
INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental 
disorder characterized by very early onset of dysfunction in social 
communication and interaction, repetitive behavior, and limited 
interest. It is now believed that ASD is a result of complex gene–
environment interactions, with strong and clear genetic influences. 
Studies of twin pairs, high-risk infant siblings, families, and 
populations have estimated concordance rates and segregation of 
the disorder within families. The concordance rate was reported 
as 60–70% in monozygous twins and as 5–30% in siblings; this 
is in agreement with a recent large prospective study revealing a 
recurrence rate of 18% in infant siblings and of 33% in multiplex 
families [1, 2]. However, it is currently believed that over 50% of 
the risk of developing ASD is attributed to genetic variation [3, 4]. 

Advances in genetic technologies, large cohort studies, and 
widespread database sharing have contributed to the discovery 
and validation of  causative genes in ASD [5]. Knowledge 
from genetic studies of ASD also provides insight into other 
neurodevelopmental disorders, as ASD shares both behavioral 
characteristics and endophenotypes. However, ASD is one of the 
most heterogeneous neurodevelopmental disorders, with great 
variation observed in behavioral manifestations and cognitive 
profiles, which makes determination of the single most important 
genetic risk factor extremely difficult. 

Identifying biomarkers has been one of the primary goals 
of biological research of ASD, and current research efforts are 
directed predominantly toward the identification of markers for 
risk and early diagnosis [6]. There have been intense research 
efforts to identify the genetic basis of ASD, with an assumption 
that the genetic markers can be utilized as essential biomarkers 
in the diagnosis of, and the development of pharmacological 
treatments for, ASD. The objective of this paper is to review the 
current knowledge of genetic variations in ASD, and its role in the 
identification of genetic biomarkers of ASD for diagnostic and 
therapeutic purposes. 
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GENETIC VARIANTS

Common variants

The genetic architecture of  ASD is diverse in frequency 
(common vs. rare variation), mode of inheritance (inherited vs. 
de novo  variation), type of variation (single nucleotide, indel, or 
copy number variation [CNV]) and mode of action (dominant, 
recessive, or additive) [3, 7]. Common variation refers to genetic 
variation from the reference genome, which is present in >1% of 
the population. Common variants with small effects are thought 
to act additively in the development of complex traits in ASD 
[8]. One recent investigation reported that the liability of ASD is 
mostly attributed to common variation in the genetic architecture, 
and that rare de novo mutations contribute to individual liability 
(49% of common inherited variants, 3% of de novo , 3% of rare 
inherited variants, and 41% of unaccounted) [7].

Confirmation of the most specific, consistently replicated, and 
highly effective common variants involved in the pathogenesis 
of ASD is another issue. The first molecular genetic studies of 
autism were candidate gene association studies that aimed to 
discover common genetic variants in the form of single-nucleotide 
polymorphisms (SNPs). However, a large disadvantage of this is 
that it requires existing physiological, biochemical, or functional 
knowledge, which is either finite or unavailable [9]. These 
investigations have been hindered by inadequate sample sizes 
and sparse genotyping, resulting in a lack of reproducible markers 
except for a few plausible genes [9, 10]. 

The most consistently reported genes among the common 
variants include the gamma-aminobutyric acid (GABA) A 
receptor, beta 3 (GABRB3 ); oxytocin receptor (OXTR ); reelin 
(RELN); serotonin transporter (SLC6A4); N-methyl-D-aspartate 
receptor (NMDA ; GRIN2B ); arginine vasopressin receptor 
1A (AVPR1A ); engrailed homeobox 2 (EN2 ); integrin, beta 3 
(platelet glycoprotein IIIa, antigen CD61; ITGB3 ); met proto-
oncogene (hepatocyte growth factor receptor; MET ); and 
contactin-associated protein-like 2 (CNTCAP2 ) genes [11-22]. 
GABRB3 , which is localized to chromosome 15q11–q13 and is 
involved in genome instability, gene expression, imprinting, and 
recombination, was investigated in the first era of ASD genetic 
research [13, 23]. This region became a major subject of attention 
because deletion of this locus is related to monogenic causes of 
ASD, Prader–Willi syndrome, and Algelman’s syndrome, and 
because GABA may be a pharmacological therapeutic target [13, 
24, 25]. Oxytocin acts as a neuromodulator in the central nervous 
system, and induces social/affective bonding in animal models. 
The OXTR is a promising biomarker candidate, due to its genetic 
variants, functions on behavior, and positive results in human 

clinical trials [17, 26, 27]. 
However, these candidate gene studies also revealed that 

common variation has a weak effect when individual SNPs are 
investigated. A genome-wide association study (GWAS) avoids 
the need for a priori  hypotheses for the primary cause of illness, 
and is a more appropriate approach for genetic studies of complex 
disorders such as autism [10]. GWASs have been applied to 
psychiatric disorders with complex phenotypes, and several 
variants have been reported [28]. Several GWASs have been 
conducted for ASD, and a few well-designed studies reported that 
common genetic variants on 5p14.1 and 5p15 were highlighted 
and replicated in two independent samples, each carrying a 
small increased risk (OR 1.2) or protective effect (OR 0.6) [29-
31]. A significant association was observed with the CDH9  and 
CDH10 genes, but replications of this association was inconsistent 
[29-33]. Several studies identified significant SNP markers that 
were replicated in two or more independent samples and were 
associated with specific phenotypes of ASD, but the effect sizes 
were relatively small [29-35]. However, significant genome-
wide results were not consistently reproduced across studies and 
ethnicities [33, 35]. 

Those inconsistencies can be attributed to the phenotypic 
heterogeneity of  ASD and to relatively small sample sizes. 
Researchers attempted to decrease phenotypic heterogeneity 
by subphenotyping or using quantitative phenotypes, but this 
was unsuccessful in enhancing the substantial power of GWAS, 
resulting in the necessity of very large sample sizes, such as 50,000 
individuals [5, 33, 34]. 

Rare variants and monogenic autism

Rare variation is genetic variation that is present in the 
population at a frequency of ≤1%. ASD can be expressed as the 
behavioral manifestation of known genetic syndromes, called 
syndromic autism, as opposed to idiopathic autism, which does 
not have known genetic causes. Syndromic autism often has 
dysmorphic features characterized by the genetic syndrome it 
belongs to and equal male:female ratios, unlike idiopathic autism, 
which occurs 4–5 times more frequently in males than in females 
[36]. Single-gene disorders, including fragile X (mutations in 
FMR1 ), tuberous sclerosis complex (mutations in TSC1  and 
TSC2 ), Dup15q syndrome, deletions in the 16p11.2 region, 
Rett syndrome (mutation in MeCP2 ), and neurofibromatosis 
(mutations in NF1 ), are detected in 3–5% of subjects with ASD, 
and are well-known as having an ASD phenotype as well as 
comorbid intellectual disabilities and epilepsy [37]. 

Recent development of  whole-exome sequencing (WES) 
techniques has revealed that more than 25% of individuals with 



259www.enjournal.orghttp://dx.doi.org/10.5607/en.2015.24.4.257

Genetics of Autism

ASD have identifiable, causative, and protein-disrupting rare 
genetic mutations [5]. However, single mutations account for no 
more than 1% of cases, mainly due to phenotypic heterogeneity 
and variable penetrance. Though the prevalence is not strikingly 
high, syndromic autism helps to understand core deficits of ASD 

as one of the phenotypes that specific genetic mutations carry, 
and acts as a gateway to explore the genetic etiology of ASD. The 
representative examples of monogenic autism and their clinical 
implications are summarized in Table 1. 

Table 1. Examples of monogenic “syndromic” autism and related phenotypes

Mutations Phenotypes

Fragile X syndrome FMR1 Large, protruding ears, long face, hyperextensible joint, macroorchidism, hypotonia, learning problem, 
intellectual disability, language impairment, developmental delay, attention problem, ASD [120] 

Rett’s syndrome MECP2 Developmental regression, microcephaly, cognitive and motor impairment, epilepsy, stereotyped hand 
movement, severe repetitive behavior, severe ASD [36]

Tuberous sclerosis TSC1, TSC2 Brain tumors, multi-organ involvement (kidneys, lungs, heart, eyes and skin), learning difficulties, 
intellectual disability, self-injurious behavior, obsessive compulsive disorder, attention deficit 
hyperactivity disorder, aggression, epilepsy, ASD [121]

Neurofibromatosis 1 NF1 Café au lait spots, neurofibromas, scoliosis, iris tumor, cognitive dysfunction, epilepsy, autism [122]

Cornelia de Lange 
syndrome

SMC1A/SMC3 Low birth weight, facial abnormalities, hearing and vision abnormalities, limb differences, heart defect, 
cleft palate, self-stimulation, self-injurious behavior, aggression, ASD [123]

Cohen syndrome COH1 Ocular abnormalities, obesity, thin arms and legs, micrognathia, deafness, intellectual disability, epilepsy, 
ASD [124]

Timothy syndrome CACNA1C Congenital heart disease, cardiac arrhythmias (long QT syndrome), webbing of fingers and toes (or 
syndactly), immune deficiency, cognitive abnormalities, ASD [125]

Smith-Lemli-Opitz 
syndrome

DHCR7 Facial abnormalities (bitemporal narrowing, ptosis, short and upturned nose), micrognathia, finger and 
feet abnormalities, microcephaly, developmental delay, learning disability, behavioral abnormalities, 
hand mannerism, ASD [126]

Williams-Beuren 
syndrome 

7q11.23 del Cardiac and gastrointestinal problems, hyperacusia, phonophobia, strabismus, esotropia, problems with 
visual processing, cerebellar signs, hypertonia, motor delay, intellectual disability, strong interest in 
people, lack of social inhibition, ASD [127]

Dup15q syndromes Dup 15q11–q13, 
GABRB3

Hypotonia, facial dysmorphism (flat nasal bridge, epicanthal folds, deep set ear, high arched palate), 
small stature, gross and fine motor delays, cognitive delays, speech/language delays, behavior problems, 
sensory processing problem, epilepsy, ASD [128]

Prader-Willi syndrome Del 15q11–q13 
(paternal allele)

Specific face, hypogonadism, small hands and feet, hypopigmentation, hyperphagia, severe obesity, 
obsessive compulsive disorder, mood and behavior problem, ASD [37]

Angelman syndrome Del 15q11–q13 
(maternal allele, 
UBE3A)

Strabismus, unique facial dysmorphism, prominent mandible, wide mouth, sleep disturbance, severe 
developmental delay, speech impairment, ataxia, attention problem, frequent laughter, easily excitable 
personality, epilepsy, ASD [37]

16p11.2 deletion 
syndrome

16p11 del Minor unusual facial and physical features, hypotonia, overweight, language delay, learning difficulty, 
epilepsy, ASD  [49]

Smith-Magenis 
syndrome

17p11.2 del Facial dysmorphism (broad, square shaped face, deep set eyes, prominent lower jaw), short stature, 
scoliosis, eye abnormalities, reduced sensitivity to pain and temperature, sleep disturbances, behavioral 
problem, self-injurious behavior, stereotyped behavior (finger licking, flipping books), ASD  [129]

22q11 duplication 
syndrome 

22q11.2 dup Growth retardation, hypotonia, delayed psychomotor development, learning difficulty, intellectual 
disability, ASD [130]

DeGeorge syndrome 
(velocardiofacial 
syndrome)

22q11.2 del Multi-organ involvement (heart, kidney, gastrointestinal system, skeletal abnormality), cleft palate, 
facial dysmorphism, immune system abnormality, low calcium level, hearing loss, developmental 
delay, learning difficulty, mental illnesses (schizophrenia, anxiety, mood disorders), attention deficit 
hyperactivity disorder, ASD [131]

Phelan-McDermid 
syndrome

23q13.3 del Dolichocephaly, hand and facial dysmorphism, ptosis, kidney problems, neonatal hypotonia, global 
developmental delay, intellectual disability, reduced sensitivity to pain, absent or severely delayed 
speech, ASD  [59]

ASD, autism spectrum disorder.
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Copy number variation 

Copy number variants (CNVs) are variations (duplication 
or deletion) in chromosomal structure of greater than 1,000 
nucleotides, usually a section of DNA with a length from 1 kb to 
several Mb. CNVs can be either common or rare, transmitted or 
de novo, and are widely distributed in human genome, accounting 
for a substantial proportion of genetic variation [5, 38]. Studies 
have revealed an increased frequency of CNVs in individuals with 
ASD compared to normal controls and several de novo  CNVs 
in children with autism, suggesting excessive genomic instability. 
The frequency of de novo  CNVs in ASD has been reported as 
3–19% in ASD from simplex and multiplex families, compared to 
approximately 1% in healthy controls [39-41].

Genomic imbalances associated with ASD are classified as 
recurrent and nonrecurrent events. Recurrent events are non-
allelic homologous recombination, with reciprocal dosage 
imbalances (deletion and duplication) in different individuals 
[42]. Notable examples of recurrent CNVs are microdeletions 
and duplications in chromosome 1q21, 15q13, and 16p11.2, 
and microdeletion syndrome in chromosomes 2p15-2p16.1, 
17p11.2, and 17q12 [43-49]. CNVs are associated with a wide 
range of phenotypic heterogeneity, including dysmorphic features, 
intellectual disabilities, language impairments, attention problems, 
hyperactivity, aggression and other behavioral problems, mood 
disorders, and schizophrenia, which implicates those variants 
might not be a specific cause of social disability in ASD [18]. 

Synaptic genes

Of the genetic variations studied regarding ASD, the most 
consistently reported genetic abnormalities are mutations 
in synaptic genes, including neuroligins (NLGN ), SH3 and 
multiple ankyrin repeat domains (SHANK ), neurexin (NRXN ) 
families, and contactin associated protein-like 2 (CNTNAP2 ) 
[50-62]. Mutations in synaptic genes are not specific to ASD, 
and are also found in other neuropsychiatric disorders, such as 
schizophrenia and Alzheimer’s disease [63, 64]. However, as these 
neuropsychiatric conditions share common features with ASD, 
such as cognitive dysfunction, limited emotional expression, and 
lack of social reciprocity, synaptic dysfunction is still considered 
a common pathway of these major, chronic neuropsychiatric 
illnesses [5, 18].

NLGNs are known to act as splice site-specific ligands for beta-
neurexins and be involved in the formation and remodeling of 
central nervous system synapses (http://www.ncbi.nlm.nih.gov/
gene/54413). The identification of a de novo , loss of function 
mutation in neuroligin 4, X-linked (NLGN4X ) in an affected 
mother that was transmitted to two affected boys first suggested 

the possibility of synaptic dysfunction involvement in ASD 
[65]. This was followed by the identification of a single-base 
missense mutation of NLGN3  in another family [53]. These 
findings have been replicated in other studies, and NLGN3 , 
NLGN4 , and NLGN4Y  were found to be possibly associated 
with ASD. However, mutation of those genes in ASD is relatively 
low (0.6–3.3%), and the clinical phenotypes and neurobiological 
characteristics of these mutations are also quite diverse, including 
ASD, intellectual disabilities, and Tourette syndrome, and 
inconsistent across ethnicities [51, 54, 55, 61, 62]. 

A second family of genes possibly associated with ASD is the 
SHANK genes (SHANK1 , SHANK2 , and SHANK3 ), encoding 
synaptic proteins that may function as molecular scaffolds in the 
postsynaptic density of excitatory synapses (http://www.ncbi.nlm.
nih.gov/gene/22941). SHANK3  is the most widely studied, but 
SHANK1 and SHANK2 are also implicated by de novo deletions 
observed in subjects with ASD [50, 57-59]. Durant et al. (2007) 
reported eight non-synonymous mutations in ASD patients that 
were not present in healthy controls; rare de novo  mutations 
in SHANK3  located in chromosome 22q13.3 were identified 
in probands and families with ASD in many studies [50]. Rare 
mutations and genomic deletions have been reported in different 
SHANK3 loci, with a frequency of 0.2–0.8% of probands in ASD 
[50, 57, 66-69]. Mutations in SHANK3  are gaining attention, as 
they are related to Phelan-McDermid syndrome (PMS) and 22q13 
deletion syndrome, and are one of the known genetic causes of 
ASD. PMS is characterized by autism or autistic-like behavior in 
more than 50% of subjects, and is accompanied by neurological 
deficits, including global developmental delay, moderate to severe 
intellectual impairment, absent or severely delayed speech, and 
neonatal hypotonia [59]. 

The transmission pattern of SHANK3  mutations is variable; 
inheritance from healthy parents and existence in unaffected 
siblings were reported [50, 57, 67]. Recently, Nemirovsky et al. 
(2015) reported germline mosaicism for a heterozygous cytosine 
deletion in exon 21 of SHANK3 by whole-genome sequencing in 
three male siblings from a segregated family exhibiting phenotypes 
of severe intellectual disability, absence of language, autism 
spectrum symptoms, and epilepsy [58]. As with other potential 
candidates, the associated phenotypes of SHANK3  mutations 
are not specific for ASD, but SHANK3  is regarded as one of the 
potential causative genes and therapeutic targets of ASD, based on 
animal and cellular model studies.

Other important synaptic genes are NRXN1 , NRXN2  and 
NRXN3 , encoding neuroligins. This trans-synaptic complex is 
required for efficient neurotransmission, and they are involved 
in the formation of  synaptic contacts by interaction with 
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neurexins [60]. Neuroligin aggregation is synaptogenic, but 
exhibits specificity: NLGN1 , NLGN3  and NLGN4  link only to 
glutamatergic postsynaptic proteins, but NLGN2  links to both 
glutamatergic and GABAergic postsynaptic proteins [52]. In the 
earlier era of ASD genetic studies, CNVs were found to disrupt the 
locus containing NRXN1 , but this was inconsistent, with a high 
unaffected carrier frequency of deletions [70-73]. More recently, 
there have been relatively large cohort studies that describe a 
higher rate of deletions in the NRXN1  region located in the 
probands of chromosome 2p16.3 associated with ASD, compared 
to healthy controls, with an overrepresentation of small-sized 
inverted repeats [72, 74]. Shared psychopathologies related to the 
deletions were developmental delays, speech delays, abnormal 
behaviors, including ASD, and some degree of dysmorphism [72]. 

CNTNAP2 is another candidate gene suggested to be associated 
with ASD by human and animal model studies. Family-based 
association studies identified a common variant (rs7794745) that 
was associated with increased risk of autism, and another study 
revealed an amino acid substitution in the CNTNAP2 protein in 
children with autism [75-77]. Variation of the CNTNAP2  gene 
and age at first word, a language development phenotype, are both 
related to autism rather than to the diagnosis itself, and raises 
the implication that genetic variants of a quantitative phenotype 
of ASD interact with FOXP2  [75]. The functional relevance of 
CNTNAP2 genetic variants has been validated in animal models; 
CNTNAP2 (-/-) mice exhibited deficits in all three core behavioral 
deficits of ASD, as well as hyperactivity and epileptic seizures, 
and improved repetitive behavior of mutant mice [78]. A large-
sized GWAS study failed to demonstrate a significant association 
of the marker noted in the previous studies, and no associations 
between rare heterogeneous mutations of CNTNAP2  and ASD 
were observed [29, 79]. However, a recent investigation revealed 
the possible involvement of novel functional variants of the 
5’-promotor region, mediated by alterations in transcription-
binding sites in subjects with ASD. CNTNAP2 is still regarded as 
one of the potential causative genes of ASD that warrants further 
research [80]. 

These findings indicate the possibility that ASD might be 
caused by abnormalities in synaptic plasticity , as indicated by 
proteins that play essential roles in synaptic development and 
modification. There is evidence that NRXN (presynaptic) and 
NLGN (postsynaptic) interact as synaptic adhesion molecules, 
providing mechanistic support in synaptic formation and 
maintenance [81]. Alternate splicing of NLGN controls selective 
binding with α- and β-NRXN, provides synaptic diversity, and 
regulates function. Alternate splicing also controls the variable 
interaction of NRXN with other postsynaptic ligands, such as in 

glutamatergic, GABA-ergic, and cholinergic synapses [81, 82]. 
The SHANK family includes postsynaptic scaffolding proteins, 
which link multiple receptor signaling complexes and the actin 
cytoskeleton that are essential for maintaining synaptic function 
[83]. SHANK3 directly and indirectly binds to CNTN and NLGNs 
and interacts with presynaptic glutamatergic receptors [83, 84]. 
The molecular function of CNTNAP2 is relatively unclear, but it is 
known to encode a neuronal transmembrane protein member of 
the NRXN superfamily that is involved in neural–glia interactions 
and clustering of potassium channels in myelinated axons (http://
www.omim.org/entry/604569).

Overall, despite of low frequency of de novo  mutations in 
affected individuals, inconsistencies in genetic analysis results, 
and phenotypic heterogeneity, synapse-related genes are crucial 
candidates of ASD, and provide baseline evidence for testing 
compounds that can enhance synaptogenesis for the treatment of 
the core symptoms of ASD [25].

Genetic networks

For some of  the identified genes, genetic pathways were 
identified at the cellular and molecular level based on genetic 
network analyses and genetic functional studies. Besides synaptic 
development and function mentioned in the previous section, 
protein synthesis and metabolism, modulation of transcription 
process, chromatin remodeling, calcium signaling, and mTOR and 
oxytocin pathways have also been implicated [85-87]. This suggests 
that genes involved in ASD might be related each other in several 
convergent functional units, especially in neuronal development, 
modulation, and intracellular transcriptional mechanisms. As 
more and more causative genes of ASD are identified, their 
interaction within the context of functional significance would be 
clarified. Molecular pathways possibly involved in pathogenesis of 
ASD are summarized in Fig. 1 [86]. 

Genes and brain circuits

Theoretically, ASD is an end-product of gene-environment 
interaction, mediated by changes in brain physiology, function, 
and morphology causing cognitive and behavioral dysfunction. 
Multiple brain areas involving facial recognition, emotion 
evaluation, empathy, mentalization, social cognition and behavior 
are known to be associated with ASD as part of the “social brain 
network” [88]. Alterations in brain connectivity and morphology 
might be a potential endophenotypes of ASD. However, not 
many human studies have explored associations between specific 
genetic variants and brain circuits or morphological phenotypes. 
One recent study examined phenotypic characteristics of subjects 
with ASD carrying germline heterogeneous PTEN mutations 
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(PTEN-ASD); compared to subjects with idiopathic (non-PTEN) 
ASD and healthy controls, subjects with PTEN-ASD showed 
prominent cognitive dysfunction and white-matter abnormalities, 
mediated by reductions in the PTEN protein [89]. Moreover, 
significant differences in fMRI activation and deactivation 
patterns to social stimuli as well as functional and structural 
connectivity in the temporo-parietal region based on the existence 
of the rs1858830 MET risk allele (C/C) highlighted alterations 

in gene-brain pathway in ASD [14]. More data are necessary to 
understand the complex pathways connecting specific genetic 
mutation/genotype and brain changes, which have a direct impact 
on specific behavioral phenotypes of ASD. 

Fig. 1. Molecular pathways implicated in neurodevelopmental disorders. RTKs, receptor tyrosine kinases; iGluRs, metabotropic glutamate receptors; 
PGC-1α, peroxisome proliferator–activated receptor gamma coactivator 1-alpha; SREBP, sterol regulatory element–binding proteins; HIF1α, hypoxia–
inducible factor 1 alpha; ULK1, unc-51–like kinase 1; ARC, activity-regulated cytoskeleton-associated protein; UBE3A, ubiquitin protein ligase E3A; 
MeCP2, methyl CpG binding protein 2; FMRP, fragile X mental retardation protein; PI3K/mTOR , phosphatidylinositol 3-kinase/mammalian target 
of rapamycin; PSD-95, postsynaptic density protein 95; CNTNAP2, Contactin-associated protein-like 2; NF1, neurofibromin 1; PLCβ, Abstract 
Phospholipase C β; SYNGAP1, Synaptic Ras GTPase-activating protein 1; ERK1/2, extracellular signal-regulated kinase; PTEN, Phosphatidylinositol-
3,4,5-trisphosphate 3-phosphatase; PDK1, Pyruvate dehydrogenase lipoamide kinase isozyme 1; PKC, Paroxysmal kinesogenic choreoathetosis, 
neurological disorder Protein kinase C; AKT, Protein kinase B; AMPK, AMP-activated protein kinase; TSC2, Tuberous Sclerosis Complex 2; TSC1, 
tuberous sclerosis 1; RHEB, GTP-binding protein Rheb; DEPDC5, DEP domain-containing 5; mTORC1, mammalian target of rapamycin complex 
1; mGluR, metabotropic glutamate receptor; SHANK, Shank protein; ATG13, Autophagy-related protein 13; HDAC, Histone deacetylases; CHD8, 
Chromodomain-helicase-DNA-binding protein 8; MEF2, myocyte enhancer factor-2; RAS, Ras protein; TBC1D7, TBC1 domain family, Member 7; 
4E-BPs, eIF4E-binding proteins; FIP200, a ULK-interacting protein; S6K1/2, Anti-RIBOSOMAL S6 KINASE 1/2; HOMER, homer scaffolding protein; 
RAGA/B, Ras-related GTP binding A/B ortholog; RAGC/D, Ras-related GTP binding C/D ortholog. From M. Sahin and M. Sur, Genes, circuits, and 
precision therapies for autism and related neurodevelopmental disorders, Science 350, aab3897 (2015). DOI: 10.1126/science.aab3897. Reprinted with 
permission from The American Association for the Advancement of Science (AAAS).
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GENETICS USED FOR DIAGNOSIS AND THERAPEUTIC TARGETS: 
CLINICAL REALM

The ultimate goal of the evaluation of genetic etiology in complex 
disorders is the discovery of biomarkers for risk assessment, 
diagnosis, and prediction of therapeutic responses and prognoses, 
and the development of therapeutic components. The current 
best estimate diagnosis of ASD is based on behavioral observation 
and developmental history, assisted by standardized diagnostic 
instruments. While it is strongly suggested that early intervention 
in ASD can promote better prognoses, reduce secondary 
behavioral complications, and even induce normalization of brain 
activity [90], diagnostic confirmation before 2 years of age based 
only on the behavioral observations has limitations. Thus, the 
identification of genetic markers will provide useful information 
to aid in the early diagnosis of ASD in infants and begin early 
intervention. 

However, the current status of genetic diagnoses of ASD is 
insufficient in clinical utility and precision for general applications. 
While known genetic causes are identified in 20–25% of ASD, 
each of those mutations/variants are rare and account for only 
1–2% of the probands [6, 91, 92], which means there are no single 
predictable genetic markers for the development of ASD. As 
described previously, scientists believe that ASD is the product 
of the interplay between multiple common and rare genetic 
variants, and that genetic diagnosis should involve a combination 
of multiple genetic markers as a form of targeted gene panels. 
There have been attempts to make a gene set to diagnose ASD: 
for example, Skafidas et al. (2012) identified a group of SNPs 
selected by pathway analysis, and applied machine learning to 
the identified SNPs to generate a predictive classifier for ASD 
diagnosis. By applying 237 highly significant SNPs to three 
independent cohorts, there was a high level of diagnostic accuracy 
observed in genetically homogenous populations (84.3–85.6%), 
but not in an ethnically distinct cohort of Han Chinese (56%) 
[93]. Despite small sample sizes and the preliminary nature of the 
methodology, other researchers applied gene panels on subgroups 
of ASD and observed 75–90% accuracy in classification [94]. 
These studies may imply that development of a diagnosis based on 
genetic markers needs consider ethnic diversity and phenotypic 
heterogeneity. There are several gene panels offered by clinical 
molecular laboratories, but their clinical validity has not yet been 
fully evaluated [95]. In the future, next generation sequencing 
(NGS) is expected to produce a level of resolution down to the 
single base pair level and to enhance the assay precision level, but 
diagnostic validity should proceed so that the technology works in 
a clinically valid way [96].

In its current status, clinical value is primarily focused on the 
identification of known genetic causes of ASD. It is recommended 
that once a clinical diagnosis of ASD is made, genetic testing 
should be initiated [96]. This includes single-gene tests for 
monogenic causes of ASD, including fragile X syndrome, tuberous 
sclerosis complex, Rett syndrome, Angelman syndrome, Prader-
Willi syndrome, phosphatase and tensin homolog (PTEN)-
associated disorders, Noonan syndrome, cortical dysplasia-
focal epilepsy syndrome (associated with CNTNAP2 ), and 
Phelan-McDermid syndrome, by detecting point mutations, 
microdeletions, duplications, and large repeat expansions using 
sequencing, fluorescence in situ hybridization (FISH), and 
Southern blotting technologies [95]. An assay for CNVs with 
array comparative genomic hybridization (aCGH) is also available 
for known variations of ASD [96]. At the clinical level, practice 
guidelines of the American College of Medical Genetics (ACMG) 
recommends a three generation family history with pedigree 
analyses; an initial evaluation for known syndromes associated 
with ASD, especially if the subject has dysmorphic features or 
specific clinical indicators; a chromosomal microarray; and DNA 
testing for fragile X for all male children suspected of an ASD as 
the first tier genetic evaluation. ACMG recommends sequencing 
and duplication testing for the MECP2  gene in female patients, 
and PTEN  testing for those with macrocephaly as second tier 
genetic testing [97, 98]. 

There are ethical considerations of the clinical use of genetic 
testing and counseling for ASD. First, it is important that 
biomarker discovery, especially commercialization of biomarker 
data in autism, does not result in children being given a biological 
label that fixes and defines their potential and treatment [99, 100]. 
Second, genetic biomarker results have a huge impact on parental 
decision-making toward reproduction; therefore, more research 
and communication is needed for a better understanding of 
parental needs and attitudes [100].

Pharmacological treatment of ASD is primarily focused on 
improving comorbid behavioral emotional symptoms, such as 
irritability, aggression, anxiety, tics, self-injurious behaviors, and 
epilepsy [101]. One of the ultimate goals of the discovery and 
validation of biomarkers is developing molecular therapeutics 
to treat the core symptoms of ASD, based on knowledge about 
disease modifying mechanisms. Identification of causative 
genes, especially from high-throughput methods such as NGS, 
is paving the way for developing pharmacological agents to treat 
the core symptoms of ASD, including abnormal reciprocal social 
interaction and communication. Several recent well-designed 
studies have modeled human genetic variants associated with 
ASD in mice, using SHANK3, CNTNAP2, MECP2, UBE3A, and 
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FMR1 genes, and are refining potential therapeutic mechanisms 
[78, 102-106]. These studies refine the function of genetic 
biomarkers of autism and relate them to behavioral phenotypes, 
and suggest potential target compounds for recovery of function. 
However, it is only the beginning of the discovery of therapeutic 
molecules for human subjects, covering the heterogeneity and 
complexity of the molecular pathways of autism. 

A few empirical trials have begun for syndromic autism with 
well-known monogenic etiology, with hopes to expand the trial 
for idiopathic ASD. Tuberous sclerosis is one of the examples; the 
TSC1 and TSC2 genes encode proteins regulating the mTORC1 
protein complex. mTOR plays an important role in protein 
synthesis, cell growth, and axon formation. mTOR inhibitors 
(including rapamycin and everolimus) are currently being tested 
for their effect on neurocognitive outcomes in children with 
tuberous sclerosis complex, with outcome measurements that 
include autism symptoms, cognition, language skills, and behavior 
[79, 107]. Also clinical trials using mechanism-based targeted 
treatment for Dup15q syndrome (duplication of 15q11.2-q13) 
and fragile X syndrome are also under way [37, 98, 107].

Oxytocin is neuromodulatory hormone involved in various 
social behaviors in humans and animals, including parents–
offspring bonding, affection, social recognition, and social 
antagonism [17]. Although inconsistencies in genetic studies 
of OXTR  in ASD, positive associations have been reported in 
multiple studies and across multiple ethnicities. Significant 
hypermethylation of critical sites of OXTR  was observed in 
subjects with ASD and in the brother of a proband with OXTR 
deletion implicated epigenetic modification of the OXTR gene 
in ASD [26, 108, 109]. OXTR  knock-out animal models show 
various characteristics of social behavior including parental 
nurturing, pair bonding, and social memory as well as brain 
changes in the limbic and paralimbic regions [110, 111]. Based 
on strong coherent evidence from human and animal studies 
across genetic, neural, and behavioral levels, oxytocin has been 
chosen as a pharmacological agent targeting core symptoms 
of ASD. A few randomized controlled trials have showed the 
efficacy of intravenous or nasal administration of oxytocin in core 
domains of ASD, such as social cognition and behavior. A few 
well-designed studies have reported enhanced performance in 
empathy tasks accompanied by increased anterior insula activity 
and coordination in the medical prefrontal cortex [112-114]. 
Although there are unmet limitations in the generalizability of 
subjects, establishment of dosage and route of administration, and 
maintenance of effect and safety in children, oxytocin might be 
a potential therapeutic agent for core symptoms of ASD with the 
most achievable clinical utility. 

NGS IN ASD GENETICS

High-throughput technologies have facilitated gene discovery in 
ASD. The most recent development, NGS, which include whole-
genome sequencing (WGS), whole-exome sequencing (WES), and 
targeted sequencing, promotes the precise identification of genetic 
variants at base-by-base levels. NGS promotes the identification 
of rare alleles to a degree not possible using genotyping platforms, 
and allows identification of single gene defects and partial 
variations of gene function [37, 115]. NGS in ASD is still emerging; 
it is useful to identify novel de novo  variants not observed by 
conventional methods. Recent studies have confirmed de novo 
CNV loci in large-sized cohorts of idiopathic ASD families, 
observed new candidate loci, and confirmed de novo  mutations 
in subjects with ASD and other neuropsychological abnormalities 
[58, 116-118]. Regarding diagnostic utility, one recent study 
reported complicated results that the diagnostic yield of WES 
is comparable to chromosomal microarray, while combined 
diagnostic yield is higher among children with more complex 
morphological phenotypes, emphasizing the importance of 
phenotypic classification [119]. 

Although NGS is not yet widespread due to its relatively high 
cost and the demand for techniques involving large-scale data 
and bioinformatics, it is predicted that large-scale investigations 
combining NGS technology and accumulated clinical data will 
facilitate the genetic study of ASD from diagnoses to targeted 
treatments in the future [5]. 

CONCLUSION

A wide range of genetic variation is involved in ASD, with 
interplays of gene–gene and gene–environment interactions. 
Both genotypic and phenotypic heterogeneity contribute to 
the difficulty in the thorough exploration and confirmation 
of causative genetic factors. However, recent technological 
developments, including NGS, and the accumulation of clinical 
information are bridging the gap in the application of genetic 
knowledge towards clinical practice. 
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