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Abstract: The cinnoline nucleus is a very important bicyclic heterocycle that is used as the structural
subunit of many compounds with interesting pharmaceutical properties. Cinnoline derivatives
exhibit broad spectrum of pharmacological activities such as antibacterial, antifungal, antimalarial,
anti-inflammatory, analgesic, anxiolytic and antitumor activities. Some of them are under evaluation
in clinical trials. In the present review, we have compiled studies focused on the biological properties
of cinnoline derivatives conducted by many research groups worldwide between 2005 and 2019.
Comprehensive and target oriented information clearly indicate that the development of cinnoline
based molecules constitute a significant contribution to the identification of lead compounds with
optimized pharmacodynamic and pharmacokinetic properties.
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1. Introduction

Cinnoline (1,2-benzodiazine) 1, depicted in Figure 1, is present in many compounds of considerable
pharmacological and chemical importance [1]. It is six-membered ring system with two nitrogen atoms,
an isosteric relative to either quinoline or isoquinoline and isomeric with phthalazine [1,2].
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nitrogen atoms, an isosteric relative to either quinoline or isoquinoline and isomeric with phthalazine 
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Figure 1. Structure of the cinnoline ring system. 

Synthesis of cinnoline and its derivatives has been extensively discussed in many papers [2–9]. 
Until 2011, no compounds containing the cinnoline ring system were found in nature. The first 
natural cinnoline derivative 2-furanmethanol-(5′→11)-1,3-cyclopentadiene-[5,4-c]-1H-cinnoline 2 
(Figure 2) was isolated from Cichorium endivia when investigating the in vitro and in vivo 
hepatoprotective properties of Cichorium endivia L. extract (CEE) [10]. Synthetic molecules bearing a 
cinnoline framework are extensively studied due to their various biological activities depending on 
the nature and position of their substituents. In addition, they are often designed as analogs of 
previously obtained quinoline or isoquinoline derivatives [11–14].  

Figure 1. Structure of the cinnoline ring system.

Synthesis of cinnoline and its derivatives has been extensively discussed in many papers [2–9].
Until 2011, no compounds containing the cinnoline ring system were found in nature. The first natural
cinnoline derivative 2-furanmethanol-(5′→11)-1,3-cyclopentadiene-[5,4-c]-1H-cinnoline 2 (Figure 2)
was isolated from Cichorium endivia when investigating the in vitro and in vivo hepatoprotective
properties of Cichorium endivia L. extract (CEE) [10]. Synthetic molecules bearing a cinnoline framework
are extensively studied due to their various biological activities depending on the nature and position
of their substituents. In addition, they are often designed as analogs of previously obtained quinoline
or isoquinoline derivatives [11–14].
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Figure 2. Structure of 2-furanmethanol-(5′→11)-1,3-cyclopentadiene-[5,4-c]-1H-cinnoline. 

Cinnoline, together with other bicyclic scaffolds, is the subject of our special interest as the  
terminal moiety of symmetrical compounds designed in agreement with the bisintercalators’ 
structural requirements [15,16]. Our previous review describing the biological properties of cinnoline 
derivatives included papers and patents published until 2004 [1]. Herein, we aimed to review 
documents published from 2005 to 2019, focusing on the compounds bearing a cinnoline nucleus, in 
particular with respect to their biological activity and potential therapeutic use. 

2. Biological Activity of Cinnoline Derivatives 

2.1. Antimicrobial Activity 

Infectious diseases constitute a growing therapeutic challenge worldwide due to the developing 
resistance of pathogens to known drugs [17,18]. As a consequence, there is an urgent need to design 
new compounds with improved activity against drug-sensitive as well as drug-resistant pathogens. 
Cinnoline derivatives were widely studied as antimicrobial agents [1]. Cinoxacin 3 (Figure 3) is a 
common drug used in urinary tract infections [19]. Since it has a high phototoxicity index, Vargas et 
al. synthesized the naphthyl ester of cinoxacin 4 (Figure 3) in order to evaluate its possible application 
in antibacterial phototherapy. The ester derivative of cinoxacin 4 exhibited comparable photostability 
and antibacterial activity against E. coli to the parent drug but enhanced antibacterial activity upon 
irradiation [20]. 
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Figure 3. Cinoxacin and its naphthyl ester derivative. 

Depicted in Figure 4, 6-hydroxycinnolines were synthesized and tested for in vitro antifungal 
activity against Candida and Aspergillus species. It was elucidated that most of the obtained 
compounds exhibited potent antifungal activity against C. krusei, C. neoformans, and A. niger, with the 
highest activity towards C. neoformans [21]. 
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Figure 2. Structure of 2-furanmethanol-(5′→11)-1,3-cyclopentadiene-[5,4-c]-1H-cinnoline.

Cinnoline, together with other bicyclic scaffolds, is the subject of our special interest as the
terminal moiety of symmetrical compounds designed in agreement with the bisintercalators’ structural
requirements [15,16]. Our previous review describing the biological properties of cinnoline derivatives
included papers and patents published until 2004 [1]. Herein, we aimed to review documents published
from 2005 to 2019, focusing on the compounds bearing a cinnoline nucleus, in particular with respect
to their biological activity and potential therapeutic use.

2. Biological Activity of Cinnoline Derivatives

2.1. Antimicrobial Activity

Infectious diseases constitute a growing therapeutic challenge worldwide due to the developing
resistance of pathogens to known drugs [17,18]. As a consequence, there is an urgent need to design
new compounds with improved activity against drug-sensitive as well as drug-resistant pathogens.
Cinnoline derivatives were widely studied as antimicrobial agents [1]. Cinoxacin 3 (Figure 3) is a common
drug used in urinary tract infections [19]. Since it has a high phototoxicity index, Vargas et al. synthesized
the naphthyl ester of cinoxacin 4 (Figure 3) in order to evaluate its possible application in antibacterial
phototherapy. The ester derivative of cinoxacin 4 exhibited comparable photostability and antibacterial
activity against E. coli to the parent drug but enhanced antibacterial activity upon irradiation [20].
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Depicted in Figure 4, 6-hydroxycinnolines were synthesized and tested for in vitro antifungal 
activity against Candida and Aspergillus species. It was elucidated that most of the obtained 
compounds exhibited potent antifungal activity against C. krusei, C. neoformans, and A. niger, with the 
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Figure 3. Cinoxacin and its naphthyl ester derivative.

Depicted in Figure 4, 6-hydroxycinnolines were synthesized and tested for in vitro antifungal
activity against Candida and Aspergillus species. It was elucidated that most of the obtained compounds
exhibited potent antifungal activity against C. krusei, C. neoformans, and A. niger, with the highest
activity towards C. neoformans [21].
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Cinnoline derivatives bearing sulphonamide moiety 6 (Figure 5) were synthesized as potential
antimicrobial and antifungal agents. Evaluation of their activity against a panel of bacteria strains
including P. aeruginosa, E. coli, B. subtilis, S. aureus and fungi C. albicans and A. niger revealed that
the combination of two active moieties in one molecule resulted in significant activity improvement.
Halogen substituted derivatives showed potent activity at lesser concentrations with approximately
the same zone of inhibition as the reference drug [22].
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Some new cinnoline based chalcones 7 and cinnoline based pyrazoline derivatives 8 (Figure 6) 
were evaluated for their antibacterial activity against B. subtilis, E. coli, S. aureus and K. pneumoniae, 
antifungal activity against A. flavus, F. oxysporum, A. niger and T. viridae and insecticidal activity 
against Periplaneta americana. The most potent tested compounds were 4-Cl-, 2-NO2-, 4-NO2-
substituted cinnoline based chalcones as well as 3-Cl-, 2-NO2- and 4-OH-substituted cinnoline based 
pyrazolines. In addition, all chloro-substituted derivatives of series 7 and hydroxy-substituted 
derivatives of series 8 exhibited better insecticidal activity in comparison to the standard drug [23]. 

N
N

O

R

N
N

N N
H

R

7 8

R = NO2; Cl; Br; OH; OCH3; N(CH3)2  

Figure 6. General structures of cinnoline based chalcones and cinnoline based pyrazoline 
derivatives. 

In the search for potent antibacterial and antimalarial drugs, Unnissa and co-workers 
synthesized pyrazole based cinnoline derivatives 9 (Figure 7). All compounds demonstrated 
significant antitubercular and antifungal activity. Compound 10 4-methyl-3-[5-(4-hydroxy-3-
methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl]cinnoline-6-sulphonamide (Figure 7) was found to be 
the most potent with promising activity against resistant strains of M. tuberculosis and various 
pathogenic fungi [24], as well as against protozoan parasite P. falciparum [25]. 

Figure 5. Cinnolines bearing a sulphonamide moiety with antibacterial and antifungal activity.

Some new cinnoline based chalcones 7 and cinnoline based pyrazoline derivatives 8 (Figure 6)
were evaluated for their antibacterial activity against B. subtilis, E. coli, S. aureus and K. pneumoniae,
antifungal activity against A. flavus, F. oxysporum, A. niger and T. viridae and insecticidal activity against
Periplaneta americana. The most potent tested compounds were 4-Cl-, 2-NO2-, 4-NO2-substituted
cinnoline based chalcones as well as 3-Cl-, 2-NO2- and 4-OH-substituted cinnoline based pyrazolines.
In addition, all chloro-substituted derivatives of series 7 and hydroxy-substituted derivatives of series
8 exhibited better insecticidal activity in comparison to the standard drug [23].
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Figure 6. General structures of cinnoline based chalcones and cinnoline based pyrazoline derivatives.

In the search for potent antibacterial and antimalarial drugs, Unnissa and co-workers
synthesized pyrazole based cinnoline derivatives 9 (Figure 7). All compounds demonstrated
significant antitubercular and antifungal activity. Compound 10 4-methyl-3-[5-(4-hydroxy-3-
methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl]cinnoline-6-sulphonamide (Figure 7) was found to
be the most potent with promising activity against resistant strains of M. tuberculosis and various
pathogenic fungi [24], as well as against protozoan parasite P. falciparum [25].
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Parasuraman et al. described 7-substituted 4-aminocinnoline-3-carboxamide derivatives that 
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tested compounds against V. cholera, E. coli, B. substills, B. linctus, M. luteus, S. aureus, K. pneumoniae, 
Corynebacterium and S. albus was found to be in the range of 6.25–25 μg/mL. The most active 
compounds, 11 and 12 (Figure 8), demonstrated larger or approximately the same zone of inhibition 
as the reference drug ciprofloxacin. In addition, the synthesized compounds exhibited moderate to 
good antifungal activity against A. fumigatus, S. griseus, A. niger, A. parasitus, C. albicans and M. ruber, 
with the zone of inhibition between 8–27 mm. MIC values were found to be in the range of 6.25–25 
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Saxena and co-workers obtained a series of substituted 4-(p-aminopiperazine)cinnoline-3-
carboxamide derivatives 13 (Figure 9). The in vitro antimicrobial screening against G+ B. subtilis and 
S. aureus and G− E. coli and P. aeruginosa revealed the MIC of the synthesized compounds in the range 
of 12.5–50 μg/mL, whereas the zone of inhibition was between 6–29 mm. A. niger and C. albicans were 
used for evaluation of the antifungal activity. The MIC of the tested compounds was found to be in 
the range of 12.5–50 μg/mL, whereas the zone of inhibition was between 8–25 mm. The most potent 
antimicrobial agents in comparison to standard drugs were 6-chloro, 7-chloro and 7-bromo 
substituted derivatives [27].  
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Parasuraman et al. described 7-substituted 4-aminocinnoline-3-carboxamide derivatives that
were evaluated against a panel of Gram+ and Gram− bacteria. All the synthesized compounds
exhibited moderate to good antibacterial activity. The MIC (Minimal inhibitory concentration) of
tested compounds against V. cholera, E. coli, B. substills, B. linctus, M. luteus, S. aureus, K. pneumoniae,
Corynebacterium and S. albus was found to be in the range of 6.25–25 µg/mL. The most active compounds,
11 and 12 (Figure 8), demonstrated larger or approximately the same zone of inhibition as the reference
drug ciprofloxacin. In addition, the synthesized compounds exhibited moderate to good antifungal
activity against A. fumigatus, S. griseus, A. niger, A. parasitus, C. albicans and M. ruber, with the zone of
inhibition between 8–27 mm. MIC values were found to be in the range of 6.25–25 µg/mL [26].
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Figure 8. Selected 4-aminocinnoline-3-carboxamide derivatives with antibacterial and antifungal activity.

Saxena and co-workers obtained a series of substituted 4-(p-aminopiperazine)cinnoline-3-
carboxamide derivatives 13 (Figure 9). The in vitro antimicrobial screening against G+ B. subtilis
and S. aureus and G− E. coli and P. aeruginosa revealed the MIC of the synthesized compounds in the range
of 12.5–50 µg/mL, whereas the zone of inhibition was between 6–29 mm. A. niger and C. albicans were used
for evaluation of the antifungal activity. The MIC of the tested compounds was found to be in the range
of 12.5–50 µg/mL, whereas the zone of inhibition was between 8–25 mm. The most potent antimicrobial
agents in comparison to standard drugs were 6-chloro, 7-chloro and 7-bromo substituted derivatives [27].
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As a continuation of previous studies, they obtained a new series of cinnoline-3-carboxamide
derivatives with five-membered (thiophene 14, furan 15, pyrazole 16, imidazole 17) or six-membered
heterocycle (piperazine 18) substitutions at the 4-amino group of cinnoline core (Figure 10).
Compounds were evaluated for antibacterial, antifungal and anti-inflammatory activity. They exhibited
antibacterial activity against B. subtilis, S. aureus, E. coli and P. aeruginosa. However, the potency of
tested compounds differed depending on the substituent at the cinnoline nucleus. The most potent
compounds in comparison to the standard drug norfloxacin were 6-chloro substituted compounds.
Antifungal activity against C. albicans and A. niger was observed for all series, but the most potent
antifungal agents were the 7-chloro substituted cinnoline thiophene derivative and the 6-chloro
substituted cinnoline furan derivative. In all five series, halogen substituted compounds were found to
be the most active, followed by methyl substituted and nitro substituted derivatives [28].
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Looking for potent antitubercular compounds, Dawadi et al. obtained analogues of nucleoside
antibiotics where the salicyl-sulfamate moiety was replaced by a cinnolinone-3-sulphonamide group.
The most active compound 19 (Figure 11) demonstrated low nanomolar mycobacterial salicylate ligase
(MbtA) inhibition and exhibited very good antimycobacterial activity under iron-deficient conditions
(MIC = 2.3 µM) by blocking production of siderophores in whole M. tuberculosis cells [29].
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Figure 11. Cinnoline nucleoside analog acting as a siderophore biosynthesis inhibitor.

The cinnoline ring system was also used in designing compounds active against tropical protozoan
infections. Devine and co-workers synthesized a panel of compounds with different heterocyclic
scaffolds (quinoline, isoquinoline, cinnoline, phthalazine, 3-cyanoquinoline). Cinnoline derivative
20 (Figure 12) displayed potent proliferation inhibition for L. major and P. falciparum (Half maximal
effective concentration EC50 value = 0.24 µM and 0.003 µM, respectively). In addition, the cinnoline
derivative exhibited increased potency against amastigotes (0.24 µM) but with a significant decrease in
potency against the promastigote form [12].
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Figure 12. N-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-7-(4-((4-methyl-1,4-diazepan-1-yl)sulfonyl)
phenyl)cinnolin-4-amine (NEU-1017).

Some cinnoline derivatives 21 (Figure 13) were patented as compounds active against resistance
developing bacteria. Glinka and co-workers described the invention related to efflux pump inhibitor
(EPI) compounds having polybasic functionalities. The compounds inhibited bacterial efflux pumps
and could be used in combination with an antibacterial agent to treat or prevent bacterial infections. [30].
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2.2. Analgesic and Antiinflamatory Activities

In an effort to find dual acting compounds, Chaudhary et al. designed a series of cinnoline
derivatives with pyrazoline 23 or without a pyrazoline nucleus 22 (Figure 14) as anti-inflammatory
and antibacterial agents. It has been shown that cinnolines bearing pyrazoline ring 23 (Figure 14) and
having electron donating functional groups at the phenyl moiety (methoxyl and hydroxyl) exhibited the
highest anti-inflammatory activity. In case of antibacterial activity, an electron withdrawing substituent
at the phenyl group of cinnoline derivatives without pyrazoline ring 22 (Figure 14), as well as hydroxyl
substitution of the phenyl ring of cinnoline derivatives with a pyrazoline moiety, were associated with
increased activity against G+ (S. aureus, B. subtilis) and G− bacteria (E. coli) [31].
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Cinnoline derivatives have been also reported as phosphodiesterase 4 (PDE4) inhibitors [33]. 
PDE4 is the predominant isoenzyme in almost all immune and inflammatory cells and is an 
important regulator of cyclic adenosine monophosphate (cAMP) content in airway smooth muscle. 
Inhibition of PDE4 leads to bronchodilation and the reduction in the production of inflammatory 
mediators such as tumor necrosis factor (TNF-α) by cAMP down regulation. A PDE4 inhibitor could 
be used as a potential anti-inflammatory agent in chronic obstructive pulmonary disease (COPD), 
asthma, rhinitis and rheumatoid arthritis [34]. Structurally related to quinoline PDE4 inhibitors, 3-
amido-4-anilinocinnoline 29 has been designed by Lunniss et al. in order to overcome the poor 
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A series of dual acting pyrazolo[4,3-c]cinnoline derivatives were also obtained by Tonk and
co-workers. It was elucidated that compounds with an electron donating group in the benzoyl ring
exhibited higher anti-inflammatory activity than compounds with a benzoyl ring substituted by
electron withdrawing groups. Moreover, a methylene spacer between the phenyl group and the
carbonyl carbon increased anti-inflammatory activity, whereas the O-CH2 group caused a considerable
decrease in activity. Compounds that exhibited excellent protection against inflammation 24 and 25,
depicted in Figure 15, also showed a strong cyclooxygenase-2 (COX-2) binding profile. They were
considered safer in terms of gastric ulcerogenicity and lipid peroxidation activity than the standard
drug naproxen. In case of antibacterial activity, compounds with a 4-nitro- (26) or 2,4-dichloro (27)
substituent at the benzoyl group exhibited significant activity against G− (E. coli and P. aeruginosa)
and G+ (S. aureus) bacterial strains. However, compounds with an unsubstituted phenyl ring and
methylene spacer 28 (Figure 15) were found to be the best dual anti-inflammatory and antibacterial
agent (with significant activity against all three strains) [32].
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Cinnoline derivatives have been also reported as phosphodiesterase 4 (PDE4) inhibitors [33].
PDE4 is the predominant isoenzyme in almost all immune and inflammatory cells and is an important
regulator of cyclic adenosine monophosphate (cAMP) content in airway smooth muscle. Inhibition of
PDE4 leads to bronchodilation and the reduction in the production of inflammatory mediators such as
tumor necrosis factor (TNF-α) by cAMP down regulation. A PDE4 inhibitor could be used as a potential
anti-inflammatory agent in chronic obstructive pulmonary disease (COPD), asthma, rhinitis and
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rheumatoid arthritis [34]. Structurally related to quinoline PDE4 inhibitors, 3-amido-4-anilinocinnoline
29 has been designed by Lunniss et al. in order to overcome the poor pharmacokinetic profile in
the cynomolgus monkey [33]. Compound 29 (Figure 16) retained excellent in vitro potency and
>100-fold selectivity versus other PDE isoenzymes with improved pharmacokinetics in the monkey in
comparison to the quinoline analog [33].
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the discovery of a series of 4-aminocinnoline-3-carboxamides that exhibited BTK inhibition were 
reported by Smith et al. A fragment-based screening approach incorporating X-ray co-
crystallography was used to identify a cinnoline fragment and characterize its binding mode. 
Optimization of the fragment hit resulted in the identification of compound 32 (Figure 18), an orally 
absorbed, noncovalent BTK inhibitor reducing paw swelling in a dose- and exposure-dependent 
fashion in a rat model of collagen-induced arthritis [38]. 

Figure 16. The most promising phosphodiesterase 4 (PDE4) inhibitor with a cinnoline nucleus.

Vanilloid receptor subtype VR1 (TRPV1) present in various brain regions, the spinal cord,
peripheral sensory neurons and non-neuronal tissues is considered as a new target for pain
management but all natural vanilloid receptor agonists such as capsaicin cause an initial burning effect.
TRPV1 competitive antagonists, which lack excitatory effects, were designed and evaluated in vivo in
animal pain models. Urea derivative bearing cinnoline group 30 (Figure 17) was synthesized among
other compounds with various bicyclic heteroaromatic pharmacophores as novel potential analgesics
acting through the TRPV1 receptor antagonism ([35] and references therein).
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(TRPV1) receptor antagonist.

Since Bruton’s tyrosine kinase (BTK) is a kinase implicated in autoimmune disorders, BTK
inhibition is considered as an attractive approach for the treatment of autoimmune diseases such as
rheumatoid arthritis [36]. In 2013, scientists from Takeda Pharmaceutical Company Ltd. patented
cinnoline derivatives of general formula 31 depicted in Figure 18 as BTK inhibitors [37]. In addition,
the discovery of a series of 4-aminocinnoline-3-carboxamides that exhibited BTK inhibition were
reported by Smith et al. A fragment-based screening approach incorporating X-ray co-crystallography
was used to identify a cinnoline fragment and characterize its binding mode. Optimization of the
fragment hit resulted in the identification of compound 32 (Figure 18), an orally absorbed, noncovalent
BTK inhibitor reducing paw swelling in a dose- and exposure-dependent fashion in a rat model of
collagen-induced arthritis [38].
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Figure 18. Structure of 4-aminocinnoline-3-carboxamide derivatives that exhibit Bruton’s tyrosine
kinase (BTK) inhibition activity.

Cinnoline derivatives were also evaluated as human neutrophil elastase (HNE) inhibitors.
Excessive HNE activity is connected with many inflammatory disorders and compounds which
are able to inhibit the proteolytic activity of HNE represent promising therapeutic agents for the
treatment of diseases involving its excessive activity. Potential HNE inhibitors bearing cinnoline
scaffolds were designed by transformation of indazole into the cinnoline by enlargement of the pyrazole
ring of the N-benzoylindazoles reported earlier [39,40]. Studies revealed that although cinnoline
derivatives (33 and 34 were the most potent) (Figure 19) were reversible competitive inhibitors of
HNE with increased stability in aqueous solution, they exhibited lower potency in comparison to
N-benzoylindazoles ([41] and references therein).
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A cinnoline fused Mannich base with a large hydrophobic diphenyl substituent at amino group
35 (Figure 20) exhibited higher analgesic activity when compared to diclofenac at 120 min and 180 min.
In addition, its dose level (50 mg/kg) resulted in similar anti-inflammatory activity in comparison
to celecoxib (20 mg/kg). What is more, compound 35 as well as 36 (with a dicyclohexane moiety)
(Figure 20) also exhibited antibacterial activity with a larger zone of inhibition when compared to
streptomycin in S. aureus and E. coli, respectively [42].
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2.3. Potential for Neurological Disorders

Compounds bearing a cinnoline nucleus fused with various heterocyclic scaffolds were also
designed as potential therapeutic agents aiming at treating many neurological and psychiatric disorders
e.g., Huntington’s [43] or Alzheimer’s disease [44].

Amer et al. synthesized dibenzopyrazolocinnolines and evaluated their antiparkinsonian activity.
The pharmacological screening revealed that the most active compounds 37 and 38, depicted in
Figure 21, exhibited antiparkinsonian activity comparable to benzatropine [45].
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The phosphodiesterase 10A (PDE10A) enzyme is involved in cellular signaling pathways in 
schizophrenia. As a consequence, inhibitors of PDE10A offer a promising therapeutic approach for 
the treatment or prevention of psychiatric disorders, especially schizophrenia and related diseases 
[49]. 

Hu et al. described 6,7-dimethoxy-4-(pyridine-3-yl)cinnolines as novel phosphodiesterase 10A 
inhibitors. The mode of binding in the enzyme’s catalytic domain was also elucidated. Selective 
inhibitor of PDE10A 41 (Figure 23) was selected. It demonstrated efficacy in a rodent behavioral 
model of schizophrenia and good in vivo metabolic stability in rats [50]. Yang et al. described high in 
vitro potency of compounds 41 and 42 (Figure 23) for PDE10A with the half maximal inhibitory 
concentration (IC50) values of 1.52 ± 0.18 nM and 2.86 ± 0.10 nM, respectively and 1000-fold selectivity 

Figure 21. Dibenzopyrazolocinnolines with antiparkinsonian activity.

Mutations in the leucine-rich repeat kinase 2 (LRRK2) protein have been associated with
Parkinson’s disease. Inhibition of LRRK2 kinase activity by a selective small-molecule inhibitor
has been proposed as a potential treatment for this disease [46]. Scientists from Elan Pharmaceuticals
worked on a series of cinnoline LRRK2 small-molecule inhibitors identified from a kinase-focused
high throughput screening (HTS) of an in-house library [47]. In addition, Garofalo et al. reported
4-aminocinnoline-3-carboxamide derivatives 39, 40 (Figure 22) potent against both wild-type and
mutant LRRK2 kinase activity in biochemical and cellular assays. In addition, these compounds
exhibited excellent central nervous system penetration. Unfortunately, due to disappointing kinase
specificity, they were no longer studied [48].
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The phosphodiesterase 10A (PDE10A) enzyme is involved in cellular signaling pathways in
schizophrenia. As a consequence, inhibitors of PDE10A offer a promising therapeutic approach for the
treatment or prevention of psychiatric disorders, especially schizophrenia and related diseases [49].

Hu et al. described 6,7-dimethoxy-4-(pyridine-3-yl)cinnolines as novel phosphodiesterase 10A
inhibitors. The mode of binding in the enzyme’s catalytic domain was also elucidated. Selective inhibitor
of PDE10A 41 (Figure 23) was selected. It demonstrated efficacy in a rodent behavioral model of
schizophrenia and good in vivo metabolic stability in rats [50]. Yang et al. described high in vitro
potency of compounds 41 and 42 (Figure 23) for PDE10A with the half maximal inhibitory concentration
(IC50) values of 1.52 ± 0.18 nM and 2.86 ± 0.10 nM, respectively and 1000-fold selectivity over
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PDE3A/B and PDE4A/B. These compounds were also suitable for positron emission tomography (PET)
radionuclide labelling [51].
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Recently, Geneste et al. described the optimization of HTS hit structure 46 (Figure 25) supported 
by X-ray crystal structure analysis and molecular modeling which gave 3H-pyrazolo[3,4-c]cinnolines 
47 and 48 (Figure 25), which are potent, selective and brain-penetrant PDE10A inhibitors with an 
improved pharmacokinetic profile in rats [53]. Preparation of 3H-pyrazolo[3,4-c]cinnoline derivatives 
as PDE10A inhibitors was also the subject of patent WO2014/027078 [54]. 

Figure 23. Structure of 6,7-dimethoxy-4-(pyridine-3-yl)cinnolines with potent phosphodiesterase 10A
(PDE10A) inhibitory activity.

Since some 6,7-dimethoxy-4-(pyridine-3-yl)cinnolines also exhibited PDE3 activity (a risk of
off-target effects), optimization of structure 43 (Figure 24) led to the discovery of compounds 44 and
45 (Figure 24) with significantly improved selectivity against PDE3 but maintaining their PDE10A
inhibitory activity and in vivo metabolic stability comparable to 43 (Figure 24) [52].

Molecules 2019, 24, x 11 of 25 

 

over PDE3A/B and PDE4A/B. These compounds were also suitable for positron emission tomography 
(PET) radionuclide labelling [51]. 

N
N

N

N

O

O

OH N

N
N

N

N

O

O

OH N

F

41 42  
Figure 23. Structure of 6,7-dimethoxy-4-(pyridine-3-yl)cinnolines with potent phosphodiesterase 10A 
(PDE10A) inhibitory activity. 

Since some 6,7-dimethoxy-4-(pyridine-3-yl)cinnolines also exhibited PDE3 activity (a risk of off-
target effects), optimization of structure 43 (Figure 24) led to the discovery of compounds 44 and 45 
(Figure 24) with significantly improved selectivity against PDE3 but maintaining their PDE10A 
inhibitory activity and in vivo metabolic stability comparable to 43 (Figure 24) [52]. 

N
N

N

N

O

O

OH

N
N

N

N

O

O

OH

N
N

N

N

O

O

CHF2

OH

43 44 45  
Figure 24. PDE10A inhibitors with improved selectivity. 

Recently, Geneste et al. described the optimization of HTS hit structure 46 (Figure 25) supported 
by X-ray crystal structure analysis and molecular modeling which gave 3H-pyrazolo[3,4-c]cinnolines 
47 and 48 (Figure 25), which are potent, selective and brain-penetrant PDE10A inhibitors with an 
improved pharmacokinetic profile in rats [53]. Preparation of 3H-pyrazolo[3,4-c]cinnoline derivatives 
as PDE10A inhibitors was also the subject of patent WO2014/027078 [54]. 
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Recently, Geneste et al. described the optimization of HTS hit structure 46 (Figure 25) supported
by X-ray crystal structure analysis and molecular modeling which gave 3H-pyrazolo[3,4-c]cinnolines
47 and 48 (Figure 25), which are potent, selective and brain-penetrant PDE10A inhibitors with an
improved pharmacokinetic profile in rats [53]. Preparation of 3H-pyrazolo[3,4-c]cinnoline derivatives
as PDE10A inhibitors was also the subject of patent WO2014/027078 [54].
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cognitive impairment and schizophrenia. Josef and co-workers obtained compounds with the 
tricyclic benzocinnolinone pyridazinone core as analogues of irdabisant. The compounds 2H-
benzo[h]cinnolin-3-ones and 3H-benzo[f]cinnolin-2-ones exhibited high H3 receptor binding affinity 
with excellent selectivity against the H1R, H2R and H4R subtypes of histamine receptor. Modification 
to the linker/amine region of the pharmacophore resulted in ±49 as a mixture of diastereoisomers 
(Figure 26), which showed improved metabolic stability and rat pharmacokinetics following oral 
administration ([55] and references therein). 
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Cinnoline derivatives are also enumerated among non-benzodiazepine modulators of γ-
aminobutyric acid  receptor A (GABA A) [56]. Astra Zeneca works on an orally bioavailable positive 
modulator of the GABA A α2 and α3 subunits and developed novel compound 50 depicted in Figure 
27 as a possible treatment or prophylaxis of anxiety disorders, cognitive disorders, and/or mood 
disorders [57]. AZD7325 (51) and AZD6280 (52) depicted in Figure 27 were identified as positive 
modulators at α2/α3 and negative modulators at α5 GABA A receptors and exhibited a potent 
anxiolytic-like effect without sedation or cognitive impairment [13,58]. These compounds have 
undergone clinical trial phase I [59,60]. Moreover, AZD7325 was studied in two phase II proof-of-
concept trials in patients with general anxiety disorders (NCT 00807937 and NCT00808249) as well 
as in a phase II proof-of-mechanism in patients with autism spectrum disorders (NCT01966679). In 
addition, the diverse metabolite profile of AZD7325 was investigated [61]. In vivo studies in rat and 
in vitro studies in human, rat, mouse, rabbit and dog liver microsomes were performed with 
radiolabeled AZD7325, revealing approximately 40 metabolites [61,62]. 

Figure 25. Selected 3H-pyrazolo[3,4-c]cinnolines that act as potent, selective and brain-penetrant
PDE10A inhibitors.

The cinnoline scaffold turned out to be a useful building block in designing compounds targeting
histamine receptor H3. Involvement of the H3 receptor subtype in the presynaptic regulation
of the release of various neurotransmitters in the central nervous system makes it an attractive
target for treating diseases such as attention-deficit hyperactivity disorder, Alzheimer’s disease,
mild cognitive impairment and schizophrenia. Josef and co-workers obtained compounds with
the tricyclic benzocinnolinone pyridazinone core as analogues of irdabisant. The compounds
2H-benzo[h]cinnolin-3-ones and 3H-benzo[f ]cinnolin-2-ones exhibited high H3 receptor binding
affinity with excellent selectivity against the H1R, H2R and H4R subtypes of histamine receptor.
Modification to the linker/amine region of the pharmacophore resulted in ±49 as a mixture of
diastereoisomers (Figure 26), which showed improved metabolic stability and rat pharmacokinetics
following oral administration ([55] and references therein).

Molecules 2019, 24, x 12 of 25 

 

N
N

N

N

N

F

O

N

N

N
N

N

O

O

N
N

N

NHO

O

46 47 48
 

Figure 25. Selected 3H-pyrazolo[3,4-c]cinnolines that act as potent, selective and brain-penetrant 
PDE10A inhibitors. 

The cinnoline scaffold turned out to be a useful building block in designing compounds 
targeting histamine receptor H3. Involvement of the H3 receptor subtype in the presynaptic regulation 
of the release of various neurotransmitters in the central nervous system makes it an attractive target 
for treating diseases such as attention-deficit hyperactivity disorder, Alzheimer’s disease, mild 
cognitive impairment and schizophrenia. Josef and co-workers obtained compounds with the 
tricyclic benzocinnolinone pyridazinone core as analogues of irdabisant. The compounds 2H-
benzo[h]cinnolin-3-ones and 3H-benzo[f]cinnolin-2-ones exhibited high H3 receptor binding affinity 
with excellent selectivity against the H1R, H2R and H4R subtypes of histamine receptor. Modification 
to the linker/amine region of the pharmacophore resulted in ±49 as a mixture of diastereoisomers 
(Figure 26), which showed improved metabolic stability and rat pharmacokinetics following oral 
administration ([55] and references therein). 

NN
H

O O

N+/- 49

 

Figure 26. Potent benzocinnolinone analogue of irdabisant with high histamine receptor H3 H3R 
binding affinity. 

Cinnoline derivatives are also enumerated among non-benzodiazepine modulators of γ-
aminobutyric acid  receptor A (GABA A) [56]. Astra Zeneca works on an orally bioavailable positive 
modulator of the GABA A α2 and α3 subunits and developed novel compound 50 depicted in Figure 
27 as a possible treatment or prophylaxis of anxiety disorders, cognitive disorders, and/or mood 
disorders [57]. AZD7325 (51) and AZD6280 (52) depicted in Figure 27 were identified as positive 
modulators at α2/α3 and negative modulators at α5 GABA A receptors and exhibited a potent 
anxiolytic-like effect without sedation or cognitive impairment [13,58]. These compounds have 
undergone clinical trial phase I [59,60]. Moreover, AZD7325 was studied in two phase II proof-of-
concept trials in patients with general anxiety disorders (NCT 00807937 and NCT00808249) as well 
as in a phase II proof-of-mechanism in patients with autism spectrum disorders (NCT01966679). In 
addition, the diverse metabolite profile of AZD7325 was investigated [61]. In vivo studies in rat and 
in vitro studies in human, rat, mouse, rabbit and dog liver microsomes were performed with 
radiolabeled AZD7325, revealing approximately 40 metabolites [61,62]. 

Figure 26. Potent benzocinnolinone analogue of irdabisant with high histamine receptor H3 H3R
binding affinity.

Cinnoline derivatives are also enumerated among non-benzodiazepine modulators of
γ-aminobutyric acid receptor A (GABA A) [56]. Astra Zeneca works on an orally bioavailable
positive modulator of the GABA A α2 and α3 subunits and developed novel compound 50 depicted
in Figure 27 as a possible treatment or prophylaxis of anxiety disorders, cognitive disorders, and/or
mood disorders [57]. AZD7325 (51) and AZD6280 (52) depicted in Figure 27 were identified as
positive modulators at α2/α3 and negative modulators at α5 GABA A receptors and exhibited a
potent anxiolytic-like effect without sedation or cognitive impairment [13,58]. These compounds
have undergone clinical trial phase I [59,60]. Moreover, AZD7325 was studied in two phase II
proof-of-concept trials in patients with general anxiety disorders (NCT 00807937 and NCT00808249) as
well as in a phase II proof-of-mechanism in patients with autism spectrum disorders (NCT01966679).
In addition, the diverse metabolite profile of AZD7325 was investigated [61]. In vivo studies in rat
and in vitro studies in human, rat, mouse, rabbit and dog liver microsomes were performed with
radiolabeled AZD7325, revealing approximately 40 metabolites [61,62].



Molecules 2019, 24, 2271 13 of 25
Molecules 2019, 24, x 13 of 25 

 

N
N

NH2 O

NH

O F

52 (AZD7325)

N
N

NH2 O

NH

O

O

51 (AZD6280)

N
N

O

NH
R1

R6
R5

R4
R3 NH

R
2

50  

Figure 27. Cinnoline non-benzodiazepine modulators of γ-aminobutyric acid receptor A (GABA A). 

Cinnolinones (53, 54) (Figure 28) as diaza analogues of known aminobutyrophenones were 
designed as potential atypical psychotics. Determination of the binding affinities towards the 
serotonin receptors 5-HT2A and 5-HT2C, and the dopamine D2 receptors revealed that these 
compounds lacked appreciable affinity for the dopamine D2 receptors, and as a consequence, they 
were not suited as potential psychotics. However, they displayed the highest affinity for the 5-HT2C 
receptor [63]. 
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2.4. Anticancer Properties 

Cinnoline derivatives were also designed as potential anticancer drugs. Extensive studies have 
been performed to assess the topoisomerase 1-targeting (TOP1-targeting) activity and cytotoxicity of 
substituted dibenzo[c,h]cinnolines 55, 56 (Figure 29) as non-CPT (camptothecin) TOP1 inhibitors. 
Structure-activity relationship (SAR) studies of dibenzo[c,h]cinnolines revealed that removal of the 
methylenedioxy group on the D ring or its replacement by other substituents (methoxy-, benzyloxy- 
or hydroxy- groups) resulted in a substantial loss of TOP1-targeting activity. The presence of 2,3-
dimethoxy substituents in ring A was also determined as a crucial structural element for retaining 
TOP1 activity and cytotoxicity. Although the substituted dibenzo[c,h]cinnolines with significant 
TOP1-targeting activity exhibited cross-resistance in camptothecin-resistant cell lines, their 
cytotoxicity was not diminished in cells overexpressing multidrug resistance protein 1 MDR1 [64]. 

Figure 27. Cinnoline non-benzodiazepine modulators of γ-aminobutyric acid receptor A (GABA A).

Cinnolinones (53, 54) (Figure 28) as diaza analogues of known aminobutyrophenones were
designed as potential atypical psychotics. Determination of the binding affinities towards the serotonin
receptors 5-HT2A and 5-HT2C, and the dopamine D2 receptors revealed that these compounds lacked
appreciable affinity for the dopamine D2 receptors, and as a consequence, they were not suited as
potential psychotics. However, they displayed the highest affinity for the 5-HT2C receptor [63].
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2.4. Anticancer Properties

Cinnoline derivatives were also designed as potential anticancer drugs. Extensive studies have
been performed to assess the topoisomerase 1-targeting (TOP1-targeting) activity and cytotoxicity
of substituted dibenzo[c,h]cinnolines 55, 56 (Figure 29) as non-CPT (camptothecin) TOP1 inhibitors.
Structure-activity relationship (SAR) studies of dibenzo[c,h]cinnolines revealed that removal of the
methylenedioxy group on the D ring or its replacement by other substituents (methoxy-, benzyloxy- or
hydroxy- groups) resulted in a substantial loss of TOP1-targeting activity. The presence of 2,3-dimethoxy
substituents in ring A was also determined as a crucial structural element for retaining TOP1 activity and
cytotoxicity. Although the substituted dibenzo[c,h]cinnolines with significant TOP1-targeting activity
exhibited cross-resistance in camptothecin-resistant cell lines, their cytotoxicity was not diminished in
cells overexpressing multidrug resistance protein 1 MDR1 [64].
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Zoidis and co-workers obtained tetra- and pentacyclic cinnoline based compounds indeno[1,2-
c]cinnoline and benzo[h]indeno[1,2-c]cinnoline, respectively, bearing protonable amino groups. All 
tested compounds inhibited proliferation of human cervical carcinoma (HeLa) and human breast 
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As a continuation of studies on the most potent derivative 57, 5,6,11-triazachrysen-12-ones with
various substituents at 11-position were synthesized [65]. Compound 58 (ARC-31, Figure 30) exhibited
an enhanced ability to induce DNA cleavage in the presence of TOP1 and exceptional cytotoxic activity
with IC50 values below 2 nM against the human lymphoblastoma cell line (RPMI8402) but dose
limiting toxicity limited in vivo efficacy in the human tumor xenograft athymic nude mouse model
(MDA-MB-435 breast tumor cell line) [66]. In an effort to obtain a less toxic analog with improved
efficacy, a number of compounds related to 58 (Figure 30) were synthesized where the 11-ethyl group
was substituted at its 2-position with various polar moieties (N-methylamino-, N-isopropylamino-,
hydroxy- and hydroxylamino- groups). These analogs were prepared via the trimethylammonium
derivatives of ARC-31 according to methods described in [67]. All analogs exhibited high cytotoxic
activity. Although, derivatives with N-methylamine 59 and N-isopropylamine 60 (Figure 31) exhibited
greater cytotoxic activity in vitro in comparison to ARC-31, evaluation in vivo in athymic nude
mice showed minimal differences in efficacy in comparison to ARC-31 without therapeutic index
improvement [11].
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Figure 31. TOP1-acting agents related to ARC-31.

Zoidis and co-workers obtained tetra- and pentacyclic cinnoline based compounds
indeno[1,2-c]cinnoline and benzo[h]indeno[1,2-c]cinnoline, respectively, bearing protonable amino
groups. All tested compounds inhibited proliferation of human cervical carcinoma (HeLa) and human
breast adenocarcinoma (MCF-7) cell lines as well as displayed intercalating properties on different
nucleic acid strands, with preference for G-quadruplex sequences. The aminobutylamide derivative 61
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(Figure 32) exhibited the highest antiproliferative activity with IC50 values of 45 nM and 85 nM on
HeLa and MCF-7, respectively, whereas the pentacyclic derivative with the same protonable moiety
(N,N-dimethylamine) 62 (Figure 32) caused the highest thermal stabilization in melting studies and
exerted acceptable inhibitory activity on human topoisomerase IIα [68].
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Borowski and co-workers obtained a series of anthrapyridazone derivatives 63 (Figure 33) bearing
one or two basic side chains at various positions of the tetracyclic core [69,70]. The compounds
2,7-dihydro-3H-dibenzo[de,h]cinnoline-3,7-diones 64 and 65 (Figure 33) exhibited in vitro cytotoxic
activity against murine (L1210) and human (K562) leukemia cell lines. In addition, they were active
against human leukemia multi-drug-resistant (K562/DX) cell lines. The most active compounds 64 and
65 (Figure 33) were also tested in vivo against murine P388 leukemia and showed activity comparable
to mitoxantrone [71].
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which exhibited high cytotoxic activity against a panel of 60 human tumor cell lines screened by the 
National Cancer Institute (Bethesda, MD, USA). Particular efficacy of tested compounds was 
observed against the leukemia subpanel. In addition, they were also found to be active in cells 
overexpressing MDR1. The compounds caused apoptosis, mitochondrial depolarization, generation 
of reactive oxygen species, and the activation of caspase-3, caspase-8, and caspase-9. Moreover, they 
acted as topoisomerase I inhibitors [72]. 
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Figure 33. General structure of 2,7-dihydro-3H-dibenzo[de,h]cinnoline-3,7-diones.

Parrino et al. described 11H-pyrido[3′,2′:4,5]pyrrolo[3,2-c]cinnoline derivative 66 (Figure 34)
which exhibited high cytotoxic activity against a panel of 60 human tumor cell lines screened by
the National Cancer Institute (Bethesda, MD, USA). Particular efficacy of tested compounds was
observed against the leukemia subpanel. In addition, they were also found to be active in cells
overexpressing MDR1. The compounds caused apoptosis, mitochondrial depolarization, generation of
reactive oxygen species, and the activation of caspase-3, caspase-8, and caspase-9. Moreover, they acted
as topoisomerase I inhibitors [72].
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Barlaam and co-workers, while working on the optimization of selective quinoline based inhibitors
of ataxia teleangiectasia mutated (ATM) kinase involved in the repair of DNA double strand breaks,
synthesized a series of cinnoline-3-carboxamides as suitable replacements of quinoline carboxamides.
Compound 67 (Figure 35) was identified as a potent ATM inhibitor with excellent kinase selectivity
and good physicochemical and pharmacokinetic properties. Monotherapy with ATM inhibitor 67 did
not cause tumor regression in the SW620 colorectal tumor xenograft model, whereas combination
with irinotecan resulted in significantly greater tumor growth inhibition in comparison to irinotecan
alone [14,73]. The 1,3-dihydroimidazo[4,5-c]cinnoline-2-one derivatives of general formula 68 (Figure 35)
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were patented as ATM modulators used to treat or prevent ATM mediated diseases, including
cancer [74].
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Figure 36. Structure of 3-amido-4-anilinocinnoline derivatives exhibiting colony-stimulating factor-1 
receptor (CSF-1R) inhibition. 

c-Met receptor tyrosine kinase is another cellular target for compounds designed as potential 
anticancer agents because it has been found to be overexpressed or mutated in various human cancer 
cells [79]. Some 4-(2-fluorophenoxy)quinoline derivatives bearing a 4-oxo-1,4-dihydrocinnoline-3-
carboxamide moiety 71 (Figure 37) were designed as c-Met inhibitors and evaluated against five c-

Figure 35. Cinnoline based ataxia teleangiectasia mutated (ATM) inhibitors.

Colony-stimulating factor-1 (CSF-1) through binding to its receptor (CSF-1R) regulates the
migration, proliferation, function, and survival of macrophages [75]. Since CSF-1R is overexpressed
in many tumors and at sites of inflammation, CSF-1R inhibitors seem to be an attractive therapeutic
strategy for cancer as well as autoimmune and inflammatory diseases. The 3-amido-4-anilinocinnolines
of general formula 69 (Figure 36) were reported as potent, highly selective CSF-1R inhibitors [76,77].
They were designed in order to overcome the cardiovascular liability of potent and selective
3-amido-4-anilinoquinoline CSF-1R inhibitor (AZ683), which was able to reduce the level of
tumor-associated macrophages in a breast cancer xenograft model. The 3-amido-4-anilinocinnoline
compound with 1-hydroxyethylpiperazine substituent at 7 position of cinnoline scaffold 70 (AZD7507,
Figure 36) was a potent CSF-1R inhibitor demonstrating good oral pharmacokinetic profile as well as
reduced risk of cardiotoxicity in comparison to AZ683 [78].
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Figure 36. Structure of 3-amido-4-anilinocinnoline derivatives exhibiting colony-stimulating factor-1
receptor (CSF-1R) inhibition.

c-Met receptor tyrosine kinase is another cellular target for compounds designed as
potential anticancer agents because it has been found to be overexpressed or mutated in
various human cancer cells [79]. Some 4-(2-fluorophenoxy)quinoline derivatives bearing a
4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety 71 (Figure 37) were designed as c-Met inhibitors and
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evaluated against five c-Met-dependent cancer cell lines and one c-Met-independent cancer cell [80,81].
Most compounds were active against c-Met and the tested cell lines [82].
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Many cinnoline derivatives (Figure 39) such as 9-substituted-4,10-dimethylpyrano[2,3-f ]
cinnolin-2-ones with N-piperazinyl moieties at C-9 73 [84], 6-substituted-4-methyl-3-(4-
arylpiperazin-1-yl)cinnolines 74 [85], hexahydrocinnolines 75 [86] and pyrazolo[4,3-c]cinnoline
derivatives 76 [87] were synthesized and evaluated in vitro for their antitumor activity against
breast cancer cell lines MCF-7 and MDA-231 for bicinnolines 77 [88].
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2.5. Miscellaneous

A compound with cinnoline moiety 78 (Figure 40) is patented by Stein and co-authors for very
interesting uses. Among other hydrazone derivatives, it was tested as inhibitor of a transient receptor
potential cation channel, subfamily M, member 5 (TRPM5) protein which has been shown to be
essential for taste transduction. Such compounds could be used as taste inhibitors when administered
as a component of pharmaceutical or food products to improve acceptance. Moreover, these agents are
intended for use in treating diabetes mellitus, obesity, insulin resistance syndrome and many more [89].
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Cinnoline derivatives were also patented as thyroid hormone receptor agonists [90], orexin
receptor antagonists [91–95], histone deacetylase (HDAC) inhibitors [96], liver X receptors β selective
modulators for the treatment of atherosclerosis [97], somatostatin regulators [98] or cannabinoid-1
receptor inverse agonists [99] and many more.

3. Conclusions

In this paper, we have presented a review of studies focused on the biological activity of cinnoline
derivatives conducted by many research groups worldwide between 2005 and 2019. The provided
information clearly indicates the enormous significance of the cinnoline framework as a building
block of many valuable compounds. Compounds bearing the cinnoline scaffold are able to interact
with a variety of molecular targets including receptors such as GABA A, CSF-1R, H3R and enzymes
such as cyclooxygenase-2, topoisomerases, phosphodiesterase, human neutrophil elastase, Bruton’s
tyrosine kinase involved in pathogenesis of many diseases. As a consequence, they are intended to be
used as antibacterial, antifungal, antimalarial, anti-inflammatory, analgesic, anxiolytic and antitumor
agents. Some cinnoline derivatives are under evaluation in clinical trials. There is no doubt that
development of cinnoline based molecules constitutes a significant contribution to the identification of
lead compounds with optimized pharmacodynamic and pharmacokinetic properties.
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