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Abstract: The absence of effective drugs for COVID-19 prevention and treatment requires the search
for new candidates among approved medicines. Fundamental studies and clinical observations allow
us to approach an understanding of the mechanisms of damage and protection from exposure to
SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this
review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of
melatonin. We have attempted to present scientifically proven mechanisms of action for the potential
therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological
properties allows its inclusion as an effective addition to the methods of prevention and treatment
of COVID-19.
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1. Introduction

On 11 March 2020, the World Health Organization declared coronavirus disease 2019
(COVID-19) caused by SARS-CoV-2 a global pandemic [1]. SARS-CoV-2 is the seventh
coronavirus that infects humans—SARS-CoV-2, SARS-CoV and MERS-CoV can cause a
severe course of disease with fatal outcomes, while others: HKU1, NL63, OC43, and 229E
cause mild disease [2,3]. According to comparative analysis of genomic data it has been
clearly shown that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated
virus [3]. Therefore, we can assume that in the future there may be other pandemics
caused by new viruses, including new coronaviruses, or new variants of SARS-CoV-2. For
example, a new variant of the virus, Omicron, was recently identified in South Africa.
Preliminary data showed that the neutralization efficiency of Omicron of those vaccinated
with BNT162b2 has decreased [4]. Thus, it is obvious that it is necessary to constantly
search for new methods of treatment and prevention of viral diseases [5,6].

More than 60% of COVID-19 cases are asymptomatic or mild [7]. According to the
United States Centers for Disease Control and Prevention (CDC) and the Chinese CDC,
severe disease with hospitalization (e.g., with dyspnea, hypoxia, or >50% lung involvement
on imaging within 24 to 48 h) was reported in 14%; critical disease (e.g., with respiratory
failure, shock, or multiorgan dysfunction) was reported in 2–5%; the overall case fatality
rate was 2.3–5% [8,9]. So far, the basic preventive measures of infection control, including
social distancing, hand washing and wearing a mask, and vaccination have been shown to
be effective with a high degree of evidence [10,11]. There is evidence of the effectiveness
of some therapeutic interventions for severe cases of infection [12,13], but despite this,
mortality from COVID-19 remains at a high level [14–16].
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Currently, there are no specific, prognostically effective, and safe treatments for mild
to moderate COVID-19, reducing the likelihood of disease progression, length of hospital
stays, need for mechanical ventilation, and overall mortality [17,18]. Mortality in intensive
care units due to COVID-19 is higher than that due to pneumonia of another origin [19].
Moreover, as the pandemic progressed, reported in-ICU mortality rates fell from more than
50% to just 40%, and the emergence of new strains can contribute to an increase in mortality
rates [20]. Clearly, there is an urgent need for effective, safe, inexpensive, and compliant
treatment during the pandemic. In this review we provided scientific data regarding the
substantiation of the possibility of studying melatonin as a potential agent that might have
some targets in COVID-19 pathogenesis.

2. Melatonin—Nature and Origins

Melatonin plays an important role in physiologic processes and regulates body home-
ostasis [21]. It is synthesized from tryptophan in the pineal gland (epiphysis) and was
identified in almost all organs of the body (like the liver, heart, skin, kidney, gut, placenta,
etc.), providing a multifaceted universal influence on the reactivity parameters [21,22]. It
has to be noted that 95% of all melatonin is secreted outside the pineal gland [23].

Chemically, melatonin is a small conservative indole molecule. Physiological effects of
this compound are due to receptor-dependent and receptor-independent mechanisms of
action [24]. Two melatonin membrane receptors in the central nervous system were cloned
and pharmacologically characterized: MT1 (Mel1a) and MT2 (Mel1b) [25]. MT1 modulates
neuronal firing, arterial vasoconstriction, cancer cell proliferation, and reproductive and
metabolic functions; activation of MT2 modulates phase shift of circadian rhythms of
neuronal excitation in the suprachiasmatic nucleus, suppression of dopamine release in
the retina, induction of vasodilation and inhibition of leukocyte rolling in arterial channels,
as well as the strengthening of immune responses [25]. It must be noted that melatonin-
related receptors (MRR), nuclear receptors referred to as retinoid orphan receptors (ROR) or
retinoid Z receptors (RZR), which include the RORα, RZRα, RORα2, and RZRβ, also have
been identified to bind melatonin [24]. The receptor-independent mechanism of melatonin
action will be reviewed in the following sections.

Thus, melatonin is a conservative molecule that has existed for billions of years
(Figure 1) during which it has significantly perfected its functions. It is likely that such
conservatism and long evolutionary existence can explain to some extent the variety of
potential therapeutic effects.
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3. “Bat-Coronavirus-Resistance” Hypothesis of Melatonin Benefits

In the previous review, A. Shneider, A. Kudriavtsev, and A. Vakhrusheva have hypoth-
esized that the higher COVID-19 severity in the elderly is due to their reduced level of mela-
tonin [26]. This hypothesis looks attractive because it is also supported by the fact that bats (natu-
ral carriers of coronaviruses) have almost no symptoms of the disease i.e., bats are naturally resis-
tant to these viruses [27]. The melatonin level in bats ranges from 60 to 500 pg/mL at night, and
20–90 pg/mL during the day [28,29]. Human melatonin concentration is as follows (depends on
age): 1–3 years old—260 pg/mL, 5–7 y.o.—160 pg/mL, 7–11 y.o.—100–110 pg/mL, 11–15 y.o.—
80–85 pg/mL, 15–50 y.o.—50–55 pg/mL, 50–70 y.o.—27.8 pg/mL, and 70–90 y.o.—
15.3 pg/mL [30]. Thus, there is a possibility that high melatonin levels in bats may con-
tribute in some way to coronavirus resistance. In addition, a systematic review of 27 studies
found that among humans, the risk of fatal COVID-19 is associated with age: the estimated
age-specific infection fatality rate is very low for children and younger adults (e.g., 0.002%
at age 10 and 0.01% at age 25) but increases progressively to 0.4% at age 55, 1.4% at age 65,
4.6% at age 75, and 15% at age 85 [31].

However, in addition to different melatonin concentrations, we believe there are other
differences between the physiology of bats and humans. The differences in susceptibility to
coronaviruses in bats and humans should be attributed to a significant difference in the
mechanisms of the innate and adaptive immune response. Bats show several additional
characteristics unique to mammals, such as a longer lifespan compared to body size, a low
rate of carcinogenesis, and an ability to spread viruses without clinical manifestations of dis-
ease [32]. Moreover, it was demonstrated that SARS-CoV-2 receptor binding domain (RBD)
binds to bat angiotensin-converting enzyme 2 (ACE2) with lower affinity than to human
ACE2 [33]. On the other hand, it has been recently shown that melatonin administration
stimulates the activity of dendritic reticular cells and macrophages through increasing the
size, number, and endosomal compartments which may correlate to increased immunity;
melatonin activates the proliferation and maturation of all immune cells including T and B
lymphocytes, granulocytes, and monocytes [34]. Based on these data we can speculate that
the high levels of this molecule can be beneficial for antiviral immunity.

4. Aging, Oxidative Stress and Melatonin

Clinical data show that at least 70% of ICU-hospitalized patients with COVID-19 have
comorbid conditions. Patients with hypertension, cancer, immunodeficiency, obesity, and
diabetes have a higher risk of severe COVID-19 infection or death [35]. For example, a
study of 7300 patients with type 2 diabetes (T2D) showed three times higher mortality from
COVID-19 compared to non-diabetic individuals [36]. Thus, comorbidities are a risk factor
for a bad prognosis in patients with COVID-19 and it is known that with increasing age,
the frequency of age-related diseases increases.

One of the arguments in favor of melatonin use can be the revealed correlation be-
tween age and severity of COVID-19. Aging is an extremely complex and multifactorial,
genetically and epigenetically mediated process, which is activated at the cellular level,
including through oxidative stress and mitochondrial dysfunction [37]. Aging (with its
comorbidities) further worsens SARS-CoV-2-caused increases of reactive oxygen (ROS)
and nitrogen species (RNS) levels [38]. It can be assumed that COVID-19 enhances the
constitutionally high age-dependent level of oxidative stress.

Melatonin is known to have higher concentrations in mitochondria than in other
organelles [39], but its level decreases significantly with age, which can trigger age-related
changes [30]. In mitochondria melatonin provides antioxidant effects by removing radicals
and reducing the degree of oxidative damage [39]—single melatonin molecule scavenges
up to 10 ROS/RNS molecules [40]. Single electron transfer and hydrogen transfer are the
major mechanisms by which melatonin ensnares radicals [41].

It is believed that after absorption, melatonin enters the mitochondria in large quantities—
it is much more effective than synthetic antioxidants. Therefore, in addition to the fact
that melatonin is produced in mitochondria, its additional exogenous intake ensures its
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high level in mitochondria [24]. In terms of the “oxidative stress theory of aging” it is
expected that high levels of melatonin in mitochondria might protect the organism from
the progression of age-related changes, and therefore will be useful during COVID-19
as well. In addition to the above, it should be noted that mechanical ventilation is also
associated with evidence of early oxidative stress in the alveolar fluid and blood [42]. Since
some patients with COVID-19 require mechanical ventilation, therapeutics are needed
that can suppress oxidative stress. Thus, it has been proposed that melatonin may inhibit
SARS-CoV-2-induced cell damage by regulating mitochondrial physiology [43].

5. ACE2, CD147 and Melatonin

SARS-CoV-2 enters human cells using angiotensin-converting enzyme 2 (ACE2) which
is highly expressed on type II alveolar epithelial cells, cholangiocytes, absorptive ente-
rocytes from the ileum and colon, upper esophagus and stratified epithelial cells, car-
diomyocytes, proximal tubule cells of the kidney, and bladder urothelial cells, etc. [44].
Comorbidities of cardiovascular disease, respiratory disease, diabetes, renal disease, and
obesity are associated with higher levels of ACE2 [45]. There is indirect evidence that sug-
gests a possible interference of melatonin in the SARS-CoV-2/ACE2 interaction, including
through suppression of calmodulin, an essential intracellular component for maintaining
ACE2 on the cell surface [46,47].

In addition to ACE2, another significant receptor for SARS-CoV-2 has also been
identified—cluster of differentiation 147 (CD147) or basigin or extracellular matrix metallo-
proteinase inducer. CD147 is a transmembrane protein, that contributes to the development
of tumors and bacterial and viral infections [48]. The study of RNA sequencing of human
cells showed that ACE2 was expressed in lung and skin epithelial sites, while CD147 was
expressed both in epithelial and immune cells. Asthma, COPD, hypertension, smoking,
and obesity were associated with a higher expression of ACE2- and CD147-related genes in
bronchial and blood cells. In addition, CD147-related genes were positively correlated with
age and body mass index [49].

CD147 is a glycoprotein that is responsible for the cytokine storm manifestations
in COVID-19 [50]. CD147 is involved in inflammation which develops through pro-
inflammatory cytokines, such as interleukin-6 (IL-6), interferon-gamma (IFN-γ), tumor-
necrosis factor-α (TNF-α), and monocyte chemo-attractant protein-1 (MCP-1) [51]. COVID-
19 severity correlates with high levels of pro-inflammatory cytokines: TNF-α, IFN-γ, IL-6,
IL-10, and C-reactive protein (CRP) [52,53]. Melatonin has previously been shown to reduce
the remodeling effects of angiotensin II on the myocardium by blocking CD147 activity [54].
According to experimental studies, melatonin reduces the level of pro-inflammatory cy-
tokines, such as IL-6 [55], and it can be assumed that this effect is also due to inhibition of
the CD147-pathway.

Thus, ACE2 and CD147 are key receptors for the entry of SARS-CoV-2 into human cells.
These receptors play an important role in the progression of the disease and significantly
affect the severity of its course. Therefore, blocking ACE2 and CD147 and/or their signaling
pathways can have a significant effect on the course of COVID-19. As the studies we cited
here show, melatonin can affect these receptors, which provides a pathophysiological basis
for testing it in the fight against a pandemic.

6. Inflammation and Melatonin

Cytokines secreted by macrophages in response to a viral load provoke a systemic
inflammatory response with edema, acute respiratory distress syndrome, pneumonia, and
multiple organ failure in elderly and comorbid patients. It is still far from clear why a
cytokine storm is induced only in a fraction of patients with COVID-19 [56,57]. Cytokine
storms are associated with high levels of tissue damage as evidenced by elevated plasma
lactate dehydrogenase (LDH) and D-dimer levels (as pro-inflammatory cytokines) [58].

High LDH levels and leukopenia in severe COVID-19 indicate that leukocytes lose
the integrity of the plasma membrane. It is believed that it is monocytes that must manage
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the balance between innate and adaptive immune responses, which can presumably be
disrupted during a cytokine storm [59]. Leukopenia in severe COVID-19 patients appears to
precede a cytokine storm [60]. It has also been shown that with other respiratory infections
such as influenza A/H1N1, monocytes and macrophages are severely affected [61].

A recent study showed that SARS-CoV-2 recruits inflammasomes and induces py-
roptosis in human monocytes (experimentally infected or collected from ICU-patients).
Pyroptosis is mediated by activation of caspase-1, production of IL-1β, and increased levels
of proinflammatory cytokines in primary human monocytes [59]. Previously, for SARS-CoV-
1, it was demonstrated that a viral protein (encoded by the ORF8b gene) directly interacts
with the NLRP3 inflammasome (nucleotide-binding domain leucine-rich repeat and pyrin
domain containing receptor 3) [62]. NLRP3 via caspases leads to destruction of the cell
membrane and the release of intracellular contents into the extracellular space [63]—it
triggers pro-inflammatory IL-1β иIL-18 [64]—which predetermines the unbalanced release
of IL-6 [59].

Experimental studies show that NLRP3 is an important link in immune inflammation
and inhibition of this target can be an effective way to combat a cytokine storm [59]. In an
LPS-induced acute lung injury mouse model, it was found that melatonin significantly re-
duced the pulmonary injury and decreased the infiltration of macrophages and neutrophils
into the lung. It also was shown that NLRP3 inflammasome is activated by IL-1β and
the caspase-1. Melatonin inhibits NLRP3 activation by suppressing extracellular histone
release and directly blocking histone induced NLRP3 activation [65].

Another anti-inflammatory potential of melatonin is provided by the inhibition of
nuclear factor-κappa beta (NF-κβ) and down-regulation of matrix metalloproteinases-3
(MMP-3), that modulates pro-fibrotic and pro-inflammatory cytokines [66]. This effect was
shown in a rodent model of acute lung injury, where melatonin demonstrated protection of
pulmonary tissue via inhibiting the activation of NF-κβ [67].

In a rat model of sodium nitrite-induced hypoxia, it was demonstrated that pretreat-
ment with melatonin significantly reduced blood levels of extracellular heat shock protein
70 (Hsp70e), CRP, IL-6, and TNF-α [68]. A number of clinical studies, as well as a meta-
analysis of 22 studies (with 749 participants) have shown that melatonin reduces the level
of pro-inflammatory cytokines IL-6, TNF-α, and CRP [69–73]. Research data confirms the
pronounced potential of melatonin in combating cytokine storms and hyperinflammation
in patients with COVID-19.

7. Fibrosis and Melatonin

Fibrosis becomes the most dangerous complication after COVID-19 recovery. It de-
pends on comorbidity, duration of ICU-stay, and mechanical ventilation [74]. Melatonin is
known to prevent fibrosis through antioxidant and anti-inflammatory effects. In particular,
it decreases oxidative stress after lung irradiation by enhancing the regulation of some
enzymes, such as catalase, superoxide dismutase, glutathione, NADPH-oxidase 2 and
4, and by reducing the level of malondialdehyde [75]. Melatonin significantly reduced
bleomycin-induced experimental lung fibrosis in mice and decreased transforming growth
factor-β1-induced fibrogenesis in lung fibroblasts [76]. In patients with idiopathic cystic
fibrosis, melatonin improved sleep and reduced nitrite in the exhaled breath condensate,
which may also confirm the antifibrotic properties of this compound [77]. Another mech-
anism of antifibrotic action of melatonin was discovered by Lu Zhang et al. Authors
demonstrated that melatonin reduced the production of ROS and prevented apoptosis and
senescence in type II alveolar epithelial cells. Also, they found that melatonin significantly
upregulated the expression of apelin 13 [78].

Therefore, taken together, all these data determine the need for research in the preven-
tion and/or treatment of fibrosis in patients with COVID-19 using melatonin.
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8. Anxiety, Insomnia, and Melatonin

The influence of the psychological factors on the outcomes of SARS-CoV-2 infection is
widely discussed. On the one hand, general immunological reactivity is disrupted due to
public anxiety as a result of attacks from the media, stress, and lack of sleep. On the other
hand, the risk of psychological consequences of the COVID-19 pandemic, which manifest
as anxiety, depression, insomnia, and, in some cases, suicide [79,80]. Moreover, impaired
intellectual capacity, ability to abstract logical reasoning, planning and concentration, ac-
companied by haze, memory and attention problems, headache and depression, other signs
of central nervous system damage, especially in people who have had severe COVID-19
and required the use of mechanical ventilation, can persist for many months [81].

Melatonin has powerful proven psychotropic effects and can reasonably be used in
different categories of patients. It has anxiolytic, antidepressant, and sleeping effects, as
well as the ability to reduce the consequences of stress [82,83]. The last is confirmed by
an experimental study, where the combination of melatonin, vitamin C, and zinc was
an effective preventive measure against severe psychological and chronic stress-induced
biochemical manifestations of oxidative stress in rats due to abnormal conditions (e.g.,
SARS-CoV-2) [84]. According to a systematic review of 27 randomized controlled trials

(involving 2319 participants), melatonin (doses varied from 3 to 10 mg per day) is more effec-
tive than a placebo in reducing anxiety. Moreover, it has a similar effect to benzodiazepines
(midazolam and alprazolam), but melatonin is better tolerated [85]. Also, this compound
significantly reduces the risk of depressive symptoms and anxiety in women with breast
cancer [86], and in the same population melatonin improved sleep efficiency [87]. The
meta-analysis of studies involving 1683 subjects showed that melatonin decreases sleep
onset delay, increases total sleep time, and improves overall sleep quality [88]. Thus, using
this safe over-the-counter drug, we can try to reduce the impact of psychological disorders
and stress on patients with COVID-19 and after recovery, for “long-COVID”.

9. Clinical Data of Melatonin Administration in Patients with COVID-19

Using in silico systems biology-based drug repurposing screening method, it has been
predicted that melatonin is a promising candidate to reduce COVID-19 progression and
respiratory distress caused by a cytokine storm [89]. Of course, the in silico, in vitro, and
animal studies we reviewed above cannot be easily extrapolated to humans. The large-scale
use of melatonin for the treatment of COVID-19 requires controlled clinical trials.

The first retrospective study (as a preprint) has been published on 791 patients with
COVID-19 (948 intubation periods) and 2981 non-COVID-19 patients (3497 intubations)
treated at New York Presbyterian/Columbia University Irving Medical Center. Melatonin
exposure after intubation is significantly associated with a positive prognosis in COVID-
19 and non-COVID-19 patients [90]. It might be explained by the positive effect of this
compound on pulmonary pathology.

Castillo et al. investigated the effect of 36–72 mg per day of oral melatonin among
7 cases with hospitalization due to COVID-19; none of the subjects died or needed mechan-
ical ventilation [91]. An observational study of 26,779 persons from the COVID-19 registry
showed that melatonin use is largely associated with a 28% decrease in the likelihood of
a positive PCR-test for SARS-CoV-2 [92]. Interestingly, melatonin is more effective than
angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors and its preven-
tive effect depends on age, gender, race, a history of smoking, and various comorbidities.

A single-center, double-blind, randomized clinical study showed that melatonin at a
dose of 3 mg three times per day for 14 days in hospitalized patients with confirmed mild
to moderate COVID-19 significantly reduced clinical symptoms such as cough, dyspnea,
and fatigue, as well as CRP levels and lung damage [93]. Similarly, at an oral dose of 9 mg
per day for fourteen days, melatonin showed significant anti-inflammatory activity in hos-
pitalized patients with COVID-19 by reducing and controlling the inflammatory cytokines
IL-2, IL-4, and IFN-γ through regulation of Th1 and Th2 regulatory gene expression in
patients [94]. The clinical observation showed a threefold reduction in the likelihood of
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delirium in patients hospitalized in ICU when melatonin was administered 3.5 mg/night
(range: 1–10 mg) [95]. Another clinical study with 158 patients showed that the adjuvant
use of melatonin (10 mg/night; in addition to standard therapeutic care) reduced the risk
of thrombosis and sepsis, and decreased mortality in COVID-19 patients [96].

Nine clinical trials are currently underway on the effect of melatonin on COVID-19:
NCT04474483 (40 mg/day for 14 days), NCT04784754 (9–900 mg/day for 14 days),
NCT04409522 (9 mg/day for 7–10 days), NCT04531748 (100 mg/day for 3–14 days),
NCT04568863 (5 mg/kg/day i.v., maximum 500 mg, for 7 days), NCT04530539 (10 mg/night
for 14 days), NCT04353128 (2 mg prolonged release melatonin per day for 12 weeks
for COVID-19 prevention), NCT04470297 (ramelteon—melatonin agonist 8 mg/night for
10 days), and NCT04570254 (50 mg/day up to 30 days) with total 1325 participants.

In these trial protocols the daily dose of melatonin ranges from 2 to 900 mg. According
to pharmacokinetic studies after 10 mg of oral melatonin administration mean tmax was
40.8 min with a median Cmax of 3550.5 pg/mL; mean t1/2elimination was 53.7 min; bioavail-
ability 2.5%. Median Cmax after i.v. bolus injection for the same dose of melatonin was
389,875.0 pg/mL; mean t1/2elimination was 39.4 min [97]. Obviously, a dose of 10 mg will
achieve a plasma concentration level higher than that of bats, however, fast melatonin
excretion makes it necessary to take the drug continuously at regular time intervals or
increase the total daily dose. Also, it is known that there is a significant difference be-
tween the physiological properties of melatonin and its therapeutic potential when used
in non-physiological doses [98]. In human studies, doses of melatonin from 1 to 6.6 g per
day for a duration of 30–45 days have shown no toxic effects [99]. It also was shown that
800 mg/kg was not lethal [100]. No side effects were reported in a clinical trial where
1400 women were administered with 75 mg of melatonin nightly for 4 years [101]. Finally,
a meta-analysis of 50 studies, some of which were not blind, evaluated the efficacy of oral
melatonin in doses ranging from 1 to 20 mg per day with a good safety profile [102].

Thus, melatonin should undoubtedly be extensively investigated for its therapeutic
effect in the treatment of COVID-19. The wide dosage range and high safety profile make
this drug even more attractive for further human studies. Russel J. Reiter and colleagues,
by extrapolating the effective doses of melatonin used in animals to humans, suggested
the use of melatonin as an adjunct to COVID-19 treatment in doses of 100–400 mg/day,
especially if no efficient direct antiviral treatment is available [103]. We believe that the
daily dose of melatonin in COVID-19 can even be increased to 1 g without any negative
consequences (considering the safety of this dose and in the absence of other effective
antiviral drugs) [99,100]. However, in some cases it could be more effective to divide
the daily dose by 3–4 times in order to maintain a high concentration of the drug in
the blood during the day. The latter can be supported by evidence that some patients
may have decreased levels of melatonin, e.g., insulin resistance, glucose intolerance, and
cardiovascular diseases are associated with low melatonin concentrations [103]. This
conclusion is also justified by the excellent tolerability of the drug, as well as the short
duration of administration—when there are symptoms of SARS-CoV-2 infection, i.e., on
average about 14 days.

In Figure 2 we schematically presented the most likely points of application of mela-
tonin for the treatment of COVID-19. In Table 1 we summarized melatonin doses used in
various animal and human studies.
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Table 1. Doses of melatonin that have been used in various studies.

Effects of Melatonin Dose References

Animal studies
Stimulates dendritic cells and macrophages 1 g (subcutaneous implant) [34]
Decreases the levels of IL-6, TNF-α, leptin 1 mg/kg [55]

Inhibits the activation of the NLRP3 inflammasome;
reduces the level of IL-1β 30 mg/kg [65]

Inhibits NF-κβ and down-regulates MMP-3 3 mg/kg [66,67]
Reduces the levels of Hsp70e, CRP, IL-6 and TNF-α 200 mg/kg [68]

Decreases oxidative stress after lung irradiation by enhancing the regulation of catalase,
superoxide dismutase, glutathione, NADPH-oxidase 2 and 4, and by reducing the level of

malondialdehyde
100–200 mg/kg [75]

Reduces bleomycin-induced experimental lung fibrosis and decreases transforming growth
factor-β1-induced fibrogenesis in lung fibroblasts 5 mg/kg [76]

No lethality was observed 800 mg/kg [100]
Human trials

Reduces the levels of IL-6, TNF-α and CRP 3–25 mg/day [69–73]
Improves sleep and reduces nitrite in the exhaled breath condensate (antifibrotic potential) 3 mg/day [77]

Lowers sleep onset latency and increases total sleep time 3–6 mg/day [82]
Decreases sleep onset delay, increases total sleep time, and improves overall sleep quality 0.5–5 mg/day [88]

Reduces anxiety 3–10 mg/day [85]
In women with breast cancer, reduces the risk of depression and anxiety, improves sleep 6 mg/day [86,87]

Associated with survival of intubated COVID-19 patients Not available [90]
Adjuvant treatment in COVID19 pneumonia 36–72 mg/day [91]

Associated with a 28% decrease in the likelihood of a positive PCR-test for SARS-CoV-2 Not available [92]
Reduces COVID-19 symptoms, CRP levels, and lung damage 3 mg/day [93]

Decreases the levels of IL-2, IL-4, and IFN-γ 9 mg/day [94]
Reduces the risk of delirium in ICU-patients with COVID-19 1–10 mg/day [95]

Reduces the risk of thrombosis and sepsis, decreases mortality in COVID-19 patients 10 mg/day [96]
No side effects aside from drowsiness 1–6.6 g/day for 30–45 days [99]

No side effects reported 75 mg/day for 4 years [101]
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10. Conclusions

In this review we have presented the most relevant evidence of the possibility of
the successful use of melatonin to combat SARS-CoV-2 infection. Melatonin has a broad
spectrum of potential pharmacological effects to contribute to COVID-19 treatment such
as anti-inflammatory, anti-fibrotic, antiviral, antioxidant, and psychotropic. Given the
wide range of possible dosing regimens, clinical trials are needed to find out the most
effective doses and routes of administration. An important condition for the use of mela-
tonin is availability as a medicinal product and nutritional supplement, as well as safety,
and compliance.
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