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Abstract: As complex systems composed of physical and cyber components, mechanically pumped
loop systems (MPLs) are vulnerable to both passive threats (e.g., physical failures) and active threats
such as cyber-attacks launched on the network control systems. The impact of the aforementioned
two threats on MPL operations is yet unknown, and there is no practical way to evaluate their severity.
To assess the severity of the impact of physical failures and cyber-attacks on MPLs, a safety impact
analysis framework based on Elman Neural Network (ENN) observers and the Gaussian Mixture
Model (GMM) algorithm is suggested. The framework discusses three common attack and failure
modes: sensor hard failure that occurs suddenly, sensor soft failure that occurs gradually over time,
and denial-of-service (DoS) attacks that prevent communication between the controller and valve.
Both sensor failures and DoS attacks render the system unsafe, according to simulation data. In
comparison to DoS attacks, however, sensor failures, particularly soft failures, inflict the greatest
harm to the MPLs. Furthermore, sensors engaged in global control, rather than those involved in
local control, need additional protection.

Keywords: safety impact analysis; mechanically pumped loop systems; physical failure; cyber-attack

1. Introduction

The China’s Tiangong space station, a massive on-orbit research laboratory, has played
a critical role in enabling humans to conduct long-term microgravity scientific experi-
ments [1]. China launched Tianhe, the first core module, in May 2021, which could serve as
the Tiangong space station’s administration and control center. Wentian and Mengtian, the
other two experimental modules, are set to debut in 2022. Experiment racks installed in the
Tiangong space station will be used to conduct hundreds of experiments on new materials,
space life science, fluid physics and basic physics. The precise thermal control requirement
of racks is growing more stringent as the requirements of space experiments become more
sophisticated. To fulfill the demands of precise thermal management, a new type of me-
chanically pumped loop system (MPL) has been created to offer thermal conditioning for
numerous experiment racks. The heat produced by the payload is efficiently collected and
discharged to the exterior space through a circulating cooling liquid and heat exchanger.
This cooling system offers superior benefits in temperature control, long-distance heat
transfer, huge heat transfer and stability when compared to typical temperature control
systems such as cold pipes [2]. Despite their many benefits, MPL research is still in its
infancy. Some critical concerns, particularly those concerning reliability and safety, must be
addressed appropriately. When the system fails and no appropriate protective measures
are taken, the functionality of different rack components will be harmed, and experiments
will fail due to lack of heat dissipation. Poor heat dissipation increases the likelihood of
the failure of all components of the experimental rack [3]. It may also cause casualties,
especially for manned space stations; therefore, the ramifications are severe. To boost the
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system’s safety, it is vital to assess the effects of components failures and cyber-attacks on
MPLs and create effective preventive measures.

The component-level failures and related diagnosis techniques have been exten-
sively investigated. As one of the most vital components, data-driven methods [4,5],
knowledge-based methods [6] and intelligent methods [7-9] are used for pump fault detec-
tion. Bhandari et al. [10] proposed a quick detection method of flow interruption owing
to pump failure of a pumped fluid heat rejection system. By measuring the tempera-
ture change near the circulating pump, the fault diagnosis can be realized much earlier.
Zhen Sun et al. [11] put forward a self-adaptive diagnosis method for heat pump sys-
tems based on a residual data and data scaling strategy, which adapts varying severity
diagnosis under the condition that the training data derives from a single severity level.
Zhonghai MA [12] used a nonlinear unknown input observer (NUIO) to diagnose the
pump’s three failure modes: leakage, fatigue damage, and aging. The majority of sensors in
MPLs are situated in harsh environments (such as high temperatures over 50 °C and under-
water), rendering them susceptible to fouling and damage, which will impact the system’s
precision, stability and reliability [13]. The early identification of sensor faults is critical
for making corrective actions to mitigate the impact [14]. Linfeng Gou [15] established
an intelligent approach that combines time-frequency analysis and CNN methodology to
transform the signal recognition problem into an image recognition problem for effective
sensor fault diagnosis. The method is cheap and simple to use compared to other quanti-
tative model-based methods that demand complex mathematical models of the systems.
D. G. Down [16] developed an observer-based fault diagnosis method to detect and isolate
sensor faults. In addition to pump and sensor failure, heat exchanger faults [17], valve
faults [18], and refrigerant charge faults [19] are also discussed. While prior research has
explored component-level physical failures in depth, few have considered how component-
level failures affect MPLs system function from a system-level viewpoint

Despite the significance of how cyber-attacks could affect MPLs performance, few
studies have examined the impact. Fan Zhang [20] simulated five cyber-attacks, including
man-in-the-middle (MITM), denial of service (DoS), data exfiltration, data manipulation,
and fake data injection. Wei Wang [21] proposed a security margin calculation approach for
prioritizing cyber threats in nuclear power plant thermal control systems. ShixingDing [22]
provided a complete analytical methodology integrating optimization dispatch and sim-
ulation for cyber-attacks on heating systems, analyzing the influence of three particular
cyber-attack models on system security. Kaveh Paridari [23] developed a groundbreaking
cyber-physical security system that incorporates an analytics tool that can perform impact
analysis whenever an attack is detected. However, the aforementioned study focused
primarily on cyber-attacks and their effects on the cyber part of communication network
systems. The impact on the physical part, such as the pipe system, was ignored.

The following is an overview of the research gaps in terms of modeling and evaluating
physical failure and cyber-attacks on MPLs:

e How component-level failures that influence the functioning of the whole system
require more research, and an appropriate way to assess the severity of the damage at
the system-level should be suggested.

e  Traditional safety analysis methods treat the cyber and physical components of MPLs
separately. However, the coupling effects of cyber-attacks on physical components
need more research.

e A co-simulation model capable of concurrently simulating physical failures and cyber-
attacks is still required.

In response to the aforementioned research gaps, the following contributions are
made in this paper: On the basis of AMESim [24] and Simulink software, a flexible and
extensible simulation model is built. The model can accurately simulate MPLs and their
network-based control system. By modifying the model’s parameters, various failures and
cyber-attacks can be simulated, and the effect of these threats on the MPLs can be observed.
A quantitative safety impact analysis method based on safety baseline and Mahalanobis
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distance [25] is proposed. Elman neural network (ENN) is employed as the system observer
to extract the residuals of safe state and unsafe state by utilizing normal and abnormal data.
At last, the migration index defining the safety of MPLs is calculated.

The paper is structured as follows: in Section 2, the structure of MPLs and simulation
model, which are the basis for subsequent analysis method, are described. Typical physical
failures, cyber-attacks, and their mathematical models are summarized. In Section 3,
several proposed methods, including fault observer and Gaussian Mixture Model (GMM)),
are described in depth. In Section 4, we demonstrate the effectiveness of the proposed
approaches through three examples. Finally, Section 5 concludes this paper.

2. MPLs Description and Simulation Model

The MPLs are intended to keep experimental payloads within their defined tempera-
ture range. Figure 1 depicts the arrangement of MPLs in an experiment rack. As shown in
the figure, typical MPLs contain the pump, cold plate, sensor, valve and control system. The
pump circulates cooling water across the cold plate to recover waste heat. After collecting
the waste heat, the cooling water exports it to outer space through the heat exchanger and
then returns to the cold plate to complete a closed cycle. The pump’s primary function
is to supply a steady flow of cooling water to the MPLs, while the cold plate absorbs
and dissipates the payload’s heat to maintain an optimal suitable temperature range. The
electronic regulating valve is used to further adjust the flow of the cold plate on each branch
to cope with the varying thermal load of the payload. The control system is designed to
maintain the payload within an optimal temperature range, and it may be modified when
the payload’s heat output fluctuates. The control system has two control layers: (1) using
the local hierarchy, the flow is regulated at each branch valve, hence controlling the output
temperature at each branch. (2) Using the global hierarchy, the pump speed is modified
in order to regulate fluid temperature and flow at the main road outlet. The control cycle
of the local controller is shorter than that of the global controller to ensure that cold plate
temperature is more accurately controlled.
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Figure 1. The typical structure of a MPLs.

In order to achieve effective simulation of failures and cyber-attacks, a co-simulation
model including both mechanical and control system parts is constructed in this research.
Figure 2a depicts the control part of the MPLs, which is developed in a Simulink environ-
ment; Figure 2b depicts the mechanical part of the MPLs including pumps, flow valves, and
sensors, which is modeled in AEMSim software. In AMESim, the mechanical component
of MPLs is transformed to a Simulink S-Function, which can subsequently be imported
into Simulink. Table 1 displays the control variables settings.
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Figure 2. Co-simulation model (a) Simulink part; (b) AMESim part.

Table 1. The Main Simulation Parameters.

Parameters Values

Initial temperature 30°C

Initial flowrate 70L/h
Pump speed 150 rev/min

Pipe diameter 8 mm

The threats of MPLs can be divided into two categories: physical failures and cyber-
attacks. As a typical physical failure, sensors’ failure will change the output value, resulting
in inaccurate measurement information. Especially when the sensor is used as the input of
the control strategy, it will destabilize the system. According to [26,27], sensor failure types
can be categorized into hard and soft failure. Soft failures are those that arise gradually,
such as degradation, while hard failures come abruptly, such as bias and open circuit. In
addition to physical failures, MPLs are vulnerable to malicious human-initiated cyber-
attacks such as deception, denial of service (DoS attack), replay, etc. [28]. Cyber-attacks
occur primarily during the communication between a sensor and a controller or between a
controller and an actuator. Once the attack occurs, it will prevent actuators and controllers
from receiving the latest data or sending information from sensors to controllers. Typical
modes for cyber-attacks include delay and denial of service. In this study, we assume that
once the network is paralyzed and the controller cannot send any signals, the actuators
will only use the value before the DoS attack.

By tuning the parameters of related dynamic models, failures and attacks can be
introduced into the simulation model, e.g., the sensor hard failures are introduced by
adding a fixed bias [29]. A detailed introduction to the failure modeling and mathematical
formulations are shown in Table 2, where 7(t) and y(t) are the output value of sensors
in normal state or fault state, respectively, u (t) and u(t) are the control command values
sent by controller to actuator under normal and fault conditions, respectively, and A is the
failure time.

Table 2. The Main Simulation Parameters.

Failure/ . . Mathmatical

Target Attack Failure/Attack Modeling Formulations

. . . . A _ y(t),t% A
Hard failure Add a fix bias in the output value  (t) = { ST 0cA

Sensors -
Soft failure Add a recoverable interference to (t) = { y(t)tEA
the output value y(O)+fp(t)teA
Make the actuator continuously

network Denial of service receive the instruction i(t) = { _u()tEA
u(t—1),tcA

of the last time
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3. Imp3. Impact Analysis Based on Observer and GMM

In order to realize the safety impact analysis of MPLs, we proposed the method based
on fault observer and GMM. The method contains two parts.

Part 1is the creation of safe-state baseline. In this part, firstly, an observer is constructed
using an Elman Neural Network (ENN) to estimate the normal output of the system. The
residual errors are compared with normal and actual output. Then, the features are obtained
based on Principal Component Analysis (PCA) [30]. Finally, the baseline GMM containing
the optimized probability distribution function (PDF) is obtained.

Part 2, for the abnormal data obtained through the fault simulation process, the
residual error and corresponding features can be obtained using the method described in
part 1. When the PDF of the unsafe state GMM is obtained, the migration index (MI) is
used to quantify the distance from the unsafe state GMM to the safe state GMM. When
there are no faults or attacks in the MPLs, the PDFs of the unsafe state GMM and the safe
state GMM are overlapped, and the value of Ml is at its lowest value. When a failure or
attack occurs, the PDF of the insecure state GMM will change, causing a corresponding
change in its MI value. Thus, the MI can reflect the safety state of the MPLs. The greater
the M1, the less secure the system. Figure 3 depicts the structure of the safety impact
analysis methodology.

Partl: Baseline GMM Construction
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Figure 3. Framework of the proposed methodology.

The method can be summarized in the following steps:

Stepl. Using ENN, observers calculate the residual error of MPLs in safe and unsafe
states, respectively.

Step2. Obtain the features of residual error-based PCA.

Step3. Apply GMM to estimate the PDF based on step 2.

Step4. Calculate MI which represents the system safety state.

3.1. Observer Based on Elman Neural Network

MPLs are non-stationary and non-linear due to fluid compressibility, friction, pump
pulsation, and other non-linear mechanism characteristics. Therefore, the faults of MPLs
and their influence mechanisms are very complex, and it is difficult to establish a fault
observer based on the state space equation. As a time-delay feedback network, ENN is
utilized to establish the fault observer to obtain residual information owing to its superior
dynamic performance and strong nonlinear mapping capability.

ENN contains four layers: context, hidden, input and output. The input layer node
serves as the channel entry to accept training sample or test sample data and transfer it to the
hidden layer. The hidden layer contains a transfer function, and the weight and threshold
in the node of the layer are used to calculate the data in the input layer. The feedback
layer and the hidden layer establish a local feedback mechanism, receive the output of
the hidden layer and feed it back to the hidden layer to form a closed-loop transmission
of data, therefore realizing the delayed memory and dynamic learning functions of the
neural network information. ENN can carry out accurate modeling through its feedback
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mechanism. Even if the mathematical model of the system is unknown, input and output
sample data are sufficient.
The state space equation of ENN is shown in Equations (1)-(3) [31].

x(k) = F(w'xc (k) + w?u(k — 1) + by) 1)
xc(k) = x(k—1) 2)
y(k) = G(w’x(k) +b2) 3)

where x(k) and x.(k) denote the output vectors of hidden layers and context layers, respec-
tively; w!, w? are the weight of context layers and the weight of input layers; w? is weights
matrix between hidden layer and output layer; b; and b, are the threshold vectors for
the hidden and output layers. F(x) and G(x) represent the transfer function of neurons in
hidden layer and output layer, respectively.

The residual error can be defined as:

e(k) = yr(k) =, (k) 4)

where ?r(k) denotes the estimated output generated by the ENN observer, while y,(k)
denotes the actual output.

In safety state, the residual error is close to zero and only affected by noise and
modeling error. We define the residual error in this case as the initial benchmark. When a
fault or attack occurs, the residual error will deviate from the benchmark.

3.2. Safety Impact Analysis Based on GMM

Gaussian mixture model (GMM) is a probabilistic method often used for clustering
and density estimation [32]. Since the residual characteristics of MPLs do not follow a
normal distribution, traditional distance measures such as Mahalanobis distance cannot
be directly applied. GMM can be used to decompose the non-Gaussian feature set into a
combination of normal functions. GMM can be expressed as [33,34]:

px) = iwimm =iwiw<x;ui, )

i i

-1 5)
- Y (x—p)

%e
m) 2|12

N(x;u;,) ) =

where m is the order of the mixture model; w; is the weight of the mixture model and
satisfies; Y1 j w; = 1; X = [xq,x2,- - -, Xp] T is a n-dimensional vector; u; is the mean of the i
Gauss model; and }; is a covariance matrix.

In this paper, the Kullback-Leibler (KL) divergence based on the best matched Gaus-
sian component is used to calculate MI. Firstly, the KL divergence is defined based on
Equation (6) [35], where @;(0) represents the safe-state Gaussian components, and ®;(n)
represents the unsafe-state Gaussian components. y;(0) and }_;(0) are the parameters of
®(0), while y;(0) and };(0) are the parameters of ®(n).

) 240) —d D I+ ) = O 0) )~ O} )

If the minimum KL deviation is between ®;(0) and ®;(n), then in ®(n), the best
matching Gaussian component of ®;(0) is ®;(n). Based on this, it can find the best matching
Gaussian component of the Gaussian component of each ®(0) in ®(n). The MI can be
calculated with Equation (7).

Comm w:
MI(®(0),@(n)) = ) wiHl].in[DKL(q>i(0)||(Dj(”)) +In j] (7)
i=1 j
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where w; and w; are the mixture weight of the two corresponding Gaussian components of
®(0) and ®(n), respectively.

4. Case Study

The physical failures and cyber-attacks are assumed as follows in the modeling process.
The control goal of the whole system is to keep the cold plate temperature constant, and the
temperature control point is located at the inlet of the cold plate. The attack on the control
algorithm is not discussed at this time. The fault details are listed in Table 3. The simulation
time is 6000 s, and the data sampling frequency is 100 Hz. Simulated faults/attacks were
introduced at 3000 s. To train the ENN observer, the parameters of ENN are set as follows:
the numbers of input neurons and hidden neurons are 5 and 10, respectively; the maximum
training epoch is 200, and the expected error is 0.0001.

Table 3. Test details for fault/attack simulation.

No Failure/ Changed Parameter Parameter Parameter
) Attack Mode for Simulation (Normal) (Abnormal)
Casel T sensor failure Signal output 37°C 43°C
Case2 F sensor failure Signal output 87 L/h 87 L/h~75L/h~87 L/h
Case3 DoS attack Communication rate 100% 0%
In the baseline system, the temperature at cold plate 1 (T;;) shall be maintained at
37 °C to ensure the best performance of load operation. In the global controller, the control
aim is the outlet flow of the main road, and the control variable is pump speed. In the
local controller, the control aim is the cold plate temperature, and the control variable is the
valve’s opening value.
For convenience, the following symbols” meanings are shown in Table 4.
Table 4. Symbol meanings.
Symbols Meaning
Ty The outlet temperature of the main road Fy The outlet flow of main road
T The temperature of T sensor in branch 1 Fq The flowrate of F sensor in branch 1
T, The temperature of T sensor in branch 2 F, The flowrate of F sensor in branch 2
Te1: The temperature of coldplant in branch 1 Py: The pressure of main road

4.1. Normal State

In order to verify the validity of the joint simulation model, we compared the simula-
tion output results with the actual output results. The simulated outlet temperature (T;/)
and the actual outlet temperature of the cold plate 1 (T,;) are shown in Figure 4.
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Figure 4. Comparison of simulated and actual temperature-time curves.
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As can be seen, the overshoots of T,; and T, are almost the same. Before and after
the heat source changes, the overshoots are 0.7 °C and 0.5 °C, respectively. Taken together,
The Co-simulation model can accurately simulate the MPLs.

4.2. Casel: T Sensor Hard Failure

In this scenario, we assume that the temperature sensor in branch 1 has failed, resulting
in a step-change in the value of T;. During the fail time from 3000 s, we corrupted the
number of T; from 37 °C to 43 °C. The system response under failure was simulated and
evaluated using the proposed framework. Figure 5 compares the MPLs system’s response
under failure-free and failure-injected situations. There are two main concerns: the actual
temperature of the cold plate and the flow of each branch. In the first stage, under the
action of closed-loop control, all temperatures rise rapidly and stabilize after about 500s.
The temperature of coldplant in branch 1 (T;) is basically the same as the temperature of
T sensor in branch 2 (T) after reaching a steady state, about 37.2 °C. In the second stage, the
value of T1 jumps from 37 °C to 43 °C, resulting in a rapid reduction in T,;. Furthermore,
there is a slight increase in T, which returns to a steady state after 4000 s.
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Figure 5. (a) Temperature-time curve; (b) flowrate-time curve in case 1.

The main reason for the above phenomenon is the change in the valve opening and
flow rate of branch 1. When the fault occurs, to reduce the temperature of T; to the specified
range, the local controller increases the opening valve of branch 1, thus increasing the flow
in branch 1. Since the pump speed and main road pressure are both constant, the increase
in the flow rate of branch 1 will correspondingly reduce the flow rate of branch 2. The
reduction in the flow of branch 2 further causes T, to decrease, which then triggers the
adjustment of the flow valve of branch 2 until T, returns to within the specified range.

4.3. Case2: F Sensor Soft Failure

In this scenario, we assume that the flow sensor in the main road has failed, resulting
in a slow change in value. During the fail time, we gradually reduce the value of the sensor
from 87 L/h to 75 L/h before resetting it to 87 L/h. As shown in Figure 6a, Ty and T are
the main concerns in case 2. It should be pointed out that in this paper, since the working
conditions of branch 1 and branch 2 are the same, only the relevant temperature of T is
shown in the figure. Similar to case 1, in the first stage, under closed-loop control, the
temperatures rise rapidly for about 500 s before stabilizing. The maximum values of T,
and T, are 42 °C and 38 °C, which means that the temperature variations between the
main road and the branch road is not significant. In the second stage, with the continuous
decrease in flow, a constant oscillation in the T; value is traced by a trend of first decreasing,
then increasing. The value of T is finally stabilized at 41.3 °C after a slight decrease and
attains a stable state soon after.
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Figure 6. (a) Temperature-time curve; (b) flowrate-time curve in case 2.

The main reason for the above phenomenon is the change in valve opening and pump
speed, as shown in Figure 6b. When fault occurs, firstly, the circulating pump reacts quickly
and increases its speed to maintain the corresponding flow of the main road. This leads
to a corresponding increase in the flow of the two branches, leading to a decrease in T;.
After the temperature drops, the valve adjustment will be triggered to ensure a stable
temperature at the cold plate. This repeated adjustment will cause the fluid in the pipeline
to oscillate, and the pressure will continue to rise until the end of the fault.

4.4. Case 3: Cyber-Attacks

In this scenario, we simulate a DoS attack that happened on the transmission of
variable setpoint from the controller to the valve. The DoS attack will block the valve from
receiving the setpoint reset signals. Before the attack occurs, the temperature change of
each branch is consistent with the previous two cases, which will not be described in this
section. When the attack occurs, if the heat source remains unchanged, although the attack
blocks the signal transmission, the valve opening can be maintained in the state of the
previous time. Obviously, the attack has no impact on the system. Nevertheless, when
the heat source changes, DoS attack impacts the system’s stable operation. As shown in
Figure 7, when the heat source changes from 180 W to 260 W, T; and T rise gradually,
while T, remains unchanged, where the temperature change time of T is approximately
100 s later than T4. After 4000 s, the values of T and T start to decrease, and the rate of
decline is higher than the rate of increase.

100

50 280

45 | Change of heating power
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-/‘\\- h G
3 |f / i F200
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Cooling water flowrate(L/h)
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Figure 7. (a) Temperature-time curve; (b) flowrate-time curve in case 3.

Since the valve opening of branch 1 cannot be adjusted, the increase in heat source
will lead to an increase in T7. Due to the large specific heat capacity of the cold plate, the
value of T; rises gradually. Affected by the rise in T, Ty also gradually increases. Then,
the global control is started to increase the speed of pump, which results in the increased
flow of each branch. Under the action of valve regulation, the flow of branch 2 returns to a
steady state.
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Magnitude

4.5. Impact Analysis of the Three Cases

Figure 8 compares the residual errors of the above three cases. The figure shows
that there are short-term fluctuations in the residuals during t = 0 s~200 s due to errors
between the actual and estimated values, which can be ignored during the fault analysis.
For the overall system, residuals are close to zero whenever the systems run normally, and
residuals increase significantly when faults occur. The observers proposed in this paper
can effectively track the status. It can be seen that, in case 1 and case 2, when a fault occurs,
the residual errors respond quickly to exceed the thresholds, showing a strong sensitivity,
while in case 3, the residual errors exceed the threshold after a certain time delay. This
reflects that the observers proposed in this paper are more sensitive to physical failures
than cyber-attacks.
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Figure 8. Residual errors (a) Case 1; (b) Case 2; (c) Case 3.

The MI, which represents system safety state, is shown in Figure 9.

Healthy state
Fault state

(b)

Figure 9. (a) Demonstration of baseline GMM and unsafe-status GMM,; (b) the safe state analysis
results of the proposed method.

Comparing case 1 and case 2, although both sensors failed, the MI of case 1 is 0.78,
which is larger than the MI of case 2 (0.66). In case 1, the system can recover to a stable
state quickly after failure. In case 2, once failure occurs, the temperature and flow values
repeatedly fluctuate; in particular, the surge of pipeline pressure seriously impacts the
system operation. Except for different failure modes, the T sensor participates in the local
control strategy, while the F sensor participates in the global control strategy is also an
important reason.

Comparing case 1 and case 3, the MI of case 1 is 0.86, while that of case 2 is 0.78. The
MI difference between the two is the smallest. Through a comparison, it is obvious that the
impact of a DoS attack is smaller than that of a T sensor failure. On the other hand, in the
first stage of case 3, the slow change in the T sensor can be regarded as a soft failure; the
system takes nearly 2000 s to recover to the steady-state. Contrastingly, in case 1, the system
can recover to a stable state in about 500 s after the hard failure of T sensor. Therefore, the
impact of hard failure (step change) is also smaller than that of soft failure (slow change).

Comparing case 2 and case 3, the MI difference is the largest. Sensor failure and DoS
attacks could drive the system to an unsafe state. Compared with DoS attacks, sensor
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failures have a greater impact on the health of the whole system. However, considering
that the time of fault detection in case 3 is much larger than that in case 1, it cannot be
assumed that the risk of DoS attack is lower than that of sensor failure.

5. Conclusions

This paper presents a joint simulation and modeling approach for analyzing the
impact of physical faults and cyber-attacks on system operation. The framework discusses
three common attack and failure modes: sensor hard failure that occurs suddenly, sensor
soft failure that occurs gradually over time, and DoS attacks that prevent communication
between the controller and valve. The safety state of MPLs under different failure and attack
modes are quantified by ENN observers and GMM-KL algorithms, which can standardize
and rank the severity. The results show that both sensor failures and DoS attacks render
the system unsafe, according to simulation data. In comparison to Do$S attacks, however,
sensor failures, particularly soft failures, inflict the greatest harm to the MPLs. Therefore,
it is crucial to apply multi-sensor information fusion techniques in the control of MPLs
to mitigate the potential impacts caused by single sensor failures. Furthermore, sensors
engaged in global control, rather than those involved in local control, need additional
protection. The system control strategy should prioritise temperature control rather than
flow control.

This technique may assist designers in comprehending the effects of various failures
and assaults on MPLs, allowing them to utilize limited resources while building and
prioritizing defense tactics, hence facilitating safety evaluations in the engineering area.

Work to be conducted in the future includes: (1) testing the method with more
comprehensive failure and attack modes, especially combined or multiple failure modes.
(2) Using more parameters to evaluate more complex systems, e.g., consider increasing heat
transfer efficiency of heat exchangers, line flow resistance, etc. in the simulation modeling.
(3) Employing other intelligent algorithms to improve the accuracy of evaluation, such as
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), etc.
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