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Abstract: The synchronized activity of neuronal networks under physiological conditions is mir-
rored by specific oscillatory patterns of the EEG that are associated with different behavioral states 
and cognitive functions. Excessive synchronization can, however, lead to focal epileptiform activity 
characterized by interictal and ictal discharges in epileptic patients and animal models. This review 
focusses on studies that have addressed epileptiform synchronization in temporal lobe regions by 
employing in vitro and in vivo recording techniques. First, we consider the role of ionotropic and 
metabotropic excitatory glutamatergic transmission in seizure generation as well as the paradoxical 
role of GABAA signaling in initiating and perhaps maintaining focal seizure activity. Second, we 
address non-synaptic mechanisms (which include voltage-gated ionic currents and gap junctions) in 
the generation of epileptiform synchronization. For each mechanism, we discuss the actions of anti-
epileptic drugs that are presumably modulating excitatory or inhibitory signaling and voltage-gated 
currents to prevent seizures in epileptic patients. These findings provide insights into the mecha-
nisms of seizure initiation and maintenance, thus leading to the development of specific pharmacol-
ogical treatments for focal epileptic disorders. 
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1. INTRODUCTION 

 Neuronal synchronization represents the integrated activ-
ity occurring over time among neuronal networks that are 
located in one or more interconnected brain structures [1]. 
Under normal conditions, neuronal synchronization makes 
the brain generate specific EEG rhythms that are associated 
with different physiological states extending from cognitive 
functions (such as perception, formation and recall of memo-
ries) to specific sleep states; these EEG patterns include the 
theta rhythm, beta and gamma oscillations, sharp-wave rip-
ples and sleep spindles [2, 3]. However, excessive and thus 
abnormal neuronal synchronization can cause the occurrence 
of both focal [4, 5] and generalized epileptic discharges [6-9]. 

 Here, we will review the evolving concepts regarding the 
cellular and pharmacological mechanisms that cause the 
generation of focal epileptiform discharges; these studies 
encompass over fifty years of neuroscience research parallel-
ing many of our advancements in understanding the processes  
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that regulate neuronal excitability and thus brain function. 
We will review data obtained from in vivo and in vitro ani-
mal models of focal epilepsy as well as from epileptic pa-
tients not responding to antiepileptic drugs and thus investi-
gated with invasive electrophysiological recordings (includ-
ing detection of single unit activity) before undergoing brain 
surgery. Most of these studies were performed in limbic 
brain structures that include the hippocampus, the rhinal cor-
tices and the amygdala, which are known to play a role in 
mesial temporal lobe epilepsy (MTLE) [10-12]. 

 An epileptic brain generates interictal discharges (i.e., 
short lasting electrographic events lasting less than one sec-
ond that are not accompanied by any detectable clinical 
symptom) (Fig. 1A) as well as ictal discharges (i.e., periods 
of abnormal, hypersynchronous activity lasting between a 
few tens of seconds and several minutes thus disrupting 
normal brain function) (Fig. 1B). Moreover, during the last 
few years, it has been shown that epileptiform synchroniza-
tion is associated with the occurrence of high-frequency os-
cillations (HFOs) in the EEG (field) recordings (Fig. 1C). 
These HFOs - which are not visible in standard EEG record-
ings and can only be extracted by amplifying the appropri-
ately filtered signal - have been categorised into two groups, 
based on their frequency content: (i) ripples, which include 
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oscillatory events between 80 and 200 Hz [13] and (ii) fast 
ripples, namely oscillatory events between 250-500 Hz [14]. 
Both ripples and fast ripples have been observed in the epi-
leptic tissue of animals and humans, in association with in-
terictal spikes or seizures; moreover, fast ripples have been 
reported to occur more frequently in seizure onset zones [14-
21]. Interictal and ictal discharges as well as HFOs may 
share some common synchronizing mechanisms [5]. 

 This review will specifically focus on the role of (i) exci-
tatory and (ii) inhibitory signaling as well as (iii) non-

synaptic mechanisms (which include voltage-gated ionic 
currents and gap junctions) in epileptiform synchronization. 
In each of these sections, we will also take into consideration 
which of the current antiepileptic drugs are thought to target 
these mechanisms thus leading to reduction or prevention of 
seizures in patients (and animal models). 

2. EXCITATORY SIGNALING 

 Interictal discharges represent the first epileptic phe-
nomenon to be experimentally reproduced. Several studies 

 

Fig. (1). A: Interictal discharges recorded in the entorhinal cortex (EC), CA3 region of the hippocampus and amygdala (Amy) of a pilo-
carpine-treated epileptic rat. Note that some interictal spikes are only observed in some regions whereas other tend to propagate. B: Repre-
sentative spontaneous seizure recorded in a pilocarpine-treated epileptic rat from the EC, CA3 region and amygdala. Low-voltage fast activ-
ity (arrows) marks the onset of the seizure, which is in this case first observed in the CA3 region. C: High-frequency activity (80-500 Hz) 
recorded in association with an interictal spike, from a pilocarpine-treated epileptic animal. The interictal spike is visible on the wideband 
signal (W/B) whereas high-frequency activity is only visible after the signal has been filtered between 80-200 Hz and between 250-500 Hz. 
Ripples include oscillatory events that are only visible in the 80-200 Hz frequency band (left panel) whereas fast ripples include events that 
are only visible in the 250-500 Hz frequency band (right panel). 
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performed in vivo in the 1950s and 1960s revealed that epi-
leptic cortical foci, acutely induced by the topical application 
of convulsants (such as penicillin or strychnine) or local 
freezing, generate spikes in the EEG of animals that share 
features with those recorded from patients presenting with 
focal epileptic disorders (see for review Ayala et al., 1973 
[22]). Intracellular recordings from neurons located in these 
foci demonstrated that interictal events were associated with 
paroxysmal depolarizing shifts (PDSs) of the neuron mem-
brane potential causing bursts of action potential firing fol-
lowed by a hyperpolarization [23-28]. 

 These findings were later confirmed in experiments per-
formed in brain slices maintained in vitro during bath appli-
cation of drugs interfering with GABAA receptor signaling 
(Fig. 2). These studies demonstrated that interictal spikes: (i) 
reflect the enhancement of synaptic excitation that results 
from the weakening of inhibition, and (ii) rest on recurrent 
excitation and regenerative Ca2+ currents that make cortical 
principal cells fire synchronously [29-31]. Shortly after, 
Daniel Johnston and his collaborators firmly demonstrated 
that the PDSs associated with interictal spikes represent net-
work-driven giant synaptic potentials [32]; moreover, results 
obtained in further experiments performed in this laboratory 
showed that the relative contribution of excitatory (glutama-

tergic) and inhibitory (GABAergic) currents to the PDS (and 
thus to the interictal spike) generation depends on the spe-
cific pharmacological manipulations employed to induce 
them [33-35] (see also section 3). 

 Ictal discharges, which are characterized by prolonged 
depolarizations of the neuronal membrane leading to the 
sustained firing of action potentials, were also reported to 
occur, but less frequently, in some of the original in vivo 
acute studies (cf., [25]). Moreover, ictal activity was re-
corded in vitro during the blockade of GABAA receptor sig-
naling but only when immature brain slices (postnatal days 9 
to 19) were employed [36]. As discussed below (section 3), 
ictal activity is often observed in adult brain tissue main-
tained in vitro during pharmacological procedures that do not 
solely interfere with GABAA receptor-mediated inhibition 
[5, 37]. In principle, this evidence suggests the contribution 
of ionotropic glutamatergic receptor-mediated inward (depo-
larizing) currents to both interictal and ictal discharge gen-
eration. Moreover, several studies have demonstrated the 
involvement of synaptic excitatory interactions in the gen-
eration of HFOs, and in particular those occurring at fre-
quency higher than 200 Hz (the so called fast ripples) [38]. 

 The availability of selective antagonists of ionotropic 
glutamate receptors in the 1980s led to the identification of 
the involvement of NMDA and non-NMDA - i.e., α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and 
kainate - ionotropic glutamatergic receptor subtypes [39, 40] 
in both interictal and ictal discharges recorded from several 
cortical areas including the hippocampus, the subiculum, the 
rhinal, cingulate and insular cortices, the amygdala, and the 
neocortex [41-49] (Fig. 3C-E). However, since ionotropic 
glutamate receptors are essential for normal brain activity 
and synaptic plasticity (i.e., in processes that underlie learn-
ing and memory) they cannot just be antagonized to achieve 
seizure control in epileptic patients. For instance, peram-
panel- which is the only approved antiepileptic drug with 
AMPA antagonism properties [50] - induces dizziness and 
motor impairment, perhaps due to inhibition of cerebellar 
AMPA receptors [51-53]. Therefore, recent attempts have 
been made to develop drugs that can block forebrain but not 
cerebellar AMPA receptors [54]. In addition, Olney et al. 
[55] have shown that NMDA receptor antagonism MK-801 
could cause psychotomimetic and memory-impairing side 
effects, as well as neurotoxicity. 

 In spite of these limitations, several antiepileptic drugs 
can interfere with ionotropic glutamatergic functions. For 
instance, topiramate selectively inhibits kainate receptor-
mediated excitatory postsynaptic responses in principal neu-
rons of the rat basolateral amygdala [56], while protecting 
against seizures induced in vivo by 2-amino-3-(5-tert-butyl-
3-hydroxy-4-isoxazolyl) propionic acid, which is a selective 
agonist of the GluR5 kainate receptor [57]. Braga et al. [58] 
reported that topiramate, by blocking presynaptic GluK1 
kainate receptors, inhibits glutamate-mediated suppression of 
GABA release from interneurons, thus indirectly enhancing 
GABAA receptor-mediated inhibition. It has also been re-
ported that the antiepileptic drug felbamate interacts with 
NMDA receptors in cultured rat hippocampal neurons [59]. 
Such action should reduce glutamate release by blocking 

 

Fig. (2). A: Spontaneous interictal-like events recorded in the per-
irhinal cortex in a rat brain slice maintained in vitro during applica-
tion of picrotoxin. B: Interictal discharge recorded from the human 
neocortex in an in vitro brain slice preparation following a single-
shock electrical stimulus (triangle) that was delivered through a 
stimulating electrode close to recording micropipettes. Upper and 
lower traces, in both A and B, correspond to intracellular and field 
potential recordings. 
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Fig. (3). A: Spontaneous interictal-like epileptiform activity recorded in vitro from the CA3 area of a rat hippocampal slice during application 
of 4-aminopyridine. Simultaneous intracellular (upper trace) and field potential (lower trace) recordings are shown in a, while intracellular 
recordings performed at different membrane potential values (obtained by injecting steady intracellular current) are illustrated in b. B: Simul-
taneous intracellular (upper trace) and field potential (lower trace) recordings obtained from the CA3 area of a rat hippocampal slice during 
application of 4-aminopyridine; note that two types of interictal-like events occur: single asterisk identifies the ‘fast’ interictal spike (also 
depicted in panels Aa and Ab) while double asterisks point to the ‘slow’ interictal event that is characterized by a long-lasting depolarization. 
C: Effects induced by the ionotropic glutamate receptor antagonists (CPP and DNQX) on the spontaneous interictal-like epileptiform activity 
induced by 4-aminopyridine in a hippocampal brain slice during 4-aminopyridine application; note that blockade of glutamatergic ionotropic 
transmission abolishes only the “fast” interictal spikes. D and E: Effects induced by NMDA (CPP) and non-NMDA (CNQX) receptor an-
tagonism on the ictal discharges recorded in an extended brain slice during application of 4-aminopyridine. Note that CPP abolishes the ictal 
activity without modifying the interictal discharges; in contrast, CNQX blocks both ictal and fast interictal discharges while the slow spikes 
continue to occur. 
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presynaptic NMDA receptors in the entorhinal cortex; this 
specific effect did not occur when phenytoin or gabapentin 
was used [60]. 

 Recent studies have also focussed on the role of me-
tabotropic glutamate receptors in seizure generation and epi-
leptogenesis [61]. Activation of metabotropic group II and 
III receptors exerts anticonvulsant effects [62, 63]. In con-
trast, stimulation of metabotropic group 1 receptors in brain 
slices that were not generating spontaneous epileptiform 
activity under control conditions, elicits seizure-like dis-
charges that continue to occur after washout of the agonist, 
and result from the activation of voltage-dependent cationic 
currents along with concomitant suppression of afterhyper-
polarization [64-66]. These effects are similar to those re-
ported to occur during activation of muscarinic receptors by 
the muscarinic agonist carbachol in subiculum and entorhi-
nal cortex [67-69]. It has been indeed shown that the anti-
epileptic drug topiramate can reduce these carbachol-induced 
excitatory effects [70]. To date, however, in spite of this evi-
dence, little is known about the precise ability of antiepilep-
tic drugs to target metabotropic glutamate receptors. 

3. INHIBITORY SIGNALING 

 Inhibition in the brain results mainly from the activation 
of GABAA and GABAB receptors that are located pre-, post- 
and extra-synaptically on the membrane of principal cells 
and interneurons. GABAA receptors activate ionotropic ani-
onic channels that are permeable to Cl- and HCO3

-- while 
GABAB receptors act through second messengers leading to 
a K+ hyperpolarizing current [37, 71]. Early studies reported 
that interfering with GABA synthesis leads to convulsions 
[72] while treatment with exogenous GABA prevents sei-
zures [73]. In addition, as mentioned in section 2, several 
convulsive drugs are GABAA receptor antagonists [29, 30], 
and inhibition is markedly reduced at the onset of electro-
graphic seizures recorded in the hippocampus [74] or neo-
cortex [75]. As originally reported by Sloviter [76], several 
studies have also suggested that decreased inhibition in an 
epileptic brain results from functional disconnection of in-
terneurons from excitatory inputs (a.k.a., dormant interneu-
ron hypothesis). In addition, decreased inhibition has been 
documented in mesial temporal lobe epilepsy and attributed 
to deficits in GABA transporter function [77] and/or altera-
tions in GABAA receptor subunit composition [78-82]. 
Therefore, in the early 1990s, weakening of inhibition was 
considered by the majority of epilepsy researchers as the 
main mechanism leading to focal seizures and thus to epilep-
tic disorders. 

 This view has been challenged by successive studies in 
which epileptiform activity was found to occur during phar-
macological manipulations that do not interfere with GABAA 
receptor function and at times, paradoxically, enhance it. 
First, it was shown that epileptiform discharges induced by 
application of Mg2+ free-medium, were accompanied by 
preservation of inhibition [83, 84]. Second, it was found that 
cortical networks made hyperexcitable by blocking specific 
K+ currents generate two types of synchronous interictal 
spikes (Fig. 3A, B) and that one of them continues to be gen-
erated  even when AMPA and NMDA glutamatergic recep-

tors were antagonized [85-87] (Fig. 3C-E). These interictal 
spikes were abolished by GABAA receptor antagonists and 
were associated with elevations in extracellular [K+] that 
depend on GABAA receptor activation [88-91]. GABAA re-
ceptor activation can indeed lead to accumulation of Cl- in-
side the postsynaptic neurons thus activating the co-
transporter KCC2 that extrudes K+ and Cl- [92, 93]. In addi-
tion, GABAA receptor-mediated depolarizations in cortical 
neurons are contributed by HCO3

−, an anion that goes 
through the activated GABAA receptor and has an equilib-
rium potential more positive than Cl− [94-96]. 

 Around this time, several studies demonstrated that 
GABAA receptor activation can play a paradoxical role in 
initiating and maintaining focal seizure-like activity [88, 89, 
97-105]. As illustrated in Fig. 4A-C, pharmacological proce-
dures that interfere with GABAA signaling, can abolish pro-
longed periods of epileptiform synchronization (which re-
semble ictal events) and replace them with a pattern of recur-
ring, short-lasting interictal spikes. In addition, such ictal 
activity was potentiated by low doses of phenobarbital, a 
drug that enhances GABAA receptor function (Fig. 4D). The 
unexpected role played by GABAA receptors in initiating and 
maintaining focal seizures has been confirmed over the last 
two decades by several studies including those in which op-
togenetic activation of parvalbumin- or somatostatin-positive 
interneurons was reported to initiate ictal events similar to 
those occurring spontaneously [106, 107]. Interestingly, the 
role of GABAA signaling in promoting epileptiform syn-
chronization is underscored by the ability of CA1 hippocam-
pal networks to generate prolonged discharges following 
pharmacological blockade of both GABAB and ionotropic 
glutamatergic receptors [108]. Data obtained from models of 
mesial temporal lobe epilepsy also indicate that the onset of 
focal seizures is associated with increased activity of in-
terneurons that release GABA thus silencing principal neu-
rons [109-111]. In line with this evidence, the onset of sei-
zures in epileptic patients undergoing presurgical electro-
physiological investigations, is associated with marked re-
duction of unit firing [112, 113]. 

 The evidence that increasing GABAA receptor function 
promotes epileptiform synchronization and thus focal seizure 
activity may explain the disappointingly limited efficacy of 
several antiepileptic drugs that were developed in the 1990s 
to potentiate GABAA signaling, to control seizures in epilep-
tic patients. These compounds include γ-vinyl-GABA 
(which inhibits the breakdown of GABA by the enzyme 
GABA transaminase) [114], tiagabine (which increases 
GABA levels by inhibiting GABA reuptake) [115, 116] and 
progabide [117, 118]. Gabapentin, which is similar in struc-
ture to GABA but does not interact with GABA receptors 
[119], has also shown limited efficacy in controlling seizures. 
On the other hand, benzodiazepines can halt seizure activity 
and stop status epilepticus [120]. These compounds increase 
GABAA receptor function in the central nervous system by 
acting on an allosteric ‘benzodiazepine site’ located on most 
α subunit-containing GABAA receptors [121-123]. 

 The roles played by metabotropic GABAB receptors re-
main to some extent unclear. Their activation, obtained by 
bath applying baclofen, promotes ictal-like discharges in 
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hippocampal slices during exposure to 4-aminopyridine 
[124, 125]; but see also Mott et al [126]. Presumably, these 
effects depend on activity-dependent changes in hippocam-
pal network excitability along with the weakening of 
GABAA receptor signaling [125, 126]. However, successive 
experiments demonstrated that blocking GABAB receptors, 
at least in the 4-aminopyridine model, did not consistently 
reduce epileptiform synchronization [127]. 

4. NON-SYNAPTIC MECHANISMS 

 Voltage-gated Na+ currents, which play a role in action 
potential firing and in generating persistent depolarizing cur-
rents, are by definition non-synaptic although they are trig-
gered and sustained by synaptic depolarizations [128-130]. 
The repetitive firing of action potentials is a consistent fea-
ture of epileptiform discharges (Fig. 5A), and therefore the 
activity of voltage-gated Na+ channel is relevant in the 
pathophysiology of both generalized and focal epileptic dis-
orders [131, 132]. A significant increase in persistent Na+ 
currents occurs in models of mesial temporal lobe epilepsy 
[133, 134] and in neurons recorded from tissue resected from 
temporal lobe epileptic patients [135]. Findings obtained 
from transgenic mice have also indicated that an increase in 

persistent Na+ current is sufficient to cause chronic seizures 
[133, 135-137]. 

 As illustrated in Fig. 5B, voltage-gated Na+ channels 
comprise a central α-subunit and two auxiliary β-subunits; 
these channels: (i) are in a closed state at hyperpolarized 
(around resting) membrane potentials; (ii) briefly open when 
the membrane is depolarized thus producing an inward Na+ 
current causing the ascending component of the action po-
tential; and then (iii) convert to a non-conducting inactivated 
state [128]. Attenuation of voltage-gated Na+ current is in-
duced, at therapeutic concentrations, by several antiepileptic 
drugs that are effective for treating epileptic patients present-
ing with focal and secondarily generalized seizures. Phenytoin 
and carbamazepine are the prototypic drugs exerting such an 
effect but several other antiepileptic compounds-which in-
clude valproate, lamotrigine, topiramate and lacosamide- 
may also act on this target (see for review [131, 138]). 

 As detailed in Fig. 5B, these antiepileptic drugs are weak 
blockers of voltage-gated Na+ channels when the neuron is at 
resting membrane potential but their action is greatly en-
hanced during sustained membrane depolarization or high-
frequency channel activity, which are both occurring during 
seizure activity. These functional characteristics mirror the 

 

Fig. (4). A and B: Effects induced by interfering with GABA receptor function on the epileptiform synchronization induced in vitro by 4-
aminopyridine in the rodent piriform (A) or anterior cingulate cortex (B). Note that both antagonizing GABAA receptors with picrotoxin 
(PTX) or decreasing GABA release with the mu-opioid receptor agonist [d-Ala2,N-MePhe4-,Gly-ol5] enkephalin (DAGO) abolish ictal dis-
charges; note also that the effects induced by DAGO are abolished by successive application of naloxone. C: Antagonizing GABAA recep-
tors with bicuculline methiodide (BMI) blocks the occurrence of ictal discharges induced by 4-aminopyridine in slices of the human neocor-
tex presenting with focal dysplasia. D: In these in vitro experiments, ictal discharges are increased in duration by low doses of phenobarbital 
(PhB, 20 µM), but abolished by higher concentrations of this barbiturate (PhB, 40 µM). 
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modulated receptor model that was developed to describe the 
mechanism of action of local anesthetics [128]. According to 
this model, the closed channels, which predominate at rest-
ing membrane potential, have a low affinity for these antiepi-
leptic drugs while the inactivated channels, which are pre-
dominant at depolarized potentials, bind them with high af-
finity [114, 128, 139]. These characteristics explain why 
these antiepileptic drugs suppress seizures while having 
minimum effects on normal brain functions, i.e., when brain 
neuronal networks are normally functioning and thus not 
undergoing sustained prolonged states of depolarization. 

 Besides Na+, other voltage-gated channels can be the 
target of antiepileptic drugs. Accordingly, it has been re-
ported that lamotrigine increases the hyperpolarization-
activated cation current, also termed Ih, that is largely present 
in the dendrites of pyramidal cells of the hippocampus [140] 
(see for review Poolos et al., 2012 [141]). A similar effect 
has been identified with the antiepileptic drug gabapentin 
[142]. Lamotrigine has also been shown to inhibit N-type 
and P-type high-voltage-activated Ca²+ channels [143] that 

are instrumental in both excitatory and inhibitory synaptic 
transmission [144]. In keeping with the role of synaptic neu-
rotransmitter release in the generation of seizure activity, a 
rather new and efficacious antiepileptic drug, levetiracetam, 
has been proposed to modulate presynaptic Ca²+ channel 
activity by acting on the synaptic vesicle glycoprotein SV2A, 
which interacts with synaptotagmin and results in neuro-
transmitter release modulation [145, 146]. Levitiracetam has 
anti-ictogenic effects in animal models of epilepsy such as in 
the amygdala kindling model [147], audiogenic kindling 

[148], spontaneously epileptic rats [149], the kainic acid 
model [150] and the pilocarpine model [151]. Since altera-
tions in Ca2+ are correlated to epileptiform discharges, the 
antagonistic effects of levetiracetam and lamotrigine on Ca2+ 
signaling might represent the basis for their anticonvulsant 
efficacy. Beyond that, regulation of Ca2+ homeostasis could 
also preserve neuronal viability [152], and also lacosamide 
can provide protection against excitotoxicity without altering 
synaptic plasticity [153]. Lamotrigine as well as carba-
mazepine have also been reported to increase voltage-gated 
K+ outward (repolarizing) currents [154, 155]. 

 

Fig. (5). A: Intracellular activity generated by a presumptive principal cell in the rodent perirhinal cortex maintained in vitro during applica-
tion of 4-minopyridine; note that the ictal activity is associated with sustained discharge of ‘fast’, Na+ dependent action potentials. B: Func-
tional states of the voltage-gated Na+ channel under control conditions and in the presence of an antiepileptic drug such as phenytoin or 
lamotrigine. Na+ channels are in resting states at hyperpolarized membrane potentials. In response to membrane depolarization, they open 
and then inactivate. Antiepileptic Na+ channel blockers bind with low affinity to resting states but with higher affinity to inactivated states. 
This state-dependent action causes the voltage and activity-dependent inhibition that enables these drugs to be effective antiepileptic agents. 
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 Epileptiform synchronization also depends on non-
synaptic interactions such as intercellular gap junctions, 
ephaptic interactions, and - as discussed above - elevations in 
extracellular [K+] (see for review Jefferys et al. [4]). Indeed, 
non-synaptic synchronizing mechanisms may play important 
roles in contributing to seizure activity, which is associated 
with decreases in extracellular [Ca2+] that are incompatible 
with fully efficient synaptic transmission [7, 156]. Gap junc-
tions, which are constituted by connexins and pannexins 
[157, 158], may play significant roles in synchronizing neu-
ronal networks under physiological and pathological condi-
tions including epileptic disorders [159-162]. For instance, 
Draguhn et al. [163] have reported that spontaneous high-
frequency activity at approximately 200 Hz (ripples) in the 
CA1 region of the hippocampus in vitro is generated by 
principal cell networks that are synchronized trough gap 
junctions. In vivo, in transgenic Connexin36 deficient mice, 
a reduction in the frequency of occurrence of ripples and 
epileptiform discharges induced with 4-aminopyridine was 
observed by the same group [164]. Oscillations at higher 
frequencies (> 250 Hz) are also reduced under carbenox-
olone in hippocampal slices from epileptic patients [165] and 
in vivo in pilocarpine-treated mice [166]. Pharmacological 
procedures that block or enhance the function of gap junc-
tions could therefore lead to a decrease or an increase of  
epileptiform synchronization, respectively (see for review 
Mylvaganam et al., 2014 [162]; Carlen et al., 2000 [167]). It 
has also been established that the astrocytic connexin 43 is 
elevated in human epileptic tissue [168, 169] while experi-
ments performed in human neocortical tissue from patients 
with focal cortical dysplasia have shown that gap junction 
blockers reduce ictal-like events induced by 4-aminopyridine 
[170]. Although gap junction blockers depress synaptic and 
non-synaptic currents thus producing nonspecific effects (cf., 
[171, 172]), gap junctions remain an appropriate target for 
the development of antiepileptic drugs. 

CONCLUDING REMARKS 

 We have presented here a short review of the studies ad-
dressing the fundamental cellular and pharmacological 
mechanisms that lead to the initiation, maintenance and 
spread of focal epileptiform discharges. We have highlighted 
the fact that while excitation and voltage-gated sodium are a 
main components of the synchronous firing that characterize 
an epileptiform event, GABAA receptor signaling emerges as 
a surprising, paradoxical mechanism that actively contributes 
to the initiation and maintenance of prolonged epileptiform 
phenomena (i.e., to ictogenesis). In addition, while voltage-
gated sodium channels remain the best studied target for 
antiepileptic drugs, recent data obtained with levetiracetam 
suggest that its anti-ictogenic properties might be associated 
with the modulation of both excitatory and inhibitory trans-
mission trough changes in calcium dynamics. Non-synaptic 
mechanisms, such as the activity of gap junctions, might also 
underlie the generation of epileptiform synchronization. Al-
together, these findings-which have been obtained in vivo 
and in vitro over the last six decades - reveal a complex pat-
tern of participating mechanisms to ictogenesis. 
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