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Background: Silent circulation of polioviruses complicates the polio endgame and moti-
vates analyses that explore the probability of undetected circulation for different scenarios.
A recent analysis suggested a relatively high probability of unusually long silent circulation
of polioviruses in small populations (defined as 10,000 people or smaller).
Methods: We independently replicated the simple, hypothetical model by Vallejo et al.
(2017) and repeated their analyses to explore the model behavior, interpretation of the
results, and implications of simplifying assumptions.
Results: We found a similar trend of increasing times between detected cases with
increasing basic reproduction number (R0) and population size. However, we found sub-
stantially lower estimates of the probability of at least 3 years between successive polio
cases than they reported, which appear more consistent with the prior literature. While
small and isolated populations may sustain prolonged silent circulation, our reanalysis
suggests that the existing rule of thumb of less than a 5% chance of 3 or more years of
undetected circulation with perfect surveillance holds for most conditions of the model
used by Vallejo et al. and most realistic conditions.
Conclusions: Avoiding gaps in surveillance remains critical to declaring wild poliovirus
elimination with high confidence as soon as possible after the last detected poliovirus, but
concern about transmission in small populations with adequate surveillance should not
significantly change the criteria for the certification of wild polioviruses.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The detection of a wild poliovirus (WPV) in Borno state in Northeast Nigeria in 2016 (Nnadi et al., 2017), at a time when
many hopedWPV circulation had stopped in Africa, raised questions about the possibility of prolonged undetected poliovirus
circulation in small populations. The serotype 1WPV detected in 2016 in Borno occurred almost two years after the priormost
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recent case in Nigeria in 2014, although it likely originated from a distinct lineage last detected in Borno in 2013 (Nnadi et al.,
2017). Due to civil unrest, polio eradication efforts could not reach parts of Borno with vaccination or surveillance for several
years, and some areas remain inaccessible (Nnadi et al., 2017). Similar resurfacing of a WPV after multiple years without
detection previously occurred in the Sudan and Chad (World Health Organization, 2005a, 2005b), and surveillance continues
to occasionally detect WPVs with no closely linked ancestors in Pakistan and Afghanistan (i.e., orphan viruses) (Cowger et al.,
2017). Poliovirus surveillance primarily relies on the detection of symptomatic cases of acute flaccid paralysis (AFP) and tests
of their stool for the presence of poliovirus. However, only less than 1% of WPV infections in susceptible individuals result in
paralytic symptoms (i.e., approximately 1/200,1/2,000, and 1/1,000 forWPV serotypes 1, 2, and 3, respectively) (Nathanson&
Kew, 2010). This implies that hundreds to thousands of infections can occur between successive cases, leading to a situation of
silent circulation. While all documented instances of prolonged undetected circulation occurred in the context of likely gaps
in surveillance, the possibility of silent poliovirus circulation contributes to the ability of transmission to go undetected.

Motivated by the re-emergence in Borno, a recent study used a stochastic model to examine whether simple, small,
hypothetical populations not reached at all by vaccination can perpetuate WPV transmission while experiencing very long
intervals between polio cases (Vallejo, Keesling, Koopman, & Singer, 2017). The potential for silent circulation influences the
confidence about the interruption of poliovirus transmission as a function of time after the last detected poliovirus, which
informs the decision to certify wild poliovirus eradication in a country, region, and globally. Global certification of a wild
poliovirus serotype affects when theworld can coordinate the cessation of the use of homotypic oral poliovirus vaccine (OPV),
which represents a necessary step to end all paralytic poliomyelitis disease (polio) caused by polioviruses, because OPV itself
can in rare instances cause polio (Duintjer Tebbens et al., 2006; World Health Organization, 2005a, 2005b, 2013). Delaying
OPV cessation leads to substantial additional costs (Duintjer Tebbens et al., 2011), but premature OPV cessation implies a risk
of a WPV reemergence that could become very difficult to control. As of early 2018, of the six World Health Organizations
(WHO) regions, only the African and the Eastern Mediterranean regions remain not certified as polio-free due to the pos-
sibility of continued WPV transmission in Borno (African region) and continuing polio cases in Pakistan and Afghanistan
(EasternMediterranean region) (World Health Organization, 2018). Moreover, of the threeWPV serotypes, theworld certified
serotype 2 WPV eradication in 2015 (Global Polio Eradication Initiative, 2015) and did not report any polio cases due to
serotype 3 WPV since 2012 (Kew et al., 2014), with only serotype 1 WPV continuing to cause reported polio cases.

Based on epidemiological experience and modeling, certifying a region or the world as polio-free requires no observed
polio cases for at least three years (Debanne& Rowland, 1998; Eichner& Dietz, 1996; Kalkowska, Duintjer Tebbens, Pallansch,
et al., 2015; World Health Organization, 2017). Prior to Vallejo et al. (2017), numerous modeling studies addressed the
possibility of prolonged poliovirus circulation without any detected polio cases in different populations using different
metrics, and spanning different model structures and assumptions about surveillance, vaccination, transmissibility, and
demographics (Berchenko et al., 2017; Eichner & Dietz, 1996; Famulare, 2016; Houy, 2015; Kalkowska, Duintjer Tebbens,
Pallansch, et al., 2015; Kalkowska, Duintjer Tebbens, & Thompson, 2012). These models generally agree that in most real-
istic situations, 3 years without any detected cases implies at least 95% confidence about no circulation, although our studies
show that results depend on surveillance quality, serotype, seasonality, and vaccination strategies (Kalkowska, Duintjer
Tebbens, Pallansch, et al., 2015; Kalkowska et al., 2012). In contrast to the prior literature, Vallejo et al. (2017) prominently
reported (in their abstract) a 22% chance of at least 3 years between successive polio cases in a population of 10,000 people
despite a 100% case detection rate. In a correction, Vallejo, Keesling, Koopman, and Singer (2018) report an error in the
calculation of the average age of infection that resulted in the use of unrealistically high values for the basic reproduction
number (R0), which led them to note the limited applicability of their findings to real-world situations. Nonetheless, the
potential use of their findings in deliberations about polio certification motivated us to replicate the Vallejo et al. (2017)
analyses to take a closer look at the model behavior, the interpretation of the results (particularly in the context of the
relevant prior literature that they did not consider), and the implications of some of their simplifying assumptions. Although
they issued a correction that highlighted one unrealistic model input assumption (Vallejo et al., 2018), we highlight multiple
other attributes that they did not consider that further limit the utility of their approach and model for supporting policy,
including the unrealistic assumptions about the existence of completely isolated small populations that remain at the
endemic equilibrium with no vaccination and yet benefit from perfect surveillance.

2. Material and methods

We used themodel structure, notation, input values, andmicrosimulation algorithm descriptions provided by Vallejo et al.
(2017) to reconstruct their model in Java using the Eclipse open development platform (Eclipse Foundation, Inc., Ottawa,
Ontario, Canada). The first two authors independently reconstructed the model. The model assumes a constant population
(i.e., birth rate¼ death rate) distributed over five compartments: susceptible (i.e., never infected), first infection (susceptible
to paralysis), temporary full immunity to infection after recovery from infection, partial susceptibility to infection but not
paralysis after waning, and reinfection of partially susceptible individuals. The paralysis-to-infection ratio determines the
probability of a first infection leading to a polio case, and the detection rate determines the probability that surveillance
would detect a polio case. The model ignores the 1e3-day latent period between virus exposure and becoming infectious to
others (Duintjer Tebbens, Pallansch, Kalkowska, et al., 2013), and characterizes the infectious period using a single stage,
which implies an exponential recovery process with an unrealistically long tail (Duintjer Tebbens, Pallansch, Kalkowska, et al.,
2013; Lloyd, 2001). The model uses the Gillespie algorithm (Gillespie, 1976), which randomly generates when transition
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events between the compartments occur. Consequently, each stochastic iteration of themodel results in different event times.
This leads to difficulties in interpretation of the results in Figures 5 and 6 from Vallejo et al. (2017) that they presented as a
function of “event steps,” (Vallejo et al., 2017) and therefore we provided the corresponding results also as a function of time,
which provides a more natural interpretation.

Briefly, Vallejo et al. (2017) explored themodel behavior in terms of time between detected cases (TBC), which represents a
different metric than those developed in the prior literature (Berchenko et al., 2017; Eichner & Dietz, 1996; Famulare, 2016;
Houy, 2015; Kalkowska, Duintjer Tebbens, Pallansch, et al., 2015; Kalkowska et al., 2012). Vallejo et al. (2017) focused on the
proportion of stochastic iterations of their model in which any TBC exceeded 3 years. They varied the detection rate, the
population size, the basic reproduction number (R0), and the pattern of waning immunity (i.e., “fast-shallow,” “intermediate,”
or “slow-deep” (Koopman et al., 2017), which considered the same R0 values, and which Vallejo et al. (2018) identified as
unrealistic). Vallejo et al. (2017) also kept the paralysis-to-infection ratio constant at 0.005, which corresponds to the
consensus estimate for serotype 1 WPV (Duintjer Tebbens, Pallansch, Kalkowska, et al., 2013; Nathanson & Kew, 2010). They
initialized their simulations at the endemic equilibrium of the related differential equation based (DEB) model and reported
results based on a single simulation run of 1,000 stochastic iterations. We emphasize that for polio, the assumption of a small,
isolated population with no immunization that starts at the endemic equilibrium with perfect surveillance represents an
unrealistic situation (i.e., in reality, such a population cannot indigenously sustain persistent transmission), but for purposes
of this analysis we replicated the Vallejo et al. (2017) model as published.

For each scenario (i.e., defined as a set of assumed values for population size, R0, waning immunity pattern (Koopman et al.,
2017), and detection rate), we ran the corresponding DEB model for a period of 100 years to reach its endemic equilibrium.
Using this equilibrium, rounded to natural numbers, as the initial condition for the microsimulation model, we ran each
stochastic iteration for 15 years or until infection died out, whichever came first. Instead of just running a single simulation
and assuming that it represented the truth, we recognized the stochastic nature of the model and the potential for variability
in the results as a function of the number of iterations. To characterize the stochastic variability as a function of number of
iterations in the simulation, we explored the stochastic variability in the results by performing multiple simulation runs of
different numbers of iterations (ni). We recorded the variation around the mean results of ni¼ 1,000, 10,000, or 100,000
iterations by running ns¼ 10 simulations for each ni to demonstrate the range of results possible with a single simulation run
of ni iterations. We considered the scenarios of a population (N) of 3,500 or 10,000, R0 equals 10, a 100% detection rate, and all
three patterns of waning immunity. Due to the relative instability we found in the results with relatively small numbers of
iterations (i.e., ni¼ 1,000), we reproduced the Vallejo et al. (2017) analyses with 100,000 iterations.

We also explored different ways to interpret the results. Notably, the TBC metric informs the probability that consecutive
detected cases occur at least 3 years apart in a stochastic iteration, given the detection of cases. Put differently, it answers the
question: “given that we know some transmission is occurring in a small population, what is the probability of observing at
least 3 years between successive (detected) cases?” However, a more relevant policy question is: “for a small population that
we know supported transmission initially, what is the probability that we would observe a gap of at least 3 years between
cases?” Answering the latter question requires dividing the number of iterationswith an occurrence of a TBC of at least 3 years
by the total number of stochastic iterations performed (instead of only those with at least two detected cases). Neither metric
directly informs the question of interest for decision makers: “given that we haven't observed any cases for X amount of time,
what is the probability that circulation continues?” The prior literature focused on answering this question. Characterizing
the probability of circulation still occurring given 3 years without a detected case requires direct comparison of the frequency
of 3 years without a detected case occurring despite continued transmissionwith the frequency of 3 years without a detected
case when transmission truly stopped (as recognized by the seminal work by Eichner & Dietz, 1996). Prior studies used the
following more appropriate metrics for measuring the confidence about no circulation of poliovirus transmission (Eichner &
Dietz, 1996; Kalkowska, Duintjer Tebbens, Pallansch, et al., 2015; Kalkowska et al., 2012):

� POE e “the probability of eradication defined as the fraction of stochastic iterations in which die-out occurs (i.e., preva-
lence below the transmission threshold)”

� DEFP e “the detected-event-free period defined as the time in months since the last detected case”
� CNC e “confidence about no circulation given the DEFP approximated as (1 - the number of DEFPs equal to t months with
ongoing WPV circulation, divided by all DEFPs of t months)”

� CNCx% e “the time when the confidence about no circulation exceeds x% (i.e., CNC95%, CNC99%)”
� TUC e “the time of undetected circulation after the last detected-event (for those iterations in which extinction occurs)”
� TUCx% e “the xth percentile of the TUC (i.e., TUC95%, TUC99%)” (Kalkowska, Duintjer Tebbens, Pallansch, et al., 2015).

We note that models that only considered the occurrence of cases regardless of poliovirus detection (Eichner & Dietz,
1996; Kalkowska et al., 2012) used a case-free period (CFP) instead of the DEFP. Subsequent modeling extended the
concept of the CFP to the DEFP to allow for the detection of transmission in environmental surveillance, because acute flaccid
paralysis surveillance may not detect all cases and environmental surveillance can detect the presence of transmission
without cases (Kalkowska, Duintjer Tebbens, Pallansch, et al., 2015; Kalkowska, Duintjer Tebbens, Pallansch, & Thompson,
2018). The estimation process evaluates the DEFP and CNC discretely using a time step of months.
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Finally, while the assumed mean infectious period of 28 days appears realistic based on the evidence and expert opinion
(Duintjer Tebbens et al., 2013; Duintjer Tebbens et al., 2013), the single-stage process implies unrealistic proportions of
infected individuals of 34%,12%, and 4% remaining infectious to others at 1, 2, or 3months, respectively. Recognizing the issues
associated with the use of a single stage infection process (Duintjer Tebbens, Pallansch, Kalkowska, et al., 2013; Lloyd, 2001),
we explored the impact of breaking the infection process into either 2 or 4 even stages, which effectively narrows the dis-
tribution of the infectious period while maintaining the same mean infectious period.

3. Results

Fig.1 shows the total number of infected individuals as a function of time for 10 different stochastic iterations of onemodel
scenario (i.e., R0¼10, N¼ 3,500, and fast-shallow waning). We show 10 iterations to demonstrate the substantial variation
between iterations in both the intensity of transmission and the time until elimination of the virus. With all stochastic
models, the number of iterations performed will determine the stability of the results, with larger numbers of iterations
required to capture the model behavior by averaging over all iterations.

Table 1 reports our attempt to replicate the summary statistics for TBC distributions for different scenarios presented in
Figs. 2 and 3 of the Vallejo et al. (2017) paper using a single simulation of 100,000 iterations. Our results show systematically
lower results (shorter TBCs) for the interquartile ranges.

Table 2 summarizes the results of our analysis of the main results highlighted by Vallejo et al. (2017). We note that they
report (in their Tables 3 and 4) one metric as a proportion and one metric as a percentage, which we replicate while noting
that this requires the reader to multiply or divide by 100 to get the metrics on the same scale. To facilitate direct comparison,
the first two columns of our Table 2 show the results as reported in Table 3 of Vallejo et al. (2017) of (i) the proportions of all
iterations with more than 1 detected polio case (“>1 case/ni”) and (ii) the percent of iterations with more than 1 detected
polio case for which any TBC exceeded 3 years (“>3 years/>1 case”). As mentioned in the methods sectionwe recognized that
the second of thesemetrics provided inflated estimates of the total probability of observing TBCs of greater than 3 years in the
entire simulation given the conditioning on observing more than one case. Specifically, the “>3 years/>1 case” metric alone
does not account for the possibility that polio casesmay not occur in the first place, and it only provides information about the
probability that we may detect silent circulation after more than 3 years in the case that we know that silent circulation is
ongoing, which wewould not know (andwhichmakes this not a metric of interest to policymakers). Consequently, we added
a more informative metric (shown in bold in Tables 2e4) that reports the percent of all iterations for which any TBC exceeded
3 years (“>3 years/ni”). We inferred the value of this metric for the Vallejo et al. (2017) results from the reported results.

Our results shown in Table 2 report the mean values and standard deviations (SDs) that we obtained by running 10
simulations of 1,000, 10,000, or 100,000 iterations. We find similar estimates for the “>1 case/ni” results reported by Vallejo
et al. (2017), but significantly lower values for the “>3 years/1 case” and “>3 years/ni” results. As noted in the methods,
substantial variability can arise from stochastic iterations (e.g., Fig. 1), and this can lead to unstable estimates of relatively rare
outcomes from the simulations (e.g., a TBC>3 years). Vallejo et al. (2017) did not consider stochastic variability or explore the
importance of running a sufficient number of iterations to obtain stable results (i.e., they used ns¼ 1, ni¼ 1,000). Comparison
of our results in the right columns of Table 2 to the Vallejo et al. (2017) results in the left columns show substantial stochastic
variation around the means based on 1,000 stochastic iterations, especially for the “>3 years/>1 case” and the “>3 years/ni”

metrics, which often involve very small numbers of iterations with a TBC exceeding 3 years. For example, the typical variation
around the mean of the “>3 years/>1 case” metric for a population size of 3,500 exceeds the value of the mean, suggesting a
long right tail of the distribution of this metric due to a bound of zero at the lowend. Consistent with the central limit theorem
(Durrett, 2010), increasing the number of iterations by a factor of 100 to 100,000 lowers the standard deviations roughly by a
Fig. 1. The variation in the total infected population over time based on 10 iterations for R0¼ 10, N¼ 3,500, and fast-shallow waning.



Table 1
The distribution of time (years) between detected polio cases for different population sizes, R0 values, and waning immunity patterns (Koopman et al., 2017)
(based on ni¼ 100,000). Compare to Figures 1 and 2 in Vallejo et al. (2017).

Population Size 3,500 10,000

R0 Waning Pattern min Q1 median Q3 max min Q1 median Q3 max
Detection Rate 100%
10 fast-shallow 0.00 0.13 0.31 0.63 4.50 0.00 0.15 0.39 0.90 7.51

intermediate 0.00 0.14 0.32 0.67 5.22 0.00 0.15 0.40 0.91 8.64
slow-deep 0.00 0.13 0.33 0.68 4.91 0.00 0.16 0.40 0.93 9.31

15 fast-shallow 0.00 0.14 0.35 0.75 4.91 0.00 0.16 0.44 1.06 9.84
intermediate 0.00 0.14 0.34 0.73 5.41 0.00 0.16 0.43 1.02 10.60
slow-deep 0.00 0.14 0.35 0.74 5.05 0.00 0.16 0.43 1.03 9.45

20 fast-shallow 0.00 0.16 0.40 0.88 6.69 0.00 0.17 0.49 1.18 11.92
intermediate 0.00 0.14 0.37 0.82 5.94 0.00 0.17 0.46 1.10 10.74
slow-deep 0.00 0.14 0.37 0.80 6.66 0.00 0.17 0.46 1.10 10.52

Detection Rate 75%
10 fast-shallow 0.00 0.13 0.32 0.65 5.86 0.00 0.18 0.47 1.10 10.70

intermediate 0.00 0.14 0.34 0.69 4.28 0.00 0.19 0.49 1.13 10.70
slow-deep 0.00 0.14 0.35 0.74 4.71 0.00 0.19 0.50 1.15 11.92

15 fast-shallow 0.00 0.15 0.37 0.81 6.15 0.00 0.20 0.56 1.34 11.72
intermediate 0.00 0.15 0.37 0.80 5.68 0.00 0.20 0.54 1.28 12.71
slow-deep 0.00 0.15 0.38 0.82 6.17 0.00 0.20 0.54 1.29 11.25

20 fast-shallow 0.00 0.17 0.44 0.96 6.83 0.00 0.22 0.64 1.47 10.78
intermediate 0.00 0.16 0.39 0.86 5.98 0.00 0.21 0.58 1.37 12.51
slow-deep 0.00 0.15 0.39 0.84 6.03 0.00 0.21 0.58 1.38 13.84

Detection Rate 50%
10 fast-shallow 0.00 0.15 0.36 0.73 3.73 0.00 0.23 0.61 1.42 11.47

intermediate 0.00 0.14 0.37 0.75 4.72 0.00 0.24 0.64 1.48 11.81
slow-deep 0.00 0.15 0.38 0.79 4.98 0.00 0.24 0.64 1.51 13.70

15 fast-shallow 0.00 0.17 0.41 0.87 5.17 0.00 0.27 0.76 1.73 14.31
intermediate 0.00 0.15 0.37 0.76 5.12 0.00 0.26 0.71 1.67 13.22
slow-deep 0.00 0.16 0.38 0.80 5.17 0.00 0.26 0.73 1.70 12.24

20 fast-shallow 0.00 0.17 0.44 0.98 5.86 0.00 0.30 0.91 1.90 13.80
intermediate 0.00 0.17 0.41 0.90 5.92 0.00 0.27 0.80 1.78 14.56
slow-deep 0.00 0.17 0.43 0.90 5.20 0.00 0.28 0.81 1.79 14.41

Detection Rate 25%
10 fast-shallow 0.00 0.16 0.37 0.80 3.30 0.00 0.31 0.83 1.93 13.67

intermediate 0.00 0.16 0.38 0.84 3.96 0.00 0.33 0.89 2.03 14.10
slow-deep 0.00 0.17 0.40 0.83 6.68 0.00 0.33 0.90 2.08 13.95

15 fast-shallow 0.00 0.15 0.39 0.91 3.87 0.00 0.39 1.18 2.41 14.00
intermediate 0.00 0.18 0.38 0.88 4.08 0.00 0.37 1.09 2.32 14.24
slow-deep 0.00 0.16 0.43 0.90 4.08 0.00 0.36 1.07 2.30 13.31

20 fast-shallow 0.00 0.19 0.46 0.99 4.79 0.00 0.48 1.43 2.72 14.77
intermediate 0.00 0.17 0.41 0.98 7.37 0.00 0.41 1.25 2.48 13.33
slow-deep 0.00 0.19 0.49 0.97 5.39 0.00 0.41 1.23 2.47 14.64

Abbreviations: max, maximum; min, minimum; Q1, 25th percentile; Q3, 75th percentile; R0, basic reproduction number.
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factor of 10. Given the relatively rare nature of the outcomes of interest for the TBC and other metrics associated with un-
detected circulation, we suggest that the results from Table 2 indicate the need for more than 1,000 iterations.

Table 3 recreates the results from Tables 3 and 4 reported by Vallejo et al. (2017). We found no significant difference
between the proportions of all iterations withmore than 1 detected polio case, as expected based on Tables 1 and 2. However,
we found between 2 and 16 times lower percentages of iterations with a TBC exceeding 3 years given two or more detected
polio cases, compared to Vallejo et al. (2017), depending on the scenario. Themaximumprobability of 22% reported by Vallejo
et al. (2017) of at least 3 years between successive polio cases given >1 case in a population of 10,000 people despite a 100%
case detection rate decreased to 12% in our independent replication of themodel (see Table 3).We emphasize that this change
is independent of the correction made by Vallejo et al. (2018), which highlighted the unrealistic nature of an R0 of 20.
Moreover, we emphasize that this metric only considers those iterations in which two or more polio cases occur, which
represent a subset of all the possible realizations of endemic transmission that the model produces. If we instead focus on the
more appropriate percentage of all iterations for which any TBC exceeds 3 years (representing all possible realizations of what
could happen in the model), then our finding suggests a maximum probability of only 9% that more than 3 years go by
between successive cases (Table 3, N¼ 10,000, R0¼ 20, fast-shallow waning, 100% detection, last column). We also believe
that Vallejo et al. (2017) omit the silent circulation from the start of simulation until the first case, which matters particularly
when only 1 case occurs and is relevant to the question of silent circulation. Notably, if we count those iterations in which
more than 3 years went by until the first case then this leads to a maximum probability of 11.5% (N¼ 10,000, R0¼ 20, fast-
shallow waning, not shown).

Table 4 highlights the ambiguity about the appropriate probabilistic interpretation of the TBC-based metrics and the
omission of information about howmany iterations exhibit persistent transmission for 15 years by providing comparisons to



Table 2
The influence of the sample size on of the proportions of all iterations withmore than 1 detected case (“>1 case/ni”), the percent of iterations with more than
1 detected case and time between detected cases greater than 3 years (“>3 years/>1 case”), and the percent of all iterations with time between detected cases
greater than 3 years (“>3 years/ni”) for different population sizes (i.e., N¼ 3,500 and 10,000), R0¼10, all three waning immunity patterns (Koopman et al.,
2017), and 100% detection rate.

ns, ni ns¼ 1, ni¼ 1,000 ns¼ 10, ni¼ 1,000 ns¼ 10, ni¼ 10,000 ns¼ 10, ni¼ 100,000

>1
case/ni

>3 yrs/>1
case

>3 yrs/
ni

>1 case/ni >3 yrs/>1
case

>3 yrs/ni >1 case/ni >3 yrs/>1
case

>3 yrs/ni >1 case/ni >3 yrs/>1
case

>3 yrs/ni

Vallejo et al. (2017) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD) mean (SD)

Population
Size

N¼ 3500

fast-shallow 0.064 6.25% 0.40% 0.058
(0.005)

0.73%
(0.89%)

0.04%
(0.05%)

0.061
(0.002)

0.41%
(0.20%)

0.03%
(0.01%)

0.061
(0.001)

0.38%
(0.05%)

0.02%
(0.00%)

intermediate 0.062 8.06% 0.50% 0.064
(0.009)

0.49%
(0.75%)

0.03%
(0.05%)

0.062
(0.003)

0.47%
(0.30%)

0.03%
(0.02%)

0.064
(0.001)

0.52%
(0.07%)

0.03%
(0.00%)

slow-deep 0.076 2.62% 0.20% 0.068
(0.008)

0.31%
(0.62%)

0.02%
(0.04%)

0.067
(0.003)

0.59%
(0.28%)

0.04%
(0.02%)

0.067
(0.001)

0.49%
(0.08%)

0.04%
(0.01%)

Population
Size

N¼ 10,000

fast-shallow 0.578 12.98% 7.50% 0.560
(0.014)

4.74%
(0.74%)

2.65%
(0.41%)

0.556
(0.007)

5.11%
(0.27%)

2.84%
(0.12%)

0.558
(0.001)

5.09%
(0.08%)

2.84%
(0.05%)

intermediate 0.603 13.76% 8.30% 0.575
(0.014)

5.76%
(0.57%)

3.31%
(0.36%)

0.584
(0.004)

5.88%
(0.28%)

3.44%
(0.16%)

0.585
(0.002)

5.85%
(0.07%)

3.42%
(0.05%)

slow-deep 0.597 13.40% 8.00% 0.607
(0.019)

6.13%
(1.02%)

3.72%
(0.61%)

0.597
(0.005)

6.02%
(0.25%)

3.60%
(0.15%)

0.596
(0.002)

6.30%
(0.10%)

3.75%
(0.06%)

Abbreviations: ns, number of simulations; ni, number of iterations; SD, standard deviation; yrs, years.

Table 3
The proportion of iterations with more than 1 detected case (“>1 case/ni”), the percent of iterations with more than 1 detected case and time between
detected cases greater than 3 years (“>3 years/>1 case”), and the percent of all iterations with time between detected cases greater than 3 years (“>3 years/
ni”) for different population sizes, R0 values, and patterns of waning immunity patterns (Koopman et al., 2017) with 100% and 50% detection rates (based on
ni¼ 100,000).

Population Size
(N)

3,500 5,000 7,000 10,000

Detection Rate 100%
R0 Waning

Pattern
>1 case/
ni

>3 yrs/>1
case

>3 yrs/
ni

>1 case/
ni

>3 yrs/>1
case

>3 yrs/
ni

>1 case/
ni

>3 yrs/>1
case

>3 yrs/
ni

>1 case/
ni

>3 yrs/>1
case

>3 yrs/
ni

10 fast-shallow 0.062 0.39% 0.02% 0.146 1.33% 0.19% 0.308 3.15% 0.97% 0.558 5.14% 2.87%
Intermediate 0.064 0.65% 0.04% 0.158 1.89% 0.30% 0.329 3.49% 1.15% 0.585 5.81% 3.40%
slow-deep 0.067 0.48% 0.03% 0.161 1.99% 0.32% 0.337 4.14% 1.39% 0.594 6.36% 3.78%

15 fast-shallow 0.066 0.82% 0.05% 0.178 2.69% 0.48% 0.389 5.67% 2.21% 0.673 8.06% 5.42%
Intermediate 0.064 0.70% 0.04% 0.171 2.53% 0.43% 0.372 4.96% 1.85% 0.654 7.25% 4.74%
slow-deep 0.066 0.87% 0.06% 0.176 2.73% 0.48% 0.371 5.35% 1.99% 0.652 7.49% 4.88%

20 fast-shallow 0.077 1.42% 0.11% 0.211 4.46% 0.94% 0.451 8.49% 3.83% 0.747 12.08% 9.03%
Intermediate 0.066 1.06% 0.07% 0.181 2.88% 0.52% 0.405 6.08% 2.46% 0.690 8.72% 6.02%
slow-deep 0.068 1.28% 0.09% 0.187 3.25% 0.61% 0.401 6.10% 2.45% 0.692 8.92% 6.17%

Detection Rate 50%
10 fast-shallow 0.020 0.61% 0.01% 0.056 2.08% 0.12% 0.140 6.16% 0.86% 0.336 11.95% 4.02%

Intermediate 0.020 0.75% 0.02% 0.059 2.72% 0.16% 0.155 7.17% 1.11% 0.358 13.68% 4.90%
slow-deep 0.021 1.27% 0.03% 0.059 3.12% 0.19% 0.159 7.43% 1.18% 0.372 14.51% 5.39%

15 fast-shallow 0.021 1.13% 0.02% 0.068 4.65% 0.31% 0.188 10.74% 2.02% 0.441 18.96% 8.36%
Intermediate 0.021 0.78% 0.02% 0.065 4.12% 0.27% 0.179 9.86% 1.76% 0.417 17.36% 7.24%
slow-deep 0.020 0.96% 0.02% 0.067 4.17% 0.28% 0.182 9.66% 1.76% 0.421 17.87% 7.53%

20 fast-shallow 0.024 2.07% 0.05% 0.085 6.91% 0.58% 0.239 14.93% 3.56% 0.533 27.00% 14.38%
Intermediate 0.021 1.36% 0.03% 0.072 5.26% 0.38% 0.202 11.66% 2.35% 0.464 20.81% 9.65%
slow-deep 0.021 1.35% 0.03% 0.071 5.51% 0.39% 0.200 11.71% 2.35% 0.469 21.23% 9.95%

Abbreviations: ni, number of iterations; yrs, years.
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a more comprehensive set of metrics, based on prior research (Eichner& Dietz, 1996; Kalkowska, Duintjer Tebbens, Pallansch,
et al., 2015; Kalkowska et al., 2012). The metrics from the prior literature represent a better and more appropriate charac-
terization of the outcome of interest to decision makers because they reflect the actual situation by looking at the probability
of transmission continuing given the observation of no cases as a function of time. While it may seem subtle, this differs
significantly from the TBC. Table 4 shows the results of the POE, CNC95%, CNC99%, TUC95%, and TUC99% for comparison to the
Vallejo et al. (2017) metrics and estimates for N¼ 3,500 or 10,000 with realistic R0¼10. For all patterns of waning immunity,
the model predicts POE¼ 100% for N¼ 3,500 and suggests time periods of 2.25 (3.08) years or less without polio cases
required to achieve 95% (99%) confidence in the interruption of transmission. Also, the time of undetected circulation from the



Table 4
The proportion of iterations with more than 1 detected case (“>1 cases/ni”), the percent of iterations with more than 1 detected case and time between
detected cases greater than 3 years (“>3 years/>1 cases”), the percent of all iterations with time between detected cases greater than 3 years (“>3 years/ni”),
POE, CNC95%, CNC99%, TUC95%, and TUC99% for different population sizes, R0¼10, varying waning immunity patterns (Koopman et al., 2017), and 100%
detection rate (based on ni¼ 100,000).

Infectious period Waning
Pattern

Vallejo et al. (2017) >1 case/
ni

>3 yrs/>1
case

>3 yrs/
ni

POE CNC95% CNC99% TUC95% TUC99%

>1 case/
ni

>3 yrs/>1
case

>3 yrs/
ni

Population Size N¼ 3,500
1-stage infectious

period
fast-shallow 0.064 6.25% 0.40% 0.062 0.39% 0.02% 100.00% 2.08 2.92 1.95 2.79
intermediate 0.062 8.06% 0.50% 0.064 0.65% 0.04% 100.00% 2.17 3.08 2.02 2.92
slow-deep 0.076 2.62% 0.20% 0.067 0.48% 0.03% 100.00% 2.25 3.08 2.07 2.99

2-stage infectious
period

fast-shallow e e - 0.045 0.07% 0.00% 100.00% 1.67 2.33 1.56 2.23
intermediate e e - 0.046 0.13% 0.01% 100.00% 1.75 2.42 1.62 2.30
slow-deep e e - 0.051 0.16% 0.01% 100.00% 1.75 2.50 1.65 2.36

4-stage infectious
period

fast-shallow e e - 0.030 0.00% 0.00% 100.00% 1.42 1.92 1.31 1.86
intermediate e e - 0.031 0.03% 0.00% 100.00% 1.42 2.00 1.36 1.94
slow-deep e e - 0.035 0.06% 0.00% 100.00% 1.50 2.08 1.39 2.00

Population Size N¼ 10,000
1-stage infectious

period
fast-shallow 0.578 12.98% 7.50% 0.558 5.14% 2.87% 99.88% 3.25 4.33 2.47 3.63
intermediate 0.603 13.76% 8.30% 0.585 5.81% 3.40% 99.79% 3.33 4.50 2.55 3.76
slow-deep 0.597 13.40% 8.00% 0.594 6.36% 3.78% 99.74% 3.42 4.58 2.57 3.82

2-stage infectious
period

fast-shallow e e - 0.455 2.13% 0.97% 99.99% 2.75 3.75 2.19 3.25
intermediate e e - 0.480 2.55% 1.22% 99.99% 2.83 3.93 2.26 3.31
slow-deep e e - 0.489 2.89% 1.41% 99.99% 2.92 3.92 2.27 3.37

4-stage infectious
period

fast-shallow e e - 0.394 1.15% 0.45% 100.00% 2.42 3.33 1.96 2.90
intermediate e e - 0.414 1.41% 0.58% 100.00% 2.50 3.42 2.04 3.03
slow-deep e e - 0.429 1.53% 0.66% 100.00% 2.58 3.58 2.07 3.09

Abbreviations: ni, number of iterations; yrs, year.
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last detected case until die-out does not exceed 2.07 (2.99) years with 95% (99%) certainty. Increasing the population size
(N¼ 10,000) decreases the POE by less than 1%, while the CNCs and TUCs rise to 3.42 and 2.57 years or less at the 95%
confidence level. Table 4 also shows how the results change with the use of a 2- or 4-stage infection process. Applying a more
realistic distribution for the infectious period increases the POE to 100% for the larger population (i.e., N¼ 10,000), while
reducing the time to reach 95% (99%) confidence about no circulation by up to 10 months (13 months).

Fig. 2aec and 3 (corresponding to Figures 4 and 5 of Vallejo et al. (2017)) show the total number of infectious people (first
infection and reinfections) averaged over 1,000 iterations at every 100 event steps. Unlike the findings reported by Vallejo
et al. (2017), we do not observe drastic fluctuations in the average number of infectious people, which represents a
different behavior of our implementation of their model than they reported. Recognizing that the time between events differs
in each iteration, which complicates interpretation of the x-axis in Fig. 2aec, Fig. 2def shows the same results plotted on the
more intuitive scale of time. Fig. 2def further show that circulation persists for the entire 15 years only in a very small fraction
of the iterations, which we emphasize do not include any vaccination. Figs. 3 and 4 show the impact of varying the birth rate
on the 100 event step and natural time scales, respectively. Given that the birth rate may influence the length and strength of
virus circulation, we suggest that the initial conditions for Fig. 3ced and 4c-d should appropriately change with the intro-
duction of new birth rates because the equilibrium changes (we note that Vallejo et al. (2017) did not change them),
consequently leading to different starting points and shapes of the curves (see long-dashed lines). Thus, we suggest that
analyses assumed to start at the endemic equilibrium should use the correct endemic equilibrium for the inputs so as to avoid
the effects of the initial conditions representing a different point than the endemic equilibrium.
4. Discussion

Despite our efforts to carefully follow themodel and algorithm in Vallejo et al. (2017), we could not reproduce their results
of a relatively high probability of unusually long silent circulation of polioviruses in small populations. Although the two
authors who independently reproduced themodel obtained similar results to each other (within the stochastic variation), our
results differ from the results reported by Vallejo et al. (2017) in a way that suggests some difference between the approaches
that we could not identify based on the information provided in the published article or in follow upwith the authors. Our use
of more simulation runs and more iterations does not explain this difference. We found some similar general trends in the
length of times between polio cases as a function of R0 or population size, but our analysis suggests much shorter times
between polio cases and much lower probabilities of prolonged undetected circulation with perfect or sub-optimal case-
based surveillance.

We also identified several issues with the presentation of the results by Vallejo et al. (2017). First, focusing in the abstract
on the percentage of runs with at least three years between successive polio cases among iterations in which two or more
polio cases occurred ignores the inflation implied by conditioning on the probability that circulation continues for long



Fig. 2. The count of the total infected population for N¼ 10,000 with fast-shallow waning immunity dynamics, and: (a) R0¼10, (b) R0¼15, (c) R0¼ 20 averaged
over ni¼ 1,000 at every 100 event steps and (d) R0¼ 10, (e) R0¼ 15, (f) R0¼ 20 averaged over ni¼ 100,000 over time.
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enough in a small population to generate at least two polio cases. While Tables 3 and 4 in Vallejo et al. (2017) provide the
information required to get to the percentage of all runs with at least three years between successive polio cases, the reader
must multiply the two numbers to obtain this result. Second, evenwith that adjustment, as noted above, the TBC metric does
not represent the probability of circulation as a function of time without detections, which requires conditioning on the
absence of detections. Eichner and Dietz (1996) developed a metric that truly informs the probability of circulation as a
function of timewithout detections, which various other groups subsequently adopted to further address this question (Houy,
2015; Kalkowska, Duintjer Tebbens, Pallansch, et al., 2015). Third, the use of only 1,000 iterations remains insufficient to
generate statistically robust findings for the relatively rare events that reflect the tails of highly skewed distributions. Fourth,
the average prevalence of infections by 100 event steps remains challenging to interpret, because the time between events
varies between individual stochastic iterations and depends strongly on the realized prevalence of infections. Results shown
as a function of time (Fig. 2def and 4) provide a more direct means for poliovirus epidemiologists to verify the plausibility of
the findings, as does showing the behavior of individual realizations (Fig. 1).

Besides the questions about the numerical results and their presentation, the findings from Vallejo et al. (2017) remain
limited by the simplifying assumptions of their hypothetical model. Despite the stated focus on investigating the silent
circulation of poliovirus in small populations unreached by vaccination, the model ignores the heterogeneity and conditions
that affect the ability of polioviruses to circulate in sub-populations and among different age groups. While low-level het-
erogeneity remains challenging to characterize despite its importance for die-out behavior, consideration of a more realistic
aging process and different levels of isolation of an unvaccinated subpopulationwithin the generally well-vaccinated broader
population may offer different insights. Furthermore, given that the results clearly depend on the assumed R0, we note the
importance of the Vallejo et al. (2018) correction that emphasized that the R0 upper-bound of 20 does not produce results



Fig. 4. The effect of modifying the birth rate on the average total number of infected individuals in the populations with R0¼ 20 and fast-shallow waning
immunity dynamics: (a) N¼ 10,000, birth rate¼ 0.02; (b) N¼ 3,500, birth rate¼ 0.02; (c) N¼ 10,000, birth rates¼ 0.007 and 0.02 (used by Vallejo et al.); (d)
N¼ 3,500, birth rates¼ 0.06 and 0.02 (used by Vallejo et al.) averaged over ni¼ 100,000 over time. Abbreviations: EEB, endemic equilibrium birth rate.

Fig. 3. The effect of modifying the birth rate on the count of the total number of infected individuals in the populations with R0¼ 20 and fast-shallow waning
immunity dynamics: (a) N¼ 10,000, birth rate¼ 0.02; (b) N¼ 3,500, birth rate¼ 0.02; (c) N¼ 10,000, birth rates¼ 0.007 and 0.02 (used by Vallejo et al.); (d)
N¼ 3,500, birth rates¼ 0.06 and 0.02 (used by Vallejo et al.) averaged over ni¼ 1,000 at every 100 event steps. Abbreviations: EEB, endemic equilibrium birth rate.
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consistent with epidemiological observations in any realistic population. In our experience, the maximum R0 in the context of
approximate fast-shallow waning equals 13 among a broad set of populations considered, including northern India (Duintjer
Tebbens, Pallansch, Kalkowska, et al., 2013; Kalkowska, Duintjer Tebbens, Grotto, et al., 2015; Kalkowska, Duintjer Tebbens, &
Thompson, 2014, 2014; Thompson, Kalkowska, & Duintjer Tebbens, 2015), although we note the dependence of R0 values on
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the model formulation. For an isolated, rural population in northern Nigeria, we suspect much lower R0 values (e.g.,
maximum of 10), which explains why we focused on presenting our results for the R0 value of 10. Thus, while we appreciate
the importance of research that explores the robustness of assumptions, policy recommendations should draw from realistic
models that represent the last WPV reservoirs. Moreover, poliovirus transmissibility varies seasonally, which implies greater
fluctuations in the prevalence and leads to an increased probability of die-out during each low season compared to the Vallejo
et al. (2017) model, which does not include seasonality. The assumption of small populations that remain untouched by
vaccination for up to 15 years also remains highly questionable in the context of ongoing global polio eradication efforts and
ignores the possible secondary OPV benefits derived from massive OPV use in the surrounding population. With almost all
(>99.7%, see POE in Table 4) simulations resulting in eradication, the assumption of an endemic equilibrium state for perfectly
isolated small populations does not appear realistic. This suggests the need to allow at least a small chance of transmission
between sub-populations. In a situation of many small sub-populations but with some interaction among them, the chance
that any individual sub-population sustains prolonged transmission without experiencing cases increases, which would
imply a higher overall probability of silent circulation. However, such prolonged circulation would also imply an increased
probability that the virus spreads to other subpopulations where it can cause cases and get detected, which decreases the
overall probability of silent circulation. Examining the net effect of these counteracting trends remains a topic of further
research. Lastly, the assumed single-stage process implies unrealistic proportions of infected individuals. The precise shape of
the duration distribution remains uncertain and does not matter much for questions about vaccination threshold, equilibrium
behavior, and cumulative incidence, but it substantially affects poliovirus persistence in small populations (Table 4).

Instead of concentrating solely on variation of the inputs using a model that simplifies much of the complexity related to
poliovirus transmission, we suggest that future research of silent circulation in small populations should focus on realistic
model structures and model inputs representative of the last WPV reservoirs.

Declarations of interest

None.

Acknowledgments

We thank the Bill and Melinda Gates Foundation for support for this work under grant OPP1129391. The contents of this
manuscript are solely the responsibility of the authors.

References

Berchenko, Y., Manor, Y., Freedman, L. S., Kaliner, E., Grotto, I., Mendelson, E., et al. (2017). Estimation of polio infection prevalence from environmental
surveillance data. Science Translational Medicine, 9(383). https://doi.org/10.1126/scitranslmed.aaf6786.

Cowger, T. L., Burns, C. C., Sharif, S., Gary, H. E., Jr., Iber, J., Henderson, E.,…Orenstein, W. A. (2017). The role of supplementary environmental surveillance to
complement acute flaccid paralysis surveillance for wild poliovirus in Pakistan e 2011-2013. PLoS One, 12(7), e0180608. https://doi.org/10.1371/journal.
pone.0180608.

Debanne, S. M., & Rowland, D. Y. (1998). Statistical certification of eradication of poliomyelitis in the Americas. Mathematical Biosciences, 150(1), 83e103.
Duintjer Tebbens, R. J., Pallansch, M. A., Chumakov, K. M., Halsey, N. A., Hovi, T., Minor, P. D.,…Thompson, K. M. (2013a). Expert review on poliovirus

immunity and transmission. Risk Analysis, 33(4), 544e605.
Duintjer Tebbens, R. J., Pallansch, M. A., Chumakov, K. M., Halsey, N. A., Hovi, T., Minor, P. D.,…Thompson, K. M. (2013b). Review and assessment of

poliovirus immunity and transmission: Synthesis of knowledge gaps and identification of research needs. Risk Analysis, 33(4), 606e646.
Duintjer Tebbens, R. J., Pallansch, M. A., Cochi, S. L., Wassilak, S. G. F., Linkins, J., Sutter, R. W.,…Thompson, K. M. (2011). Economic analysis of the global polio

eradication initiative. Vaccine, 29(2), 334e343.
Duintjer Tebbens, R. J., Pallansch, M. A., Kalkowska, D. A., Wassilak, S. G., Cochi, S. L., & Thompson, K. M. (2013). Characterizing poliovirus transmission and

evolution: Insights from modeling experiences with wild and vaccine-related polioviruses. Risk Analysis, 23(4), 703e749.
Duintjer Tebbens, R. J., Pallansch, M. A., Kew, O. M., C�aceres, V. M., Jafari, H., Cochi, S. L.,…Thompson, K. M. (2006). Risks of paralytic disease due to wild or

vaccine-derived poliovirus after eradication. Risk Analysis, 26(6), 1471e1505.
Durrett, R. (2010). Probability: Theory and examples (4th ed.).
Eichner, M., & Dietz, K. (1996). Eradication of poliomyelitis: When can one be sure that polio virus transmission has been terminated? American Journal of

Epidemiology, 143(8), 816e822.
Famulare, M. (2016). Has wild poliovirus been eliminated from Nigeria? PLoS One, 10, e0135765.
Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational

Physics, 22, 403e434.
Global Polio Eradication Initiative. (2015). Global eradication of wild poliovirus type 2 declared. Retrieved from http://www.polioeradication.org/mediaroom/

newsstories/Global-eradication-of-wild-poliovirus-type-2-declared/tabid/526/news/1289/Default.aspx.
Houy, N. (2015). The probability of undetected wild poliovirus circulation: Can we do better? Journal of Theoretical Biology, 382, 272e278.
Kalkowska, D. A., Duintjer Tebbens, R. J., Grotto, I., Shulman, L. M., Anis, E., Wassilak, S. G. F.,… Thompson, K. M. (2015). Modeling options to manage type 1

wild poliovirus imported into Israel in 2013. Journal of Infectious Diseases, 211(11), 1800e1812.
Kalkowska, D. A., Duintjer Tebbens, R. J., Pallansch, M. A., Cochi, S. L., Wassilak, S. G. F., & Thompson, K. M. (2015). Modeling undetected live poliovirus

circulation after apparent interruption of transmission: Implications for surveillance and vaccination. BMC Infectious Diseases, 15(66), 1. https://doi.org/
10.1186/s12879-015-0791-5.

Kalkowska, D. A., Duintjer Tebbens, R. J., Pallansch, M. A., & Thompson, K. M. (2018).Modeling undetected live poliovirus circulation after apparent interruption
of transmission in Pakistan and Afghanistan. In preparation.

Kalkowska, D. A., Duintjer Tebbens, R. J., & Thompson, K. M. (2012). The probability of undetected wild poliovirus circulation after apparent global
interruption of transmission. American Journal of Epidemiology, 175(9), 936e949.

Kalkowska, D. A., Duintjer Tebbens, R. J., & Thompson, K. M. (2014). Modeling strategies to increase population immunity and prevent poliovirus trans-
mission in the high-risk area of northwest Nigeria. Journal of Infectious Diseases, 210(Suppl. 1), S412eS423.

https://doi.org/10.1126/scitranslmed.aaf6786
https://doi.org/10.1371/journal.pone.0180608
https://doi.org/10.1371/journal.pone.0180608
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref3
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref3
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref4
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref4
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref4
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref5
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref5
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref5
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref6
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref6
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref6
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref7
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref7
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref7
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref8
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref8
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref8
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref8
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref9
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref10
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref10
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref10
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref11
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref12
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref12
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref12
http://www.polioeradication.org/mediaroom/newsstories/Global-eradication-of-wild-poliovirus-type-2-declared/tabid/526/news/1289/Default.aspx
http://www.polioeradication.org/mediaroom/newsstories/Global-eradication-of-wild-poliovirus-type-2-declared/tabid/526/news/1289/Default.aspx
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref14
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref14
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref15
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref15
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref15
https://doi.org/10.1186/s12879-015-0791-5
https://doi.org/10.1186/s12879-015-0791-5
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref17
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref17
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref18
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref18
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref18
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref19
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref19
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref19


D.A. Kalkowska et al. / Infectious Disease Modelling 3 (2018) 107e117 117
Kalkowska, D. A., Duintjer Tebbens, R. J., & Thompson, K. M. (2014). Modeling strategies to increase population immunity and prevent poliovirus trans-
mission in two high-risk areas in northern India. Journal of Infectious Diseases, 210(Suppl. 1), S398eS411.

Kew, O. M., Cochi, S. L., Jafari, H. S., Wassilak, S. G., Mast, E. E., Diop, O. M.,…Centers for Disease Control and Prevention (CDC). (2014). Possible eradication of
wild poliovirus type 3–worldwide, 2012. Morbidity and Mortality Weekly Report, 63(45), 1031e1033.

Koopman, J. S., Henry, C. J., Park, J. H., Eisenberg, M. C., Ionides, E. L., & Eisenberg, J. N. (2017). Dynamics affecting the risk of silent circulation when oral polio
vaccination is stopped. Epidemics, 20, 21e36. https://doi.org/10.1016/j.epidem.2017.02.013.

Lloyd, A. L. (2001). Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics. Theoretical Population
Biology, 60(1), 59e71.

Nathanson, N., & Kew, O. M. (2010). From emergence to eradication: The epidemiology of poliomyelitis deconstructed. American Journal of Epidemiology,
172(11), 1213e1229.

Nnadi, C., Damisa, E., Esapa, L., Braka, F., Waziri, N., Siddique, A.,…Adamu, U. (2017). Continued endemic wild poliovirus transmission in security-
compromised areas - Nigeria, 2016. MMWR Morb Mortal Wkly Rep, 66(7), 190e193. https://doi.org/10.15585/mmwr.mm6607a2.

Thompson, K. M., Kalkowska, D. A., & Duintjer Tebbens, R. J. (2015). Managing population immunity to reduce or eliminate the risks of circulation following
the importation of live polioviruses. Vaccine, 33(3), 1568e1577.

Vallejo, C., Keesling, J., Koopman, J. S., & Singer, B. (2017). Silent circulation of poliovirus in small populations. Infectious Disease Modelling. https://doi.org/10.
1016/j.idm.2017.11.001.

Vallejo, C., Keesling, J., Koopman, J. S., & Singer, B. (2018). Corrigendum to “Silent circulation of poliovirus in small populations”. Infectious Disease Modeling,
2(2017). https://doi.org/10.1016/j.idm.2018.02.001, 431e440]. Infectious Disease Modelling.

World Health Organization. (2005). Laboratory surveillance for wild and vaccine-derived polioviruses, January 2004-June 2005. Weekly Epidemiological
Record, 80(39), 335e340.

World Health Organization. (2005b). Polio eradication initiative. Cessation of routine oral polio vaccine (OPV) use after global polio eradication. Geneva,
Switzerland: Framework for National Policy Makers in OPV-using Countries (WHO/POL/05.02). Retrieved from.

World Health Organization. (2013). Global polio eradication Initiative: Polio eradication and endgame strategic plan (2013-2018) (WHO/POLIO/13.02).
Retrieved from Geneva http://www.polioeradication.org/Portals/0/Document/Resources/StrategyWork/PEESP_EN_US.pdf.

World Health Organization. (2017). Global commission for the certification of poliomyelitis eradication (GCC). Report from the sixteenth meeting. Retrieved from
Paris http://polioeradication.org/wp-content/uploads/2017/09/GCC-16th-meeting-report-0405072017.pdf.

World Health Organization. (2018). Polio this week as of 3 January 2018. Retrieved from http://polioeradication.org/polio-today/polio-now/this-week/.

http://refhub.elsevier.com/S2468-0427(18)30012-5/sref20
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref20
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref20
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref21
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref21
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref21
https://doi.org/10.1016/j.epidem.2017.02.013
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref23
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref23
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref23
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref24
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref24
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref24
https://doi.org/10.15585/mmwr.mm6607a2
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref26
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref26
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref26
https://doi.org/10.1016/j.idm.2017.11.001
https://doi.org/10.1016/j.idm.2017.11.001
https://doi.org/10.1016/j.idm.2018.02.001
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref29
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref29
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref29
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref30
http://refhub.elsevier.com/S2468-0427(18)30012-5/sref30
http://www.polioeradication.org/Portals/0/Document/Resources/StrategyWork/PEESP_EN_US.pdf
http://polioeradication.org/wp-content/uploads/2017/09/GCC-16th-meeting-report-0405072017.pdf
http://polioeradication.org/polio-today/polio-now/this-week/

	Another look at silent circulation of poliovirus in small populations
	1. Introduction
	2. Material and methods
	3. Results
	4. Discussion
	Declarations of interest
	Acknowledgments
	References


