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Abstract

Shear-induced platelet activation (SIPAct) is an important mechanism of thrombosis initia-

tion under high blood flow. This mechanism relies on the interaction of platelets with the von

Willebrand factor (VWF) capable of unfolding under high shear stress. High shear stress

occurs in the arteriovenous fistula (AVF) commonly used for haemodialysis. A novel patient-

specific approach for the modelling of SIPAct in the AVF was proposed. This enabled us to

estimate the SIPAct level via computational fluid dynamics. The suggested approach was

applied for the SIPAct analysis in AVF geometries reconstructed from medical images. The

approach facilitates the determination of the SIPAct level dependence on both biomechani-

cal (AVF flow rate) and biochemical factors (VWF multimer size). It was found that the

dependence of the SIPAct level on the AVF flow rate can be approximated by a power law.

The critical flow rate was a decreasing function of the VWF multimer size. Moreover, the crit-

ical AVF flow rate highly depended on patient-specific factors, e.g., the vessel geometry.

This indicates that the approach may be adopted to elucidate patient-specific thrombosis

risk factors in haemodialysis patients.

Introduction

One of the main functions of platelets is their participation in haemostatic reactions prevent-

ing excessive blood loss in case of injury [1,2]. In this respect, a key feature of platelets is their

ability to sense high shear flow which occurs at the injury site after primary vasoconstriction

[3,4]. This flow-sensing mechanism is based on the interaction of platelets with von Willeb-

rand factor (VWF)–a multimeric protein able to undergo conformational changes under high

shear stress [5–7]. Under pathological conditions the same flow-sensing mechanism plays an

important role in the initiation of intravascular thrombosis [8–12].

During the recent years substantial efforts have been made to understand shear-induced

platelet activation (SIPAct) and its impact on thrombus formation [13,14]. Both experimental

(biochemical/biophysical) [15–20] an theoretical (mathematical/computational) [21–25]

approaches were found to be very helpful in these efforts. Recent achievements in
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mathematical modelling [26] combined with current techniques of medical imaging [27,28]

and computational fluid dynamics [29,30] open new prospects for patient-specific assessment

of the SIPAct. Aim of this research work was to implement such a personalised approach on

the example of patients with arteriovenous fistulas (AVF).[6–79]

The AVF is a surgically created connection between an artery and a vein, widely applied in

long-term haemodialysis [31,32]. Clinical benefits of its application are primarily limited by

the level of thrombotic complications [33,34]. Development of thrombotic risk reduction

approaches for patients with AVF is a matter of great concern [35,36]. Increased rate of throm-

botic complications among AVF patients might be attributed not only to the surgical proce-

dure itself but also to abnormal high shear flow in AVF [32,37]. In this study, we used clinical

imaging data of AVFs obtained from selected patients for computational assessment of the

SIPAct level under these abnormal flow conditions.

It is generally accepted that both the magnitude and duration of the shear stress determine

whether platelets are activated [16,38,39]. The effect of shear stress on platelets under unsteady

flow conditions could be described in terms of its integral characteristic—cumulative shear

stress (CSS) [23,40]. If CSS exceeds a certain critical value, SIPAct occurs [16,19]. It has been

recently suggested that this threshold value depends on the von Willebrand factor (VWF) mul-

timer size [26].

In the current study, we have combined computational reconstruction of patient-specific

vessel geometry and haemodynamics with a recent mathematical model describing VWF-

mediated platelet activation [26]. As a result, a novel patient-specific approach for the model-

ling of SIPAct has been developed. The capabilities of the approach were demonstrated using

personalized data of haemodialysis patients with AVFs. It was found that the dependence of

the SIPAct level on the AVF flow rate can be approximated by a power law. The critical AVF

flow rate was found to be highly depending on patient-specific factors (e.g., the vessel

geometry).

We hope that the developed approach may find its further application for the assessment of

patient-specific thrombotic risk factors in haemodialysis patients with AVFs. Also the

approach might be extended to several other clinically valid settings with increased risk of

thrombosis (for example, in circulatory assist devices) [41,42].

Materials and methods

The approach is aimed at evaluating the SIPAct level in the AVF considering patient-specific

data. The evaluation is performed via computational fluid dynamics (CFD) methods. Informa-

tion on the AVF vessel anatomy, blood flow intensity (time-dependent flow waveforms), and

VWF multimer size was considered in the calculations (Fig 1). In the current work, patient-

specific AVF geometries were used in the calculations. The AVF flow rate and VWF multimer

size were chosen as parameters.

Patient-specific data

Analysis of SIPAct was performed in two mature patient-specific AVFs. The AVF of the first

patient (P1) was formed in the forearm of the non-dominant upper extremity from the radial

artery and cephalic vein (radiocephalic AVF). The AVF of the second patient (P2) was created

at the elbow of the non-dominant arm from the brachial artery and cephalic vein (brachioce-

phalic AVF). The patients were subjected to non-contrast enhanced magnetic resonance angi-

ography (MRA) of the non-dominant arm vessels. The scan was performed three months

postoperatively. MRA images of the arm were acquired with a voxel size of 0.6×0.9×1.4 mm

for both AVFs with a 1.5 T scanner (Ingenia, Philips Healthcare, the Netherlands).
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The haematocrit was equal to 33% in both patients. Standard coagulogical parameters and

additional clinical characteristics of patients are presented at S2 Text.

The study was approved by the Ethics Committee of the National Research Center for

Hematology. Serial MRA data of arteriovenous fistulas from 2 patients were acquired at MRI

and US diagnostic department of National Research Center for Hematology using protocols

approved by the Review Board of National Research Center for Hematology. Written informed

consent was obtained from all patients of this study in accordance with the Declaration of

Helsinki.

Patient-specific AVF geometries

Patient-specific geometries of the AVFs were reconstructed from MRA data via methods

described elsewhere (Fig 2) [43]. Straight cylindrical extensions with a length of at least one

diameter of the adjacent vessel were added to AVF vessels to ensure flow development [44]. A

hexahedral volume mesh was generated based on the reconstructed geometries. Four layers of

thin prism cells with a growth rate of 1.2 inwards were placed near the AVF vessel walls to

resolve the boundary layer [45]. The grid convergence index method was adopted to determine

the appropriate cell number in the computational meshes (S1 Text) [46]. The final volume

meshes contained approximately 930000 (AVF P1) and 950000 (AVF P2) cells with character-

istic sizes of 0.016 mm and 0.024 mm, respectively.

Basic equations

This work is aimed at the analysis of platelet activation initiated by the unfolding of VWF mul-

timers on platelet surfaces [24,26]. VWF unfolding is supposedly initiated under overcritical

Fig 1. Overview of the SIPAct level estimation in patient-specific AVF geometries. MRA–magnetic resonance angiography; CFD–computational fluid

dynamics.

https://doi.org/10.1371/journal.pone.0272342.g001
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cumulative shear stress [26]. The subsequent binding of VWF multimers with platelet GPIb

receptors triggers outside-in signalling, i.e., platelet priming [47,48]. Platelet priming leads to

platelet activation at which conspicuous functional consequences (e.g., P-selection expression)

are observed [19]. In this regard, the SIPAct level in the investigated region can be estimated

via the calculation of the priming platelet number [49].

The calculation of the SIPAct level was performed in several steps. First, unsteady Navier-

Stokes equations were solved [50]. As a result, the distributions of the velocity and static pres-

sure in the AVFs were obtained. Blood was treated as an incompressible Newtonian fluid. The

Fig 2. Patient-specific AVF geometries. The left column (A) shows raw non-contrast enhanced MRA data. The right column (B) shows

reconstructed three-dimensional AVF geometries. The white dashed rectangle in the raw MRA data delineates the zone of interest. The

black arrows indicate the direction of blood flow in the AVF vessels. Blood flows into the AVF through the artery inlet (Ga
in) and leaves the

AVF through the artery (Ga
out) and vein (Gv

out) outlets in all CFD calculations. The P1 and P2 symbols designate the AVFs of the first and

second patients, respectively.

https://doi.org/10.1371/journal.pone.0272342.g002
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dynamic viscosity was calculated via its well-established dependence on the haematocrit [51].

A time-dependent Poiseuille velocity profile was prescribed at the inlet (Ga
in, Fig 2) and outlet

(Ga
out, Fig 2) of the artery. The instantaneous average velocity was calculated based on the volu-

metric flow rate. Volumetric flow rate waveforms were adapted from the literature [52]. The

static pressure remained fixed, and velocity was allowed to float at the vein outlet (Gv
out , Fig 2).

These boundary conditions are typically considered at the outflow boundary in internal flow

calculations [53]. A no-slip condition was prescribed at the vessel walls. The influence of vas-

cular distensibility on the distribution of the variables of interest was assumed to be non-signif-

icant (rigid wall assumption) [54,55].

After solving the Navier-Stokes equations, the distribution of the CSS in the AVFs was

obtained. For this purpose, components of the viscous shear stress tensor in the AVF were

determined via the calculated velocity distribution and patient dynamic viscosity [56]. The

magnitude of shear stress (τ) on platelets at a given point of space was calculated as previously

described [56]. The calculated shear stress distribution τ was considered in the estimation of

the CSS in the AVF according to the following equation:

@CSS
@t
þ V!;r

!
� �

CSS ¼ t � y t � t#

� �
ð1Þ

where V! denotes the velocity vector, r
!

is the nabla operator, θ(τ−τ#) denotes the Heaviside

function, and τ#� τ#(N) denotes the threshold value of the shear stress for the VWF multimers

with a given number of monomers (N). Eq (1) states that only overcritical shear stress is con-

sidered in the cumulative shear stress calculation. The dependence of the shear stress threshold

on the VWF multimer size was derived earlier [26]. This dependence is approximated by the

following relation at N� 1:

t# ¼ t0 � N
� 2=3 ð2Þ

where τ0 is a dimensional factor. The following set of boundary conditions for Eq (1) was con-

sidered. The cumulative shear stress was equal to zero at the artery inlet (Ga
in, Fig 2). A zero-

gradient condition was prescribed at the artery (Ga
out , Fig 2) and vein (Gv

out , Fig 2) outlets. This

condition is typically applied in modelling of passive scalar transport at the outflow boundary

[57]. A no-flux condition was prescribed at the vessel walls.

The obtained distribution of the CSS in the AVF was used to calculate the platelet priming

level. First, the following equation was solved:

@P
@t
þ V!;r

!
� �

P ¼ � kP � y CSS � CSS0ð Þ ð3Þ

where P denotes the concentration of resting platelets with globule-like VWF multimers

grafted onto the platelet surfaces, CSS0� CSS0(N) denotes the threshold cumulative shear

stress for unfolding of VWF multimers with a given size and k is a rate constant. The distribu-

tion of the priming platelet concentration (Pa) was further determined according to the follow-

ing balance condition:

Pa ¼ P0 � P ð4Þ

where P0 is the initial resting platelet concentration. The value of CSS0 for a given N in Eq (3)

was calculated via the explicit expression derived previously (S2 Text) [26]. The dependence

may be approximated at N� 1 with the expression:

CSS0 � C � N1=3 ð5Þ
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where C is a dimensional factor. P was set to P0 at the artery inlet (Ga
in, Fig 2). A zero-gradient

condition was prescribed at the artery (Ga
out, Fig 2) and vein (Gv

out, Fig 2) outlets. A no-flux con-

dition was set at the vessel walls.

The variable of the platelet activation level (PAL) was considered a characteristic of the

SIPAct level in the fistulas:

PAL ¼
1

Dt

Z t0þDt

t0

Ja
JS
dt

 !

� 100% ð6Þ

where Δt = mΔt0, m denotes the number of cardiac cycles, Δt0 denotes the duration of a cardiac

cycle, Ja is the convective flux of the priming platelets, and JS is the total convective platelet

flux expressed as:

Ja ¼
I

Gvout

PaV
!
� dS
�!

ð7Þ

JS ¼
I

Gvout

P0V
!
� dS
�!

ð8Þ

where dS
�!

denotes the surface vector of an infinitesimal part of the vein outlet, and P0 was

introduced previously (Eq (4)).

The values of the parameters are given in S2 Text.

Methodology of SIPAct analysis in the AVF

The aim of the study was to calculate the dependence of the SIPAct level (Eq (6)) on the AVF

flow rate and VWF multimer size in patient-specific AVFs (Fig 2).

The influence of the first factor was investigated by varying the average volumetric flow rate

Qa
in per cardiac cycle at the arterial inlet (Ga

in, Fig 2). According to clinical studies, the value of

Qa
in may range from 300 mL/min to 1000 mL/min in successfully mature radiocephalic AVFs

[58,59]. In turn, the average flow rate in successfully mature brachiocephalic AVFs typically

ranges from 500 mL/min to 1500 mL/min [58,59]. In this work, the upper value of Qa
in was set

to 775 mL/min and 1350 mL/min for AVF P1 and AVF P2, respectively. The flow rate Qa
out

through the arterial outlet (Ga
out, Fig 2) was set to 50 mL/min, and the flow direction was cho-

sen to be anterograde, i.e., directed towards the hand. The lower value of Qa
in was set to 150

mL/min as the value of Qa
out rarely exceeds one-third of Qa

in [60]. The average flow rate through

the fistula vein (AVF flow rate) Qout
v was considered during post-processing of the calculation

results:

Qv
out ¼ Qa

in � Qa
out ð9Þ

The time-dependent volumetric flow rate waveforms are given in S3 Text.

The number of monomeric subunits (N) in the VWF multimers ranges from 2 to 80 under

physiological conditions [61]. VWF multimers with a size smaller than 10 do not practically

affect platelets [62–64]. In turn, VWF multimers with more than 80 monomers are detected in

blood only under certain pathological conditions [61]. In this work, the value of N ranges from

10 to 100 monomers, unless otherwise specified. The VWF size distribution in blood plasma is

assumed to be monodisperse.

Preliminary calculations indicated that different numbers of cardiac cycles are needed for

the establishment of quasiperiodic oscillations of Ja and JS (Eqs (7) and (8)) at low and high
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AVF flow rates, respectively. The duration of the calculations ranged from 6 to 15 s (S4 Text).

The limitations of the current approach are discussed in S5 Text.

Numerical methods and programs

Reconstruction of the patient-specific AVF geometries was performed in SimVascular soft-

ware [43]. Computational meshes were generated in CF-MESH+ software (№128-14790459).

CFD calculations were performed in OpenFOAM software [65]. The Navier-Stokes equations,

Eqs (1) and (3), were solved numerically via the finite volume method with splitting techniques

[66–68]. To discretize the convective term in the Navier-Stokes equations, a high-resolution

scheme was adopted [69]. The upwind scheme was applied to discretize the convective terms

in Eqs (1) and (3) [66,70]. The time term in all partial differential equations was discretized via

the Crank-Nicholson scheme [71]. An adjusted time step was used, whose size was calculated

from the condition of Co< 1, where Co is the Courant number [30]. The Navier-Stokes equa-

tions were solved with the PISO algorithm [72]. A DIC-preconditioned conjugate-gradient

(PCG) linear solver was used to calculate the pressure field, and a DILU-preconditioned bicon-

jugate gradient stabilized (BiCGSTAB) linear solver was used for the remaining fields [73].

Visualization of the calculation results was performed in ParaView software [74].

Results

The distribution of the key variables in the AVF P1 at the different stages of the cardiac cycle is

shown in Fig 3 (Qv
out = 725 mL/min, N = 100). The analysis of the calculated streamline behav-

iour demonstrated that blood flow in the fistula vein exhibited a complex nature throughout

the cardiac cycle (Fig 3A). The flow originating from the proximal part of the artery (i.e.,

located closer to the heart from anastomosis) formed a recirculation zone along an inner

venous wall. The blood flow in this zone was characterized by an irregular change of the direc-

tion of the velocity vector. The observed flow unsteadiness additionally indicated that both the

amplitude and duration of the shear stress should be considered in the estimation of the blood

flow effect on platelets. Zones of overcritical shear stress and cumulative shear stress satisfying

the conditions of τ> τ# and CSS> CSS0, respectively, occurred adjacent to the proximal part

of the artery wall and the outer fistula vein wall (Fig 3B and 3C, respectively). The presence of

these zones caused platelet priming in the fistula vein throughout the entire cardiac cycle (Fig

3D). The SIPAct level (Eq (6)) did not exceed 2%.

The calculation results of SIPAct in AVF P2 (Fig 2) are shown in Fig 4 (Qv
out = 1300 mL/

min, N = 100). The streamline behaviour throughout the cardiac cycle was qualitatively similar

to that in AVF P1 (Fig 4A). Zones of overcritical shear stress and cumulative shear stress were

observed throughout the entire cardiac cycle (Fig 4B and 4C). The SIPAct level in the AVF P2

did not exceed 0.2%.

The influence of the AVF flow rate and VWF multimer size on the level of SIPAct was

investigated in both AVFs (Fig 5). The SIPAct level monotonically increased with an increas-

ing flow rate in both AVFs (Fig 5; S6 Text). In the fistula of the first patient, the SIPAct level

was equal at a certain value of the flow rate Qi for the VWF multimer sizes N = 10 and N = 100

(Fig 5A). The SIPAct level was higher for larger multimer sizes (N = 100) at flow rates Qv< Qi.

In the case of Qv> Qi, the SIPAct level was higher for smaller VWF multimer sizes (N = 10).

Notably, the intersection point of Qi was not observed in the AVF P2 (Fig 5B). The larger

the VWF multimer size was, the higher the SIPAct level. Consequently, larger VWF multimers

could pose a higher risk of SIPAct over the investigated range of flow rates in AVF P2.
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The results (Fig 5) were approximated by an equation with the following form:

PAL ¼ aðQout
v � QcrÞ

b
ð10Þ

where a, Qcr and β are approximation parameters. The exponent β was found to be a decreas-

ing function of the VWF multimer size for both patients (Table S6.1 in S6 Text). The obtained

result suggests that the SIPAct level for smaller VWF size should exceed the SIPAct level for

larger VWF size with an increasing flow rate in AVF P2. In this regard, the point of Qi seems

to lie outside the investigated range of the flow rate (Fig 5B). The abscissa of the curve intersec-

tion point (Qi) was equal to approximately 1585 mL/min for AVF P2. This value exceeds the

maximum flow value applied in the simulations (1300 mL/min).

The calculations also indicated that the SIPAct level in AVF P1 is nonzero up to the mini-

mum AVF flow rate (Qv
out = 100 mL/min, Fig 5A). In this regard, estimation of the critical flow

(Qcr, Eq (10)) was performed via the correlation coefficient maximization method [75]. In

turn, the critical flow rates in the case of AVF P2 were obtained via the bisection method. The

smaller the multimer size was, the higher the critical flow rate for both AVFs. The founded

critical flow rates for the AVFs are presented in S6 Text.

Fig 3. Key calculated variables in the AVF P1 in systole (upper row) and diastole (lower row). The distributions of the velocity magnitude |V!
��!

| (A), shear

stress τ (B), cumulative shear stress CSS (C) and primed platelets Pa (D) are obtained at the highest parameter values (Qv
out = 725 mL/min, N = 100). The blue

and red colours correspond to the lowest and highest variable values, respectively. The links for the supporting movies are available in S6 Text.

https://doi.org/10.1371/journal.pone.0272342.g003
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The influence of the VWF multimer size on the SIPAct level is shown in Fig 6. The SIPAct

level monotonically increased with increasing multimer size at a relatively low flow rate (300

mL/min, Fig 6A). However, the SIPAct level was a decreasing function of the VWF multimer

size at a higher flow rate (725 mL/min). This suggests that a reduction in the VWF size may

paradoxically lead to an increase in the SIPAct level at sufficiently high flow rates through

AVF P1.

A parametric diagram of SIPAct in the AVF was obtained for both patients (Fig 7). The

dependence of the critical flow rate Qcr on the VWF multimer size enabled us to distinguish

two parameter regions. The first region corresponds to the values of the parameters where no

SIPAct was observed (region I). In turn, the second region is the region of the values of the

parameters for which SIPAct should occur (region II). The critical flow rate monotonically

decreased with increasing VWF multimer size. Thus, a lower AVF flow rate is needed to

induce SIPAct at larger VWF multimer sizes in both AVFs.

The AVF should maintain a minimum blood flow of 300 mL/min to sustain effective hae-

modialysis [76]. The critical flow rates for AVF P1 were significantly lower than the abovemen-

tioned value (Fig 7A). This suggests that SIPAct should occur within a practically important

flow rate range in this case. In contrast, the SIPAct level remained zero up to flow rates of

Fig 4. Key calculated variables in the AVF P2 in systole (upper row) and diastole (lower row). The distributions of the velocity magnitude |V!
��!

| (A), shear

stress τ (B), cumulative shear stress CSS (C) and primed platelets Pa (D) are obtained at the highest parameter values (Qv
out = 1300 mL/min, N = 100). The blue

and red colours correspond to the lowest and highest variable values, respectively. The links for the supporting movies are available in S6 Text.

https://doi.org/10.1371/journal.pone.0272342.g004
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Fig 5. Dependence of the SIPAct level on the flow rate for two multimer sizes in patient-specific AVFs. The calculation results for P1 and P2 AVFs are

shown in graphs (A) and (B), respectively. The calculated points are obtained for VWF multimer sizes (N) of 10 and 100. The approximation curves (Eq (10))

are represented by the solid (N = 10) and dashed (N = 100) lines. Qi denotes the AVF flow rate at which the approximating curves intersect. Q10
cr and Q100

cr denote

the critical values of the flow rate through the fistula vein below which SIPAct was not observed for VWF multimer sizes of 10 and 100, respectively. The

calculation results for intermediate values of the VWF multimer size are given in S6 Text.

https://doi.org/10.1371/journal.pone.0272342.g005

Fig 6. Dependence of the SIPAct level on the VWF multimer size in P1 (A) and P2 (B) AVFs. The results are obtained at AVF flow rates (Qout
v ; Eq (7)) of 300

mL/min (dashed line) and 725 mL/min (solid line) for the first patient. The first value corresponds to the minimum flow rate required for effective

haemodialysis. The second value represents the maximum AVF P1 flow rate used in the calculations. The results are obtained at AVF flow rates of 736 mL/min

(dashed line) and 1300 mL/min (solid line) for the second patient. The first value corresponds to the flow rate when SIPAct is absent for the lowest VWF

multimer size within the considered range (N = 10). The second value is the maximum AVF flow rate used in this work for the second patient. The solid and

dashed lines are to guide the eye.

https://doi.org/10.1371/journal.pone.0272342.g006

PLOS ONE Patient-specific approach to analysis of shear-induced platelet activation in haemodialysis AVF

PLOS ONE | https://doi.org/10.1371/journal.pone.0272342 October 3, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0272342.g005
https://doi.org/10.1371/journal.pone.0272342.g006
https://doi.org/10.1371/journal.pone.0272342


approximately 740 mL/min (Q10
cr ) and 400 mL/min (Q100

cr ) in the AVF P2 (Fig 7B). It can be

concluded that SIPAct is not a thrombosis risk factor for the second patient up to the deter-

mined critical flow rates.

Discussion

In the current work, a patient-specific approach for the modelling of SIPAct in AVFs was

developed. This approach is based on the idea that the critical shear stress and critical cumula-

tive shear stress depend on the VWF multimer size (Eqs (2) and (5)) [24,26]. The SIPAct level

in the AVF is calculated via CFD methods considering the abovementioned dependencies and

realistic geometries of the fistula vessels reconstructed from medical images. The capabilities

of the approach for the analysis of SIPAct in patient-specific AVF geometries were demon-

strated (Figs 5–7).

Methods for SIPAct modelling via medical imaging and CFD methods began to develop

since the early 2000s [77-79]. These approaches were focused on the investigation of bio-

mechanical factors influencing the initiation of thrombus formation. In particular, the pres-

ence of overcritical shear stress zones was explored.

In the current work, the SIPAct level dependence on both biomechanical factors (Fig 5)

and the VWF multimer size (Fig 6) were analysed. The influence of the VWF multimer size on

the SIPAct level in AVF P1 yielded opposite effects at low and high AVF flow rates (Fig 6A). In

particular, the SIPAct level increased with decreasing VWF size at high flow rates. This effect

was not observed in the AVF P2 (Fig 6B). It was shown that SIPAct in AVF P2 may be

completely absent within the physiological range of the VWF multimer size at flow rates suffi-

cient for haemodialysis (Fig 7A). In contrast, SIPAct in AVF P1 should be initiated within the

practically important range of the flow rate (Fig 7B).

The obtained results vary for different patients. Thus, patient-specific factors such as the

anatomical structure of the AVF vessel and emerging flow abnormalities might be considered

Fig 7. Parametric diagram of SIPAct in P1 (A) and P2 (B) AVFs. Region I corresponds to the values of the parameters at which no SIPAct should be observed.

Region II represents the values of the parameters at which SIPAct can occur. The solid lines approximate the dependence of the critical flow rate (Qcr) on the

VWF multimer size. The value N� (N� = 4) is the minimum number of VWF monomers when the approach used in this work is applicable [24]. The parameter

values of the approximation curves are given in S6 Text.

https://doi.org/10.1371/journal.pone.0272342.g007
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as a source of additional risk of thrombotic complications in haemodialysis patients. More-

over, the approach developed in the current paper allows to quantitatively characterize these

individual factors from the point of view of potential platelet activation risk. Further studies on

sufficiently large cohorts of patients will be necessary to determine clinical prognostic value of

the developed approach [80,81]. Also, a careful correlation analysis including the results of

numerical simulations and different other biomarkers (e.g. sP-selectin, GPIIb-IIIa) will be

needed to determine the relative impact of SIPAct on the thrombosis risk in haemodialysis

patients. Such a broad-scale research might become possible in the nearest future through col-

laboration with several clinical centers.

It was shown that the shift in the VWF size distribution towards smaller multimers may

lead to an increase in the SIPAct level at sufficiently high AVF flow rates (Fig 6A). It may be

supposed that the efficacy reduction of antiplatelet therapy in haemodialysis patients could be

related to this fact [35,82]. These therapies are based on common drugs that do not sufficiently

block shear-induced activation pathway in platelets [20,83,84]. Moreover, a shift in the VWF

distribution to smaller multimers has been observed in haemodialysis patients [85]. We sup-

pose that the use of drugs capable of effectively blocking SIPAct should reduce the level of

thrombotic complications in haemodialysis patients [86,87].

The SIPAct level should initiate thrombus formation in cases when the level exceeds a cer-

tain individual value. It seems promising to conduct experiments aimed at the systematic

investigation of the interpatient threshold variability in haemodialysis patients [20,88].

We suppose that the SIPAct level in the AVF is one of the risk factors for thromboembolic

complications in haemodialysis patients [33]. Platelets move downstream from their priming loca-

tion after passing the overcritical shear stress zone in a fistula. As a result, primed platelets are

capable of provoking thromboembolic complications in distal vascular networks [16,19,20,89].

Acoustic diagnostic methods are of great interest to reduce the level of thrombotic complica-

tions in haemodialysis patients. To date, ultrasound methods have been applied not only for the

acquisition of information on biomechanical AVF features (vessel geometry and flow waveforms)

[44] but also for the direct detection of the initiation of thrombus formation [90]. Estimation of

the SIPAct level in combination with the abovementioned methods may reduce the level of life-

threatening complications in haemodialysis patients via timely antithrombotic intervention.

Arterial pressure rise leads to an increase in the AVF flow rate and consequently in the

value of cumulative shear stress. In accordance with the current work, these changes should

lead to an increase in the SIPAct level in a fistula. In contrast, a decrease in blood flow should

reduce the cumulative shear stress. Moreover, a decrease in the blood flow rate below the

threshold level should lead to the absence of SIPAct. From this point of view, even short-term

physical activity or severe emotional stress could be additional risk factors for thrombotic

complications in haemodialysis patients. The relationship of these factors with a thrombotic

complication risk increase has been established for the general population [91,92]. It is of

interest to investigate the role of SIPAct, which can be initiated by pressure spikes, in the

occurrence of thrombotic complications in haemodialysis patients.

The current approach enables us to estimate the critical flow rate in patient-specific AVFs

at the given VWF multimer size (Fig 7). Thus, an opportunity for the estimation of patient-

specific safe blood pressure is created. The assessment of the indicated individual blood pres-

sure level can be of clinical interest.

Conclusion

In this paper, a patient-specific approach for the estimation of the SIPAct level in AVFs was

developed. This approach is based on a combination of modern medical imaging technologies,
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CFD methods, and the mathematical model of platelet activation induced by unfolding of the

VWF multimers [24,26]. The in silico approach may be applied for the determination of spe-

cific ways of thrombotic complication reduction in haemodialysis patients considering their

individual features.
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