzmann’s and von Neumann’s ideas about the role of
entropy in generating ordered states (Krakauer et al., 2020) that
can form the basis of new levels of individuality, even at the social
level.

In addition to assessing whether the output matches
the environment, we studied the mechanics of collective
computation. Previous work suggests spider monkeys
preferentially follow food-aware individuals (Palacios-Romo
et al., 2019). In the time series we find evidence in support
of this result: we are able to extract significant (above-null)
pair-wise probabilistic strategies used by individuals to decide
to stay in or leave subgroups. Each individual had 20-30
strategies of varying strength (out of 46 possible). Generally
the 1P were larger for “stay” strategies than “leave” strategies,
suggesting possible food presence is a more important factor to
spider monkeys than possible food absence. This emphasis on
“attraction” might also be important for maintaining cohesion
in fission-fusion dynamics in the context of a heterogeneous
foraging environment with multiple alternative foraging options
(Ramos-Fernández, 2005; Sueur et al., 2011). The strategies we
find also recover well-known social patterns for Ateles spp., in
particular—same sex based homophily for joining and repulsive
tendencies between individuals of different sex (Fedigan and
Baxter, 1984; Ramos-Fernández et al., 2009). It remains to be
determined whether further, more fine-grained patterns like
the frequency of dyadic interactions are also recovered by
these strategies.

We used the extracted strategies to construct a family of
circuits that vary in how individuals integrate these strategies to
produce binary decisions to join or leave a subgroup. Individuals
can have both repulsion (leave) and attraction (join) strategies.
In previous work (DeDeo et al., 2010), strategies were passed
through an AND or OR gate that captured conflict averse
(all strategies have to say “go” to join a fight) and conflict
prone dispositions (one “go” strategy was sufficient to join).
Here we use thresholds. To recover the observed subgroup
size distribution in simulation requires sums over strategies
(
∑

1P ≥ U = 0.4) much larger than the strength of individual
strategies (the majority of individual 1P values are below 0.05).
This suggests individual-level decisions, as well as the aggregate
output, require that individuals take into account relationships
and social knowledge of many group members. If so, this
would suggest that spider monkeys rely on social information
from the wisdom of crowds (e.g., Jayles et al., 2017; Moreno-
Gámez et al., 2017; Kao et al., 2018) to make decisions. These
decisions are aggregated to collectively compute subgroup size
distributions.

Mesoscale strategic circuits are summaries or average
tendencies and therefore provide an economical way to process
information. Slow variables, encoded in individual strategies, are
compressed summaries of noisy interactions (Flack, 2017b). The
idea that the mesoscale circuit is a compressed representation

of microscopic dynamics has parallels in multiplex networks,
which have proven to be a better representation of the dynamics
of many systems than the simple aggregation of different layers
(De Domenico et al., 2015; Smith-Aguilar et al., 2019). Moreover,
this way of compressing information may allow the social
structure of spider monkeys to be flexible enough to track a
dynamic environment, and, at the same time, be robust to
disturbances. This has parallels to neural processing (Bassett
et al., 2011; Daniels et al., 2017). As we have discussed elsewhere
(see Brush et al., 2013, 2018; Daniels et al., 2017; Flack, 2017a)
compression and related principles of collective computation
have implications for engineered systems, such as web search and
swarm robotics (e.g., Bonabeau et al., 1999; Seth, 2001; Young
et al., 2013), as well as pattern recognition by artificial neural
networks and human reputation networks.

How spider monkeys collectively compute fission-fusion
social structure and how these computations can be tuned to
realize adaptive variants raises many questions. Using longer
time series, we could ask whether collective computation and
fit to the environment are being refined and improved over
time. With higher resolution data on strategies, and using
methods from information theory (e.g., Rosas et al., 2019),
it should be possible to quantify the degree to which the
output is irreducibly encoded in the circuit as opposed to
decomposeable. Is social knowledge processed in a pairwise
manner or do individuals perceive synergistic interactions
among group members (e.g., does individual’s A perception
of individuals B and C contribute non-additively to its
social knowledge)?

Understanding how a natural social system carries out
adaptive computations could help to improve the performance
of artificial systems. For instance, our results could provide
insight into the mechanisms underlying learning through
backpropagation in artificial neural networks. The way in
which individuals adjust their strategic signaling in computing
an appropriate power structure that feeds back to provide
information about social interaction cost might be analogous
to unsupervised learning (i.e., where the target is endogenous
to the system) (Flack, 2017a; Brush et al., 2018). A system like
the one we study here, with fission-fusion dynamics that can
adjust to environmental conditions like the availability of fruiting
trees, might be analogous to supervised learning (i.e., where
the target is exogenous to the system). In both cases, feedback
might share features with backpropagation in the strong and
weak senses–the connection weights in the circuits/networks
appear to be adjusted with a combination of vector (Brush
et al., 2018) and scalar feedback (Flack et al., 2006) to minimize
the network’s error function when learning a task (Rumelhart
et al., 1986; Lillicrap et al., 2020). This is just one of many
exciting comparisons that could be made to better understand
how different types of feedback, through tuning (Daniels et al.,
2017) and downward causation (Flack, 2017a), shape the ability
of the circuit to learn. And, as described in the Introduction,
collective coarse-graining can produce a coherent mesoscale
functioning as an information bottleneck, an ideal that is at
least conceptually similar to the information bottleneck described
by Tishby and colleagues to explain how deep neural networks

Frontiers in Robotics and AI | www.frontiersin.org 12 July 2020 | Volume 7 | Article 90

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ramos-Fernandez et al. Collective Computation in Animal Fission-Fusion Dynamics

encode information parsimoniously (Tishby et al., 2000; Tishby
and Zaslavsky, 2015; Flack, 2017a).

We have studied how a natural social system collectively
computes. This is achieved through feedback among different
scales of social organization, as proposed by Hinde’s (1976) early
paradigm and made explicit in Flack (2017a) and Flack (2017b).
Studying collective computation should also find a range of
different applications in the engineering of distributed, adaptive
systems (Bonabeau et al., 1999).
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Tkačik, G., and Bialek, W. (2016). Information processing in

living systems. Annu. Rev. Condens. Matter Phys. 7, 89–117.

doi: 10.1146/annurev-conmatphys-031214-014803

Valero, A., and Byrne, R. W. (2007). Spider monkey ranging patterns in mexican

subtropical forest: do travel routes reflect planning? Anim. Cogn. 10, 305–315.

doi: 10.1007/s10071-006-0066-z

Frontiers in Robotics and AI | www.frontiersin.org 14 July 2020 | Volume 7 | Article 90

https://doi.org/10.1007/BF02382267
https://doi.org/10.1098/rstb.2011.0214
https://doi.org/10.1098/rsta.2016.0338
https://doi.org/10.1017/9781316584200.012
https://doi.org/10.1038/nature04326
https://doi.org/10.1007/BF01601953
https://doi.org/10.1016/j.tree.2018.04.010
https://doi.org/10.1016/j.cels.2016.10.013
https://doi.org/10.7554/eLife.10955
https://doi.org/10.2307/2800384
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1007/s10071-007-0080-9
https://doi.org/10.1073/pnas.1703695114
https://doi.org/10.1098/rsif.2018.0130
https://doi.org/10.1007/s12064-020-00313-7
https://doi.org/10.1007/978-3-642-13062-5_3
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.1038/s41467-017-00903-y
https://doi.org/10.1016/j.anbehav.2019.01.011
https://doi.org/10.1016/j.cell.2019.01.007
https://doi.org/10.1007/s10764-017-9955-z
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1007/s10764-005-6459-z
https://doi.org/10.1007/s00265-009-0719-4
https://doi.org/10.1098/rspb.2018.0532
https://doi.org/10.1007/s00265-014-1733-8
https://doi.org/10.1103/PhysRevE.100.032305
https://doi.org/10.1038/323533a0
https://doi.org/10.1177/105971230200900204
https://doi.org/10.1007/s10329-018-0686-3
https://doi.org/10.1073/pnas.1905585116
https://doi.org/10.1515/9780691206790
https://doi.org/10.1111/j.1600-0706.2011.19685.x
https://doi.org/10.1163/156853988X00476
https://doi.org/10.1038/scientificamerican1287-104
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1146/annurev-conmatphys-031214-014803
https://doi.org/10.1007/s10071-006-0066-z
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Ramos-Fernandez et al. Collective Computation in Animal Fission-Fusion Dynamics

Young, G. F., Scardovi, L., Cavagna, A., Giardina, I., and Leonard, N. E. (2013).

Starling flock networks manage uncertainty in consensus at low cost. PLoS

Comput. Biol. 9:e1002894. doi: 10.1371/journal.pcbi.1002894

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Ramos-Fernandez, Smith Aguilar, Krakauer and Flack. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 15 July 2020 | Volume 7 | Article 90

https://doi.org/10.1371/journal.pcbi.1002894
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Collective Computation in Animal Fission-Fusion Dynamics
	1. Introduction
	2. Data
	3. Microscopic Strategy Extraction and Distribution
	4. Mesoscopic Circuit Construction
	5. Testing Circuits in Simulation
	6. Fit of Output to Environment
	7. Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


