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Abstract

Although the activity levels of insect societies are assumed to contribute to their ergonomic

efficiency, most studies of the temporal organization of ant colony activity have focused on

only a few species. Little is known about the variation in activity patterns across colonies

and species, and in different environmental contexts. In this study, the activity patterns of

colonies of the red ant Myrmica rubra were characterized over 15 consecutive days. The

main goals were to evaluate the colony specificity of the activity patterns and the impact of

food deprivation on these patterns. We found that the average activity level varied across

colonies and remained consistent over 1 week, providing evidence that the activity level is a

colony-specific life trait. Furthermore, all colonies applied an energy-saving strategy,

decreasing their average levels of activity inside the nest, when starved. Starvation induced

no consistent change in the activity level outside of the nest. An analysis of activity time

series revealed activity bursts, with nestmates being active (or inactive) together, the ampli-

tudes of which reflected the ants’ degree of synchronization. Food deprivation increased the

amplitude and number of these activity bursts. Finally, wavelet analyses of daily activity pat-

terns revealed no evidence of any periodicity of activity bouts occurring inside or outside of

the nest. This study showed that M. rubra ant colonies are characterized by specific activity

levels that decrease in response to starvation with the adoption of an energy-saving strat-

egy. In addition, our results help to understand the functional value associated with synchro-

nized and/or periodic fluctuation in activity, which has been debated for years.

Introduction

The remarkable ecological success of social insects depends on their high efficiency in per-

forming collective tasks, such as the exploration of new areas, the exploitation and sharing of

resources, the building of a common nest, and the defense of a common territory. As a corre-

late, popular beliefs have often acknowledged insect societies as the paradigm of industrious

animals being extremely active throughout their life. This has led to some misconception

about the actual activity level of insect societies and the distribution of activity among colony

members. Several studies have provided striking examples of inactivity, with up to 50–70% of
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workers reported to be inactive in societies of ants [1–3], bees [4], bumblebees [5], wasps [6],

and termites [7]. Furthermore, some worker individuals have been found to be persistently

inactive throughout their lives [8, 9], giving rise to several hypotheses (reviewed in [10]) about

their functional value namely as a reserve working force [11–13].

A general picture of activity/inactivity patterns in insect societies is difficult to draw, due to

the many ways in which activity has been defined and measured in colony-level studies. The

quantification of activity/inactivity in ant colonies has been based on the foraging effort [14–

16], walking activity [17], and walking speed [18, 19] of ant workers, and on the number of

pixels changing across successive images of ant position inside nests [20–22]. The rate of

between-worker interaction [19] and the time spent working on tasks [8, 23, 24] have also

been used as proxies for the activity level.

Regardless of the operational definition used for the quantification of activity, differences in

activity level are expected across colonies of the same species. This variability can reflect fluctu-

ations in the biotic and abiotic environments, with some effects being fairly predictable. The

ambient temperature is probably the best-known abiotic factor that determines the activity of

ectotherms, with insect societies displaying an optimal range of temperature for the perfor-

mance of daily tasks and privileged events, such as sexual swarming [25–27]. Several biotic fac-

tors, such as the predation risk and presence of competitors, all of which vary throughout the

day and across seasons, can generate periods of high and low activity in insect colonies. With

the fluctuation of food availability over time, ant colonies generally increase their foraging

efforts after prolonged starvation periods [20, 28, 29] (but see [30]) and may alter the daily pat-

terns of activities performed inside the nest, such as the propensity of workers to care for the

brood [31]. In starved colonies, foragers can also modulate the laying of the chemical trail [32]

and in-nest workers can be more responsive to recruitment signals [33], facilitating the mobili-

zation of workers to new food sources. Finally, the activity levels of hymenopteran colonies

can differ intrinsically. Naturally occurring variation in colony foraging activity has been

reported in ants [34, 35], wasps [36], and honeybees [37], in which it can also be artificially

selected [38].

The periodicity of activity bouts has been examined using activity time series. The best-

known periodicity in activity is seasonal [39, 40] and circadian [17, 41, 42]. Fluctuations in

light or temperature, related directly to the hour of the day or period of the year, can act as

pacemakers that drive the activity of almost all organisms, including insect societies (see e.g.,

[17, 41]). In addition to seasonal or circadian rhythms, striking activity cycles with a periodic-

ity of only 15–30 min emerge in ant colonies kept under constant and standardized laboratory

conditions. Such cycles seem to be generated by the spontaneous self-activation of individuals

that transmit their state of arousal through contact with nestmates, rather than by an external

pacemaker or environmental change [21]. Activity tends to generate further activity by

enhancing encounter rates and movement among workers. The discovery of these short-term

periodic activity bouts has raised interesting and still-debated questions about their adaptive

value [19, 43–45].

Importantly, such short-term activity cycles have been described in a very limited number

of ant species, all belonging to the genera Temnothorax and Leptothorax [20–22, 46, 47] (but

see [17] on Camponotus rufipes). The ant genera with ultradian activity patterns studied to

date form small colonies with only a few dozen individuals and have slow-paced lives. The

extent to which short-term activity periodicity is a trait shared by other ant species remains an

open question. Little is known about the generic value of the synchronized activity bouts that

emerge spontaneously in ant colonies in the absence of exogenous signals such as the presence

of food or light/dark alternation. Whether the average activity level and temporal organization

of activity are stable colony-specific traits also remains unknown.
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With this study, we aimed to fill this knowledge gap by characterizing the activity pat-

terns of the red ant species Myrmica rubra, which deeply differs in its behavioral ecology,

its pace of life as well as its colony size, while showing a high diversity of nestmate related-

ness across colonies [48–50]. We recorded colony activity over several successive days to

clarify the stability and colony specificity of the global activity level. We also investigated

the flexibility and resilience of activity levels with exposure to fluctuations in resource

availability, nutritional needs, and in-nest tasks to be performed (e.g., food sharing). To

this aim we analyzed activity patterns of ant colonies under a stable condition of satiation,

a stressful condition of multiple-day food shortage, and a condition of recovered satiation

through the exploitation of a newly available food source. All the activity patterns mea-

sured inside the nest will be characterized in terms of their average level, periodicity and

synchronization of activity bouts. We examined whether a greater need for nutrients in

starved colonies led to an increase in foraging activity to find new resources and/or a

decrease in activity inside the nest to preserve energy. Specifically, we examined whether a

decrease in the average in-nest activity level was compensated by greater synchronization

of activity bouts among nestmates to facilitate task achievement [20, 46]. For the recovery

of satiation following the discovery of a new food source, we quantified whether an

increase in food-sharing tasks was accompanied by an increase in the average in-nest

activity level and/or a larger number of activity peaks. The study data provide a general

overview of variation in ant colony activity patterns inside and outside of the nest over

time, spontaneously and in response to changing food demands and resource availability.

Method

The studied species is the red ant, Myrmica rubra (Linnaeus, 1758) (Hymenoptera: Formici-

dae). Ant colonies were collected from the year 2018 to 2021, during the summer, in wood-

lands located at Sambreville (Namur district: N 50˚25.210’; E 004˚37.878’) and Aiseau-Presles

(Hainaut district: N 50˚25.657’; E 004˚35.764’) in Belgium. These field colonies were kept

under controlled laboratory conditions (21˚C ± 1˚C; 50% ± 5% humidity and 12L-12D day-

night cycle) for a minimum duration of 30 days before carrying out the experiments. Each col-

ony was used no longer than 10 months after its collection in nature. We provided colonies

with water, sucrose solution (0.3M) and freshly killed mealworms (Tenebrio molitor) ad libi-
tum. Thereafter, these field colonies were divided into standardized experimental colonies that

consisted in 200 workers, one queen and 20 larvae (from the 1st to the 3rd larval instar). As for

the 200 workers, we aimed to standardize the ratio of inner workers and foragers in the experi-

mental colonies by always taking 140 individuals from the nesting tubes of field colonies and

60 individuals from their foraging area.

Each experiment took place in a 22x38cm plastic tray (Fig 1) with border walls covered

with Fluon1 (polytetrafluoroethylene) to prevent ants from climbing out. The experi-

mental nests were made from 2mm thick, laser-cut Plexiglas squares that provided the

ants with a nesting area of 30.25cm2 (5.5x5.5cm). The single entrance to the nest was a

1.0cm long and 0.5cm wide opening. The nest ceiling consisted in another Plexiglas square

and was covered by a red filter paper to create darkness inside the nest. The nest floor was

made of plaster and humidified from below with a cotton wool wick that was connected to

a water reservoir. The nests were off centered in the tray and placed 2.0cm away from its

back side with the nest entrance facing the remaining space of the tray over which the ants

could forage. The nest area was chosen in order to host up to 200 ants without having ants

climbing on each other under the nest ceiling while still leaving some space for workers to

move inside the nest.
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Experimental procedure

An experiment lasted for 15 days on each tested ant colony. Before the experiment, the ants were

placed in the experimental tray, and we let them settle inside the Plexiglas nest for 24 hours before

any data collection. For the next 15 days, on each day, we video-recorded the nest interior as well

as the foraging area for 2 minutes, every 10 minutes. The experimental trays were illuminated

during the whole experiment by a LED lighting in order to get a recording of ant activity that cov-

ers a full 24h-period. The experimental colonies were given mealworms, sucrose solution (0.3M)

and water ad libitum for the first 4 days (Fig 2). This baseline period allowed us to quantify and

analyze the activity patterns of ant colonies under stable conditions of satiation (P1). During these

days of colony satiation, new mealworms were provided each day at 10.30am to make sure that

the quality of the food stayed satisfactory and similar over time. At 10am on the 5th day of the

experiment, we removed the sucrose solution and the mealworms from the foraging area for

seven consecutive days. This starvation period (P2) allowed us to detect possible changes in the

colony activity due to food deprivation. Both mealworms and sucrose solution were given back to

Fig 1. Picture of the setup with two experimental trays. Each tray contains the red sheet- covered experimental nest, a sugar tube, a water tube and a Petri

dish with mealworms. A camera is set over the nest and another one over the foraging area.

https://doi.org/10.1371/journal.pone.0273087.g001
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the colony at 10am on the 12th day of the experiment with the ants having access to food ad libi-

tum until the 15th day. This recovery period of satiation (P3) lasted three days and allowed to cap-

ture the impact of food retrieval and food sharing on the global activity of ant colonies as well to

assess the ability of each colony to recover its initial activity baseline at satiation. The experiment

was performed on a total of ten ant colonies.

Data collection

Video recordings were done with the iSpy1 v7.1.2.0. software and two Logitech C9201 web-

cams. A first webcam was placed 13cm above the nest ceiling and the second webcam was

positioned 33cm above the foraging area (Fig 1). Videos were taken at 15 frames/sec at a

1920x1080 pixels resolution. On each video recording, the level of ants’ activity was extracted

using OpenCV (Open-Source Computer Vision v4.1.0) library in a Python1 (v3.7) script. On

video recordings, any movement of the ants resulted in local changes in the brightness of the

pixels. The script extracted the number of pixels that changed in brightness between each suc-

cessive video frame and stored this value as a direct measure of ants’ activity. To do so, the

image was cropped to keep only the area of interest, here the nest area of 5.5x5.5cm, then was

converted into a grey scale to keep only the black ants over a white background. A threshold

was set to detect pixels that switched from black to white (and vice versa) and to record it as

“activity”. The activity measured in the foraging area used the same procedure of automatized

image analysis except for the cropping that was focused on a 22x30.5cm area of the experimen-

tal tray. Furthermore, we verified that the level of global activity that was automatically

detected did not simply reflect changes in the number of ants inside the nest but actual differ-

ences in workers’ mobility. Thus, during the first phase of satiation, for each colony and each

day at 9am, we counted the number of ants inside the nest and the number of foragers. The

term “forager” is here referring to any ant observed outside the nest regardless of the task it

performed on the foraging area. These numbers were compared to the activity levels measured

on the corresponding video recordings made at 9am inside the nest and on the foraging area.

Both inside and outside the nest, spearman correlation values were small and not statistically

significant (S1 Table), indicating that, when food was given ad libitum, changes in the number

of ants was not the main explanatory variable for differences in colony activity level.

Ants’ mortality was recorded during the whole duration of the experiment. Nine out of ten

colonies that were initially tested showed little mortality as well as a similar numbers of dead

workers. The average mortality was 0.38 ± 0.64 (average dead ant ± standard deviation; n = 9)

dead ant per day, which means that on average only 6.1 ± 2.7 (n = 9) ants had died per colony

over 16 days (24h of habituation and 15 experimental days). For unexplained reasons, one

Fig 2. Timeline of the experiments with three different phases. Satiation phase = P1, Starvation phase = P2 and Recovery phase = P3.

https://doi.org/10.1371/journal.pone.0273087.g002
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colony however showed an unusually high level of mortality (38 total dead ants) and had to be

taken out of the data analyses.

Data analyses

All statistical tests were done using the R software v3.3.1. and the significance threshold was

set at α = 0.05.

Activity inside the nest and in the foraging area were recorded with two-minute-long vid-

eos, every 10 minutes. We obtained a total of 144 activity values per day (6 per hour for 24h)

and per colony, creating the main database for further analyses of activity patterns.

Daily activity levels

To compare the average level of activity across colonies and over the course of the experiment,

we calculated daily activity indices for each colony. Each daily index was the average of the 144

activity values measured on all two-minute videos that were recorded on this day. Moreover,

we estimated to which extent the daily activity levels inside of the nest were linked to those

observed in the foraging area by calculating the Spearman correlation value on each colony.

This was done only for the starvation period since it was the only phase providing a sufficiently

high number of successive daily observations.

We analyzed the activity patterns on each of the three phases of the experiment (Fig 2), the

first phase of colony satiation when food was given ad libitum, the second phase of starvation

when the colonies were food deprived and the third phase of recovery of satiation when food

was given back to the colonies. On these daily activity indices, we visually checked on q-q plots

the normality of the distribution of residuals. The homogeneity of variance of activity indices

was checked by using a Bartlett test. All the distribution of daily indices were homoscedastic

for each phase when looking at the activity in the inside and the outside of the nest. We used

two-way ANOVAs to test the effect of phase, colony, and interaction of both factors on the

daily activity indices. When we found a significant effect, we performed pairwise comparisons

by using the Tukey HSD method. Within each phase, we also analyzed how the activity level of

one colony changed across the successive days. Therefore, we performed a one-way repeated

measures ANOVA to check for significant changes in activity levels over time. When signifi-

cant, the test was followed by multiple paired t-tests between each day. P-values were then

adjusted using the Bonferroni correction for multiple comparisons. These statistical analyses

were performed for the activity levels measured inside the nest and also on the foraging area.

Synchronization of activity

We took a closer look at within-day fluctuations of activity in order to identify moments of

synchronized activity/inactivity among nestmates. A high degree of synchronization means

that a large proportion of individuals are active (or inactive) at the same time. To estimate the

level of ants’ synchronization, for each day and each colony, we measured to which extent the

activity level obtained at each time point fluctuated around the corresponding average daily

value. This was achieved by calculating the coefficient of variation (CV), that is the standard

deviation divided by the mean value averaged over the 144 activity values measured on this

day. High values of CV corresponded to high numbers of individuals being simultaneously

active (or inactive). Previous studies have assessed the level of synchronized motion in other

insect species by using a related metric called the index of dispersion (Temnothorax rugatulus
[47], Schistocerca gregaria [51], Temnothorax allardycei [52]). Synchronization was analyzed

only for ants inside the nest but not for ants located on the foraging area. Indeed, the very low

PLOS ONE Starvation and activity patterns in colonies of the red ant

PLOS ONE | https://doi.org/10.1371/journal.pone.0273087 August 12, 2022 6 / 22

https://doi.org/10.1371/journal.pone.0273087


local density of foragers makes encounters and mutual activation scarcely observed and hence

a synchronization of activity unlikely to emerge on the foraging area.

High CV values may result from a few activity bouts of high amplitude but may also reflect

frequent small fluctuations that take place all over the course of the experimental day and that

are more pertaining to some “activity noise”. Thus, we did not limit our analysis of synchroni-

zation to the CV metric, but we complemented it by a peak analysis in order to discriminate

actual events of workers’ synchronization. We used the R function findpeaks to automatically

detect the activity peaks and to identify their time of emergence over each daily recording of

activity. These functions detected peaks in each 24h-long time series depending on whether

the measured activity level exceeded preset threshold values of prominence. Here, a peak was

defined as a local maximal value within a set of three consecutive values, where this value had

to be at least 10% higher than the average activity index for that day. Prior to the detection of

local maxima, the time series was smoothed using a rolling average method with a rolling win-

dow of 3. We then counted the number of peaks detected on each day.

All the CV values inside the nest showed a normal distribution and were homoscedastic

within each phase of the experiment. Likewise, the total number of peaks for each colony and

for each day were normally distributed and homoscedastic within each phase of the experi-

ment. Thus, we performed two-way ANOVAs to test the effect of phase, colony, and the inter-

action of both factors on the daily CV as well as on the number of activity peaks. When a

significant effect was found, we performed pairwise comparisons by using the Tukey HSD

method. Within each phase, we also analyzed how the CVs or the number of peaks changed

across the successive days by performing a one-way ANOVA for repeated measures. If signifi-

cant, we carried out multiple paired t-tests between each day whose P-values were adjusted

using the Bonferroni correction method.

Periodicity of activity peaks

A high level of synchronization of ants’ activity does not automatically go along with a period-

icity of their activity pattern. For example, when a majority of nestmates are simultaneously

moving during activity bursts, a colony can be seen as highly synchronized, even though these

peaks do not occur at regularly spaced time intervals. In this respect, we carried out wavelet

analyses on each daily activity values in order to evaluate the rhythmicity of oscillations of

activity inside the nest. This technique, like a Fourier spectral decomposition, provides a

breakdown of the dominant periods in the signal that we are studying. However, while a Fou-

rier spectral decomposition transforms the whole signal into oscillatory components, the

wavelet analysis fits a short oscillation that is tested at every point of the signal, thus giving it

an extra spatial component. Once this oscillation is tested on the entire signal, the process is

repeated with an oscillation of longer period and so on until all possible periods are tested.

Wavelet analyses are therefore more robust when the signal is non-stationary, i.e., a signal

whose properties change over time, for instance, if there is a trend in its mean value. As a result

of this wavelet analysis, we obtain the continuous wavelet transform (CWT) that gives the

spectral power associated with a certain period, at a certain position of the time series. High

power values indicate a stronger contribution of the corresponding period to the oscillations

shown by the activity signal. For instance, days where ant colonies showed a high rhythmicity

of activity patterns are characterized by high maximum values of wavelet power. After decom-

posing the periodicity of the signal at each time step, we looked at which period was the most

dominant for each colony and each phase. These periods followed a normal distribution and

were homoscedastic within each phase of the experiment. Thus, we performed a two-way

ANOVA to test the effect of phase and colony to see if the most dominant period was
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influenced by the satiation level and if it was colony dependent. As we were interested in ultra-

dian rhythms, we only considered periods that did not exceed 24h. The wavelet analysis was

carried out only on the activity patterns observed inside the nest but not in the outside as for-

agers were too scattered to show any periodic fluctuations of activity.

Results

Daily activity levels

We found no significant interaction between colony and experimental phase on daily indices of

activity inside the nest (ANOVA: Phase�Colony effect: F = 1.28, df = 16, P = 0.225). Interestingly,

M. rubra colonies significantly differed in their activity level inside the nest throughout the experi-

ment (ANOVA: Colony effect: F = 37.15, df = 8, P<0.0001). High levels of activity were consis-

tently found in some colonies such as colony 2 that was always twice more active than colony 7

(Fig 3A). We also found a significant effect of the experimental phase on the activity level inside

the nest (ANOVA: Phase effect: F = 89.82, df = 2, P<0.0001). During the starvation phase, the

daily activity indices were significantly lower (around 20%) than observed in satiated colonies

(Tukey HSD: P1-P2 and P2-P3: P<0.0001; full comparisons with confidence intervals in S3

Table). During the recovery phase, just after food was given back to starved colonies, their activity

indices increased and even exceeded by around 10% the activity initially during the first phase of

colony satiation (Tukey HSD: P1-P3: P = 0.0017; S3 Table). When analyzing separately the first

experimental phase, the activity indices of satiated colonies did not significantly change over time

(ANOVA repeated measures: F = 0.52, df = 3, P = 0.674). Conversely, we observed a significant

decrease of activity level over the successive days of starvation (ANOVA repeated measures:

F = 47.15, df = 6, P<0.0001). Indeed, activity levels were significantly lower after only two days of

starvation (S4 Table) with a 36% decrease over the whole period of food deprivation. Once food

was given back, ant colonies first displayed the highest level of activity, which then gradually

decreased with the recovery of colony satiation (ANOVA repeated measures: F = 9.08, df = 2,

P = 0.00232) with indices significantly lower on day 15 compared to day 13 (S4 Table).

Outside the nest, the activity levels differed between colonies (ANOVA: Colony effect:

F = 90.86, df = 8, P<0.0001). The activity of foragers also changed depending on the experi-

mental phases (ANOVA: Phase effect: F = 27.45, df = 2, P<0.0001). However, unlike the inner

workers, the activity of foragers did not differ between satiated and starved colonies (Tukey

HSD: P1-P2: P = 0.372; S3 Table). The main change occurred during the last phase when colo-

nies could again exploit food. Indeed, their activity indices became 28% and 36% higher than

in the first and second phase, respectively (Tukey HSD: P1-P3 and P2-P3: P<0.0001; S3

Table). Furthermore, we found a significant interaction effect (ANOVA: Phase�Colony effect:

F = 2.89, df = 16, P = 0.0007), meaning that certain colonies adjusted their external activity to

food availability in a different way. Indeed, when being starved some colonies steeply increased

their foraging activity in the outside (e.g., colony 4) and others showed only minimal variations

(e.g., colonies 1 and 8). Also, during the last recovery phase, two colonies (5 and 7) did not

increase their external activity as observed for the other nests (Fig 3B). After removing these

two colonies from the analysis, there was no longer any significant interaction effect (ANOVA:

Phase�Colony effect: F = 1.80, df = 12, P = 0.062). Looking separately in each experimental

phase, we found a significant decrease of the external activity during the first phase of colony

satiation (ANOVA repeated measures: F = 8.9, df = 3, P = 0.0004) with a lower activity of for-

agers on day 4 compared to day 1 (S5 Table). During the period of starvation the activity level

of foragers slightly changed over time (ANOVA repeated measures: F = 2.48, df = 6,

P = 0.0357) but no significant difference was found between any pair of starvation days (S5
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Fig 3. Time evolution of the daily indices of activity over the experimental days. Fig 3A shows the activity measured inside the nest and Fig 3B, the activity

in the foraging area. The activity indices are expressed in number of moving pixels on the video recordings. Colored points are the daily activity indices

measured for each of the nine tested colonies. The black line and the grey area are respectively the average value and the standard deviation calculated on the

daily activity indices of the nine colonies. Food was removed on day 5 and was given back on day 12. Vertical dashed lines separate each experimental phase.

https://doi.org/10.1371/journal.pone.0273087.g003
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Table). Concerning the recovery phase, the daily indices of activity outside the nest did not sig-

nificantly change over time (ANOVA repeated measures: F = 0.086, df = 2, P = 0.918).

We found no clear-cut relationship between the daily activity indices that were measured

inside and outside the nest of the same colony. These two activity values were not significantly

correlated excepting for two colonies where a decrease of inner nest activity went along with a

higher foraging during the starvation phase (S2 Table).

Synchronization of activity

For each colony, we examined how the activity values fluctuated across successive measures

made every 10min over a 24h-period. Activity bouts of high amplitude reflected a high syn-

chronization of workers that became active simultaneously. On each recording, the time series

exhibited considerable variations of activity values from one hour to the next as well as across

successive days. The activity patterns also varied between conditions of satiation and food

shortage. During the initial phase of satiation, fluctuations of activity values remained of small

amplitude and no clear-cut pattern of synchronized activity could be visually noticed (Fig 4A).

Even a 24-hour periodicity of activity bouts could not be detected inside or outside the nest.

Fig 4 provides an example of activity signals that are typically recorded during the first phase

of the experiment, when food was given ad libitum. When colonies were starved, after two or

three days of food deprivation, they exhibited quite different patterns of activity over a 24h-

period. Beside a decrease of their average activity level, starved colonies showed fluctuations of

higher amplitude than those observed in satiated nests (Fig 4B).

When nestmates were highly synchronized, they showed several activity bouts of which the fre-

quent occurrence resulted in high values of CV measured on the corresponding day. Interestingly,

we found a significant Colony effect on daily CV suggesting that some nestmates were more likely

to synchronize their activity inside the nest (ANOVA: Colony effect: F = 7.5, df = 8, P<0.0001). As

illustrated in Fig 5, there was a significant effect of the experimental phase on CVs (ANOVA: Phase

effect: F = 59.18, df = 2, P<0.0001) (Tukey HSD: all pairwise comparisons: P<0.0001; S3 Table). Ini-

tially, satiated colonies showed moderate bursts of activity with an average CV of 22.6% ± 3.6%

(average CV ± standard deviation; n = 36) that did not change over time (ANOVA repeated mea-

sures: P1: F = 0.45, df = 3, P = 0.719). When ant colonies were food deprived, these coefficients of

variation became higher—even doubled for colony 7—reaching on average a 29.1% ± 8.8% (n = 63)

value—(Fig 5). The amplitude of activity bursts, hence the level of synchronization, increased with

colony starvation (ANOVA repeated measures: P2: F = 13.94, df = 6, P<0.0001). On the first day of

starvation, day 5, the ants in the nest displayed a significantly lower CV than on day 9, 10 and 11 (S6

Table). On day 6, the CV values were significantly lower than on day 9 and 10. The activity became

the least synchronized during the last phase. While sharing food inside the nest, nestmates showed

only few activity bursts of small amplitude resulting in low CV values of 16.2% ± 3.6% (n = 27) that

did not change over time (ANOVA repeated measures: P3: F = 3.23, df = 2, P = 0.0664). We also

noticed an interaction effect between the colony and the phase (ANOVA: Phase�Colony effect:

F = 2.48, df = 16, P = 0.0033). This interaction effect could be explained by the outlying fluctuations

of activity in two colonies (3 and 7) during the starvation phase (Fig 5). Once these colonies were

removed from the analysis, there was no longer any interaction effect (ANOVA: Phase�Colony

effect: F = 1.01, df = 12, P = 0.445) while the colony and phase effects remained significant

(ANOVA: Colony effect: F = 3.47, df = 6, P = 0.0044 | Phase effect: F = 34.17, df = 2, P<0.0001).

Occurrence of activity bursts

By using a peak analysis, we counted the activity bursts that occurred inside each colony on

each experimental day (Fig 4C). Colonies did not differ in their number of daily activity peaks
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(ANOVA: Colony effect: F = 1.78, df = 8, P = 0.0901) and there was no interaction effect

(ANOVA: Phase�Colony effect: F = 0.7, df = 16, P = 0.789). By contrast, the occurrence of

activity peaks significantly changed between experimental phases (Fig 6) (ANOVA: Phase

effect: F = 22.2, df = 2, P<0.0001). During the first phase of colony satiation, colonies showed

on average 10 ± 2.3 (average number of daily peaks ± standard deviation; n = 36) activity peaks

per day, with no significant change over time (ANOVA repeated measures: P1: F = 0.175,

df = 3, P = 0.912). By contrast, during phase 2, starvation gradually increased the occurrence of

activity bursts (Tukey HSD: P1-P2: P = 0.033; S3 Table). The maximum average daily values of

13.3 ± 1.5 (n = 9) and 11.9 ± 1.6 (n = 9) peaks were reached on days 10 and 11 respectively

Fig 4. Examples of activity patterns. Fig 4A and 4B shows the activity signals of colony 7 recorded respectively on day 3 (satiation phase) and day 8 (starvation

phase). Fig 4C represent the activity patterns of colony 7 on day 8 with smoothed signal. The dashed lines correspond to the daily activity index, i.e., the average

of all the activity measures made on a day. The red arrows point to clear-cut activity bursts emerging when the colonies were starved. The red dots in Fig 4C

show the peaks that were detected by the analysis described in the method section.

https://doi.org/10.1371/journal.pone.0273087.g004
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(ANOVA repeated measures P2: F = 2.88, df = 6, P = 0.0177) (S7 Table). During the recovery

phase, when colonies gained access to food again, the number of detected activity peaks

became lower (Tukey HSD: P1-P3: P = 0.0005 | P2-P3: P<0.0001; S3 Table), reached at most 8

daily peaks on average and did not significantly change over time (ANOVA repeated measures

P3: F = 3.19, df = 2, P = 0.0684).

Fig 5. Time evolution of the CV of activity inside the nest over 15 experimental days. Colored points are the daily

CVs measured for each of the nine tested colonies. The black line and the grey area are respectively the average value

and the standard deviation calculated on the daily CVs of the nine colonies. Food was removed on day 5 and was given

back on day 12. Vertical dashed lines separate each experimental phase.

https://doi.org/10.1371/journal.pone.0273087.g005

Fig 6. Time evolution of the number of activity peaks inside the nest over 15 experimental days. Colored points are

the daily peaks measured for each of the nine tested colonies. They are slightly shifted on the x-axis for readability

reasons. The black line and the grey area are respectively the average value and the standard deviation calculated on the

daily peaks of the nine colonies. Food was removed on day 5 and was given back on day 12. Vertical dashed lines

separate each experimental phase.

https://doi.org/10.1371/journal.pone.0273087.g006
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Periodicity of activity patterns

Wavelet analyses of time series usually failed to show any activity cycles inside M. rubra nests.

The wavelet analysis showed many peaks at different frequencies. There is no clear-cut period-

icity in the daily patterns of activity. Indeed, out of the nine studied colonies and for the 15

days of experiment, so out of 144 time series, we identified only three occurrences of periodic-

ity that lasted for around 10 hours. These three events of periodicity occurred in colony 1 on

day 9, colony 2 on day 6 and colony 3 (Fig 7C) on day 3, which showed a period of around

160min, 180min and 170min, respectively. Moreover, the latter also displayed a periodicity of

around 70min, from 11am to 3pm (Fig 7C). Activity cycles were thus scarcely observed and

showed no consistency in terms of colony, phase or days involved. Even though there was no-

clear cut periodicity of activity patterns, a wavelet analysis performed on each phase allowed to

extract the periods that had the overall highest power for this phase. For instance, for colony 7

during the starvation phase, three periods had overall higher power values (Fig 8). Thus, one

can also extract, for each phase, the period that was associated to the highest power value (Fig

9). In each phase, the dominant periods markedly varied across colonies. For instance, during

the first phase, the dominant period extracted from wavelet analyses ranged from 2h50 (colony

3) to 23h32 (colony 5). Likewise, the dominant period ranged from 1h52 (colony 6) to 22h48

(colony 7) during the second phase and from 5h04 (colony 9) to 23h14 (colony 2) during the

last phase. Beside a weak and highly variable periodicity of activity patterns, we found no sig-

nificant colony effect (ANOVA: Colony effect: F = 0.83, df = 8, P = 0.590) or effect of starvation

on the dominant periods resulting from wavelet analyses (ANOVA: Phase effect: F = 0.48,

df = 2, P = 0.625).

Discussion

We found that the average activity level inside M. rubra nests is a colony-specific trait.

Between-colony differences in the activity level persisted over several days: colonies that were

most active under the stable satiation condition remained so when being starved and when

food was reintroduced. As the experimental colonies contained standardized numbers of

queen, workers, and larvae, intercolonial differences in the activity level likely did not stem

from differences in brood demand or tasks to be performed inside the nest. Instead, our results

suggest that the activity level is specific to each ant colony and consistent across situations–

here, along a gradient of food availability and colony starvation. In analogy to the individual-

level behavioral syndromes defined by Sih et al. [53, 54], behavioral syndromes, including the

carrying over of average activity across different contexts (e.g., in the presence/absence of

resources, competitors, or predators), may occur at the colony level. In addition, persistent col-

ony- and regional-level variation in foraging behaviors such as extra-nest activity, exploration,

resource discovery and recruitment has been observed in harvester ants [15] and fire ants [35].

Differences in activity among colonies may arise from settlement in natural biotopes with dif-

ferent biotic and abiotic conditions. In the present study, the experimental colonies were

maintained in the laboratory for at least 1 month before being tested, thereby reducing the

impact of the ants’ former living conditions. Colony-level variation in the activity level may

also result from the past and current selection of heritable traits related to colony behavior.

Variation in activity has been shown to reflect differences across colonies in gene expression in

harvester ants [55] and fire ants [14]. Colony activity may also correlate with genetic diversity.

For instance, harvester ant queens’ engagement in multiple mating promotes genetic diversity

in colonies that forage earlier in the day and for longer time periods [56]. In this respect, the

ant species, M. rubra is characterized by variability in the degree of polygyny and number of

patrilines, resulting in pronounced diversity of nestmate relatedness across colonies [48–50].
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Fig 7. Graph of the CWT with the corresponding activity signal. (A and C) are the CWT with the corresponding activity signal below (B and D). The wavelet

analysis displays the spectral power associated with a tested period (left y-axis) at a given time position of the signal (x-axis). The two figures on top (A, B)

correspond to day 3 from colony 7 and the two figures at the bottom (C, D) corresponds to day 3 from colony 3. (A) The graph of the CWT showed only a brief
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This diversity may, in turn, at least partially explain differences among colonies in the emer-

gence of collective cooperative behavior and hence in the average colony-wide activity level.

Comparative studies of ant colonies founded by lone single-mated queens and those founded

by several multi-mated queens would enable the examination of whether a lesser degree of

nestmate relatedness is accompanied by a lower average in-nest activity level, in the same way

that Wiernasz et al. [56] examined the relationship of workers‘ relatedness to foraging

efficiency.

In this study, starvation was not related to any systematic trend or change in foraging activ-

ity outside of the nest. In most colonies, the foraging activity remained unchanged even after a

week of food deprivation. Only a subset of M. rubra colonies increased their foraging efforts

under starvation stress, as reported previously for other ant species [20, 29, 57]. By contrast, all

colonies gradually reduced in-nest activity when deprived of food resources. This energy-sav-

ing strategy may contribute to colony homeostasis by reducing the global energetic expenses

inside the nest to meet lower nutrient incomes due to food shortage. Furthermore, the restric-

tion of activity reduction to the inside of the nest preserves the ability of foragers to engage in

timeframe (from 10am to 12pm) during which a period with a high spectral power (red on the right colored scale) was detected. During this narrow timeframe,

the activity fluctuated with a periodicity of around 30min. (C) The graph of the CWT showed that the signal was periodic over a longer timeframe of around 8

hours (from 9am to 5pm). In this case, we found a dominant period of around 170min (2h50) that was complemented at 11am by a second shorter period of

around 70 minutes.

https://doi.org/10.1371/journal.pone.0273087.g007

Fig 8. Distribution of the wavelet power of each tested period for colony 7 during the starvation phase. The three

most prominent periods are highlighted with the black squares. They correspond to periodicities of 2h23 (left), 8h59

(middle) and the most dominant period of 22h48 (right).

https://doi.org/10.1371/journal.pone.0273087.g008
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external activity to discover new resources. When the starved M. rubra colonies regained

access to food, the activity levels inside the nest increased steeply, with ant movements likely

linked to food sharing, which may involve up to 90% of the worker population as shown in

other ant species [58, 59].

A similar activity-reduction strategy has been observed in colonies of the ant species T.

rugatulus under several months of food deprivation [46], in contrast to its application after

only 1 week in the M. rubra colonies. This difference could be explained by differences in the

species’ metabolic rates and hunger levels: the slow pace of life of Temnothorax workers proba-

bly contributes to their incredible resistance to prolonged starvation, whereas the wakefulness

of M. rubra workers is accompanied by a higher global metabolic rate, which may have led the

colonies to quickly adopt the energy-saving strategy until the return of more favorable condi-

tions. We assume that the lowering of activity as a response to food shortage is a strategy

shared by many ant species but operating over very different time scales.

The colony specificity of the activity level demonstrated in this study supports the idea that

ant societies act as coordinated, homeostatic systems characterized by specific levels of wake-

fulness and inactivity. Consistency in the average activity level does not preclude the occur-

rence of colony-wide fluctuations, including temporary activity bouts (regularly oscillating or

not), over the course of the day. Under satiation, the M. rubra activity patterns included

moments of synchronization, when many ants moved simultaneously. However, these activity

peaks did not occur at regular intervals (range, 20 to 640 min). Starvation not only reduced the

Fig 9. Distribution of the dominant periods for the activity inside the nest. Distribution across all 9 colonies and for each experimental phase separately.

https://doi.org/10.1371/journal.pone.0273087.g009
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average activity level, but also increased the degree of activity synchronization. In colonies

starved for 1 week, the number of activity bouts increased slightly while the synchronization

metric (i.e., coefficient of variation) nearly doubled. This finding is consistent with the

increased degree of synchronization and more frequent activity peaks reported for starved T.

rugatulus colonies [46], although those colonies showed a greater increase in the number of

activity peaks than observed in the present study, likely due to the longer starvation period.

Differences in the peak detection technique may also have contributed to this dissimilarity. In

the present study, the reintroduction of food to the starved colonies increased the average in-

nest activity level and dramatically reduced the degree of nestmate synchronization, resulting

in fewer activity bouts of lower amplitude. One possible explanation for these findings is that

the signal noise caused by the erratic movements of workers actively sharing food inside the

nest masked the detection of activity bursts.

The synchronization of activity found inside M. rubra nests is a common trait shared with

other ants studied so far (Temnothorax allardycei [21], Leptothorax acervorum [44], and T.

rugatulus [47]). The entrainment of nestmates that are roused (become motionless) following

contact with active (inactive) workers creates positive feedback loops leading to the emergence

of activity (inactivity) peaks. The role of synchronization as an epiphenomenon of mutual

entrainment, however, does not prevent this characteristic from having functional value. Some

authors point towards activity rhythms serve to regularly lower respiratory carbon-dioxide lev-

els in nests [43]. Others evoke an impact on the colonies’ ergonomic efficiency. By being active

together may generate local overcrowding and queuing phenomena that reduce task perfor-

mance efficiency [21] or, alternatively, prompt individuals to search for unperformed tasks,

thereby favoring spatially more-homogenous task distribution across the colony [44, 45]. A

last hypothesis is that the synchronization of activity may facilitate the transmission of infor-

mation or materials among nestmates [20]. However, not only information transmission,

which is enhanced by synchronized activity peaks, but also information loss, which occurs

when an ant forgets relevant information or when chemical information decays, should be

considered. The interplay between these two mutually antagonistic feedback loops may lead to

the reduction (to zero) or growth (to a steady state) of the population of informed ants. A

data-driven model developed by Richardson et al. [19] predicts that information flows through

a colony less efficiently when bouts of synchronized activity are periodic. This typically occurs

when the lifetime of the information is shorter than the duration of quiescent activity periods,

in which case information loss during quiescent periods dominates information spread during

active periods. As we found that in-nest activity did not oscillate periodically in the majority of

M. rubra colonies during starvation or satiation, the flow of information and materials among

M. rubra nestmates is not expected to be impeded by regularly oscillating activity cycles. At the

same time, synchronization of the activity of a sufficient number of M. rubra nestmates would

enable the efficient completion of cooperative tasks and ensure reliable information exchange

(as suggested by Franks and Bryant [60]). Under starvation stress demanding energy preserva-

tion, the greater synchronization of workers allows for long periods of inactivity while maxi-

mizing task performance and keeping communication efficient during temporary–but not

periodic–bouts of activity.

The short (15–30 min) activity cycles of Temnothorax colonies serve as an example of self-

organized periodicity that is not driven by an exogeneous pacemaker or the inherent rhyth-

micity of individual ants [21, 61]. This remarkable self-organized behavior may have led to

overestimation of the occurrence and importance of such activity cycles in insect societies.

Few rhythms were observed inside M. rubra nest, and those that occurred were of longer dura-

tion (150–180 min) than reported previously. The very low occurrence rate for periodic ultra-

dian patterns suggests that the rhythmicity of activity has little, if any, impact on M. rubra
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fitness. Similarly, several Temnothorax colonies [20, 47] did not display periodic patterns, or

displayed more erratic oscillation than others. Furthermore, the periodicity of activity cycles

can be disrupted by several social factors, such as the return of foragers [22], location of inter-

acting nestmates [22], high density of workers and brood [47], brood developmental stage [62,

63], and ratio of castes within a colony [41]. Regularly spaced oscillations of activity resulting

from coupled interactions between workers thus seem to emerge only under very specific con-

ditions [21, 64]. Among the many conditions required for the colony-wide propagation of an

activation wave at regular time intervals are the appropriate density of mutually entraining

ants [21], the homogenous spatial distribution of nestmates with no clear-cut aggregates [22],

and a simple nest structure with no compartmentalization. As the natural nests of most ant

species lack these traits, activity cycles appear to be striking periodic phenomena whose emer-

gence is limited to artificial laboratory conditions. Thus, the rhythmicity of activity appears to

be an exception, rather than the rule, in insect societies, and its adaptive value is likely

marginal.

Our knowledge about the causes and functional value of activity patterns in ant colonies

remains limited, considering the number of unresolved questions and the potential impor-

tance of these patterns for the behavioral ecology of social insects. Caution should be taken

when attributing adaptive value to activity patterns observed under standardized laboratory

conditions. In addition, the functional outcomes of activity levels are difficult to predict, and

their impact on colony fitness may depend on the environmental conditions. On the one

hand, colony-level variation in extra-nest activity has been found to correlate positively with

markers of colony productivity, such as food storage and brood rearing, in honeybees [37] and

with population growth in fire ants [35]. On the other hand, an elegant field study of Pogono-
myrmex barbatus harvester ants showed that an increase in colony activity is not necessarily

associated with improved fitness, as less-active and supposedly less-competitive colonies had

the greatest reproductive success under harsh environmental conditions [15]. In addition, a

better understanding of the effects of the activity level on colony-wide communication and

recruitment dynamics, which shape the ability of ant colonies to adjust their responses to

changing environmental conditions, is needed [34]. Finally, future studies will have to evaluate

whether a synchronization of activity among nestmates actually facilitates the regulation of in-

nest tasks, thereby allowing a colony to develop an energy-preservation strategy, namely under

conditions of food shortages.
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45. Delgado J, Solé R V. Self-synchronization and task fulfilment in ant colonies. J Theor Biol. 2000; 205

(3):433–41. https://doi.org/10.1006/jtbi.2000.2077 PMID: 10882562

46. Rueppell O, Kirkman RW. Extraordinary starvation resistance in Temnothorax rugatulus (Hymenoptera,

Formicidae) colonies: Demography and adaptive behavior. Insectes Soc. 2005; 52(3):282–90. https://

doi.org/10.1007/s00040-005-0804-2 PMID: 18521192

47. Doering GN, Sheehy KA, Lichtenstein JLL, Drawert B, Petzold LR, Pruitt JN. Sources of intraspecific

variation in the collective tempo and synchrony of ant societies. Behav Ecol. 2019; 30(6):1682–90.

https://doi.org/10.1093/beheco/arz135 PMID: 31723317

48. Pearson B. Relatedness of Normal Queens (Macrogynes) in Nests of the Polygynous Ant Myrmica

rubra (Latreille). Evolution. 1982; 36(1):107. https://doi.org/10.1111/j.1558-5646.1982.tb05015.x PMID:

28581117

49. Pearson B. Intra-colonial relatedness amongst workers in a population of nests of the polygynous ant,

Myrmica rubra (Latreille). Behav Ecol Sociobiol. 1983; 12(1):1–4.

PLOS ONE Starvation and activity patterns in colonies of the red ant

PLOS ONE | https://doi.org/10.1371/journal.pone.0273087 August 12, 2022 21 / 22

https://doi.org/10.1016/j.cois.2018.07.009
http://www.ncbi.nlm.nih.gov/pubmed/30551831
https://doi.org/10.1242/jeb.02461
http://www.ncbi.nlm.nih.gov/pubmed/17050837
https://doi.org/10.1093/beheco/arq218
http://www.ncbi.nlm.nih.gov/pubmed/22479133
https://doi.org/10.1371/journal.pone.0133868
https://doi.org/10.1371/journal.pone.0133868
http://www.ncbi.nlm.nih.gov/pubmed/26197456
https://doi.org/10.1111/1744-7917.12140
http://www.ncbi.nlm.nih.gov/pubmed/24831877
https://doi.org/10.1093/genetics/141.4.1537
http://www.ncbi.nlm.nih.gov/pubmed/8601492
https://doi.org/10.1081/cbi-120037817
http://www.ncbi.nlm.nih.gov/pubmed/15332348
https://doi.org/10.1006/jtbi.2000.2010
https://doi.org/10.1006/jtbi.2000.2010
http://www.ncbi.nlm.nih.gov/pubmed/10887903
https://doi.org/10.1006/jtbi.2000.2077
http://www.ncbi.nlm.nih.gov/pubmed/10882562
https://doi.org/10.1007/s00040-005-0804-2
https://doi.org/10.1007/s00040-005-0804-2
http://www.ncbi.nlm.nih.gov/pubmed/18521192
https://doi.org/10.1093/beheco/arz135
http://www.ncbi.nlm.nih.gov/pubmed/31723317
https://doi.org/10.1111/j.1558-5646.1982.tb05015.x
http://www.ncbi.nlm.nih.gov/pubmed/28581117
https://doi.org/10.1371/journal.pone.0273087
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