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Abstract: Saffron is one of the most adulterated food products all over the world because of its high
market prize. Therefore, a non-targeted approach based on the combination of headspace flash
gas-chromatography with flame ionization detection (HS-GC-FID) and chemometrics was tested and
evaluated to check adulteration of this spice with two of the principal plant-derived adulterants:
turmeric (Curcuma longa L.) and marigold (Calendula officinalis L.). Chemometric models were carried
out through both linear discriminant analysis (LDA) and partial least squares discriminant analysis
(PLS-DA) from the gas-chromatographic data. These models were also validated by cross validation
(CV) and external validation, which were performed by testing both models on pure spices and
artificial mixtures capable of simulating adulterations of saffron with the two adulterants examined.
These models gave back satisfactory results. Indeed, both models showed functional internal and
external prediction ability. The achieved results point out that the method based on a combination of
chemometrics with gas-chromatography may provide a rapid and low-cost screening method for the
authentication of saffron.
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1. Introduction

The commercial product named “Saffron Powder” is a powdered spice obtained by crushing the
filaments of the Crocus sativus L. flower [1]. Unfortunately, because of its high market price, this spice
is one of the most often adulterated food products worldwide [2]. There are different kinds of possible
frauds, the most frequent being the addition of foreign matter, such as derivatives from flowers of
other plants, to increase the mass of the final product without adding costly pure saffron. In some
cases, even total substitution of saffron powder with adulterants may be found [3].

The high market price of saffron is due to the laborious process required to obtain the spice and the
limited areas of production [4]. The flower of Crocus sativus L. is indeed cultivated only in some regions
of Asia (Kashmir, northern Iran) and Europe (Castilla la Mancha, Spain; Kozani, Greece; Abruzzo and
Sardinia, Italy) [5]. Several Protected Designations of Origin (PDOs) have been created to protect the
authenticity of saffron (as it has, for example, in the Italian “Zafferano dell’Aquila”, one of the major
areas in terms of production and global exports) [5]. Galvin-King et al. [6] report that the business
volume concerning all herbs and spices is around four billion US dollars; economists soon expect
growth up to 50%. As a consequence, the business volume of frauds is estimated to cause economic
damage to the global food industry in the order of several tens of billions of US dollars [7].
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In order to ensure the authenticity and the quality of saffron, a standard method is proposed by
the International Organization for Standardization (ISO). In particular, the last international standard
regulation regarding saffron quality (ISO 3632-1:2011) [1] mainly provides a UV-Vis spectrophotometric
analysis to conventionally quantify the flavor strength (expressed as concentration of picrocrocin),
the aroma strength (concentration of safranal), and the coloring strength (concentration of crocin)
of saffron samples. However, this method has sometimes proved incapable of evaluating saffron
adulteration [8] related to spectral interferences and to the impossibility to resolve chemicals present in
the adulterants that show a similar UV-Vis absorbance.

Consequently, many different analytical methods have been developed to overcome this limitation;
a complete and exhaustive description of all the relevant analytical techniques is given by Kiani et al. [9].
In particular, many other spectroscopic techniques [10–13], chromatographic techniques [14–16],
and molecular-biological techniques [17–19] have been exploited. Among the molecular-biological
techniques, the genome-based approach, usually based on DNA extraction [20], amplification, and
sequencing, represents the principal strategy to ensure the food authenticity.

However, many of these procedures are time consuming and expensive, as they require highly
specialized personnel and are based on destructive methodologies.

With the aim of by-passing the above-listed drawbacks, a preliminary study for a rapid, simple,
and cheap screening test for the assessment of adulterated saffron is herein developed. In particular,
a non-targeted approach is used.

The non-targeted approaches are increasingly used in the field of food authenticity because they
allow the examining of food fingerprints, which were previously acquired by the use of spectroscopic,
spectrometric, or chromatographic techniques. This check is performed holistically and without
long, complicated, and problematic identification and quantification of specific and characteristic
metabolites [21].

In this work, gas-chromatographic profiles are used as chemical fingerprints, because the patterns
of the most volatile compounds are characteristic for odorous spices (such as saffron and their plant
adulterants) and, consequently, they may represent important variables for the assessment of saffron
authenticity [22–24].

In particular, this study presents a combined application of Heracles II (AlphaMos, Toulouse,
France) instrumentation, a headspace flash gas-chromatography with flame ionization detection
(HS-GC-FID), and chemometric techniques [25]. Heracles II provides gas-chromatographic profiles
of the analyzed samples rapidly and without any chemical sample pre-treatment [25–28]. Thus, the
gas-chromatographic fingerprints are subsequently submitted to chemometric modeling through a
multivariate approach [29,30], allowing detection of the eventual adulteration of saffron.

The focus of this work is the evaluation of saffron adulteration by two of the most frequently used
plant-derived adulterants: turmeric (Curcuma longa L.) and marigold (Calendula officinalis L.).

2. Results and Discussion

In this work, 61 samples of commercial spices were analyzed by Heracles II flash HS-GC-FID,
which meant there were 244 objects or rows of the dataset matrices. Although several peaks were present
in the obtained chromatograms, for the non-targeted approach used in this work it was not necessary
to associate the identified chromatographic peaks with the corresponding volatile compounds.

Examples of the chromatograms of some analyzed samples are reported in Figure 1. It was
evident that the discrimination of pure spices could be directly achieved by simply superimposing
the GC chromatograms in Figure 1 without any need of chemometrics. Of course, pure samples are
even distinguishable with eyes without any chemical analysis. What is interesting, however, is to
discriminate mixture samples, which simulate adulterated saffron powders. This can be done only
by chemometrics.
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Figure 1. Representative gas-chromatographic (GC) fingerprints of saffron (a), turmeric (b), and 
marigold (c) obtained by Heracles II instrument. The chromatograms from column MXT5 are reported 
in the left part of the figure, while the chromatograms from column MXT1701 are reported on the 
right. These chromatograms were recorded simultaneously by the headspace flash gas-
chromatography with flame ionization detection (HS-GC-FID). 

2.1. LDA Model and Results for AD 

Figure 1. Representative gas-chromatographic (GC) fingerprints of saffron (a), turmeric (b), and
marigold (c) obtained by Heracles II instrument. The chromatograms from column MXT5 are reported
in the left part of the figure, while the chromatograms from column MXT1701 are reported on the right.
These chromatograms were recorded simultaneously by the headspace flash gas-chromatography with
flame ionization detection (HS-GC-FID).

Even if distinguishing pure samples is trivial, it is useful to create classification models based on
pure standards. In fact, the models allow quantification of the dissimilarity of mixtures with respect to
pure classes through parameters that are specific for each multivariate classification method.

From the obtained experimental data, two matrices were constructed: the area dataset
(AD, 244 rows × 56 columns) and the intensity dataset (ID, 244 rows × 20,002 columns). More details
will be given in the section Materials and Methods, paragraph 3.4 (“Working dataset”).

Both matrices, as described previously, were subjected to the following chemometric elaborations
(LDA and PLS-DA).
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2.1. LDA Model and Results for AD

A preliminary PCA computed on the area dataset led us to find 42 outliers—20 outliers for
the “Saffron” class, eight for the “Marigold” class, and 14 for the “Turmeric” class. This brought us
to a dataset with dimensions 202 (objects) × 56 (variables). On this dataset, LDA was carried
out. Leave-one-out cross validation (LOO-CV) was performed to internally validate the LDA
model. The results of LOO-CV, in this case, could be expressed as the percentage of well-classified
samples (NER), which for this LDA model was 100%. This result was obvious, since pure samples
were considered.

The application of LDA produced the discriminant plot in Figure 2. Three clusters were evidenced,
corresponding, as expected (100% NER), to the three a-priori classes (pure spices). In particular,
the “Saffron” class was mostly discriminated from “Turmeric” along LD1 and from “Marigold” along
LD2. Besides the three clusters, test samples were projected (asterisks). Table 1 summarizes all the
test samples.

All the pure samples of the test set (pure_MR, pure_TR, and pure_SF) were assigned to the
correct classes. They were correctly put inside the class spaces to which they were referred. What
was particularly interesting was the behavior of the mixture samples; their distance from the pure
spices clusters was significant. The mixture samples in Figure 2, although close to the “Saffron” class,
moved away from it with an increasing percentage of adulterant. Moreover, the turmeric-adulterated
samples (SFTR) got closer to the “Turmeric” class, moving along LD1, while the marigold-adulterated
samples (SFMR) got closer to the “Marigold” class, moving along LD2. To quantify such behavior, the
Euclidean distances between each point and each class centroid were computed, and the results are
reported in Table 2. The class centroids were the points whose coordinates were the mean values of the
coordinates of all the class objects. Thus, these could be considered as the “most representative” points
for each class (although fictitious).
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Table 1. The test samples used for external validation: pure spices and artificial mixtures.

Test Samples %W/W of Saffron Adulteration Code

Pure Saffron - pure_SF

Pure Turmeric - pure_TR

Pure Marigold - pure_MR

saffron + turmeric

5 SFTR_5

10 SFTR_10

15 SFTR_15

20 SFTR_20

saffron + marigold

5 SFMR _5

10 SFMR _10

15 SFMR _15

20 SFMR _20

From Table 2, it can be seen that the distances of the turmeric-adulterated samples (SFTR) from
the “Saffron” class increased, and the distance from the “Turmeric” class decreased with an increasing
percentage of adulteration. The situation was a bit more complicated for the SFMR samples, because
their distances did not have a “linear” behavior with the adulterant percentage (in particular, SFMR_10
was farther from “Marigold” class than SFMR_5, and SFMR_20 was closer than SFMR_15), as can be
seen from Figure 2. However, it is interesting to highlight that the distance of the farthest calibration
saffron sample from the “Saffron” class centroid was 2.6. This distance could be considered as a sort of
radius of the “Saffron” class, and all the mixture sample distances reported in Table 2 were higher than
this value. This meant that, by computing the Euclidean distances of the projected samples from the
class centroids, the LDA model could detect (at least qualitatively) a saffron sample adulterated by
turmeric or marigold even down to the percentage of adulteration of 5%w/w.

Table 2. Euclidean distances of the test samples reported in Table 1 from the three class centroids.

Sample Code Saffron Turmeric Marigold

pure_SF 1.1 34.6 21.1
pure_TR 36.3 2.5 42.8
pure_MR 18.6 42.5 2.2
SFTR_5 3.8 33.4 16.7
SFTR_10 6.2 31.0 16.4
SFTR_15 7.6 27.2 20.7
SFTR_20 9.9 24.7 24.2
SFMR_5 4.8 36.3 15.3
SFMR_10 4.8 37.1 15.6
SFMR_15 6.4 37.1 13.8
SFMR_20 6.4 38.0 14.3

2.2. PLS-DA Model and Results for ID

A preliminary PCA computed on the intensity dataset led to finding four outliers (one sample) for
the “Saffron” class and five outliers for the “Turmeric” class. Moreover, to reduce the computational
cost while maintaining good data representation, one variable every ten was retained [25]. In this way,
the ID dataset on which PLS-DA was carried out had dimensions of 235 × 2001. PLS-DA was chosen
instead of LDA for this dataset due to the high number of variables and the high co-linearity between
them. LDA requires the computation of the covariance matrix of the dataset, but it is not possible when
the variables are co-linear [31]. Figure 3 shows the PLS-DA scores plot. As it can be seen in Figure 3a,
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Factor-1 and Factor-2 of PLS-DA together explained 82% of the X-explained variance and 50% of the
Y-explained variance, which could be considered satisfactory to describe the dataset. From this scores
plot, good discrimination of “Saffron” and “Turmeric” classes could be observed. The “Marigold” class,
on the contrary, seemed to be overlapped to the “Saffron” class in the lower left part of the scores plot
(third quadrant of the plot). However, when zooming in on this overlap zone, as it can be observed in
the scores plot reported in Figure 3b, these two classes were found to be resolved.

Figure 3. (a) Scores of partial least squares discriminant analysis (PLS-DA) model, Factor-1 vs. Factor-2.
(b) Zoomed scores plot of the PLS-DA model, Factor-1 vs. Factor-2.

The CV was also performed to internally validate the PLS-DA model. Sensitivity and specificity
for each class were computed according to Ballabio and Consonni (2013) [32] using 200 possible
threshold values ranging from 0.1 to 1.1. The results are shown in Figure 4. Nine PLS-factors were used
for “Saffron” and “Marigold” classes and three factors for “Turmeric” class (from Figure 3, it is easy
to see that the discrimination of the “Turmeric” class was easier and required fewer factors than the
discrimination of the other two). The vertical dashed lines in Figure 4 represent the chosen thresholds,
which were 0.62 for “Saffron”, 0.56 for “Turmeric”, and 0.58 for “Marigold”. Thresholds were chosen
as the highest value that maximized both sensitivity and specificity (1.0 or 100%) in order to have a
restrictive rule for the class assignment.
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At this point, the test samples reported in Table 1 were projected onto the PLS-DA model to
validate it. Table 3 shows the values of the dummy variables (y_marigold, y_turmeric, and y_saffron)
and their corresponding standard deviation calculated by the PLS-DA model for the test samples.
The pure samples (pure_MR, pure_TR, and pure_SF) could be considered well classified. Indeed, the
calculated values of the dummy variables overcame the threshold values (i.e., belonging to the class
considered) related to the pertaining class of each sample, while they did not overcome the thresholds
(i.e., not belonging to class considered) related to the other classes. In particular, the pure_TR sample
was assigned to the “Turmeric” class with a degree of 1.0, while there was still some overlap between
“Saffron” and “Marigold” classes, which made the assignment of pure_MR and pure_SF samples
to the corresponding class a bit more uncertain, although still satisfactory. The classification results
for the adulteration mixtures (SFMR_5, SFMR_10, SFMR_15, SFMR_20, SFTR_5, SFTR_10, SFTR_15,
and SFTR_20) instead showed an interesting behavior. The threshold value of 0.62 for the “Saffron”
class caused the assignment of almost all the adulterated samples to the “Saffron”, except for SFTR_15,
SFTR_20, and SFMR_20, and none of the other predicted dummy values overcame the thresholds for
the other classes. However, it is interesting to note from Table 3 that the degree of belonging to the
“Saffron” class tended to decrease as the percentage of the adulterant increased. At the same time,
the degree of belonging to the adulterant class tended to increase. Moreover, the calculated degrees of
belonging to the “Saffron” class for all the mixtures were lower than the calculated degree obtained for
pure_SF sample (although not significantly different for SFTR_5).

Table 3. External validation results (calculated Ys: degrees of belonging) of the test samples projected
on the PLS-DA model. The numbers in brackets are the corresponding standard deviations.

Sample Code y_saffron y_turmeric y_marigold

pure_SF 0.78 (0.03) 0.01 (0.02) 0.21 (0.04)
pure_TR −0.1 (0.2) 1.0 (0.1) 0.1 (0.2)
pure_MR 0.34 (0.04) 0.03 (0.02) 0.63 (0.04)
SFTR_5 0.71 (0.04) 0.06 (0.02) 0.23 (0.04)

SFTR_10 0.66 (0.07) 0.12 (0.04) 0.22 (0.08)
SFTR_15 0.56 (0.06) 0.26 (0.03) 0.19 (0.06)
SFTR_20 0.51 (0.11) 0.32 (0.06) 0.17 (0.11)
SFMR_5 0.69 (0.04) 0.01 (0.02) 0.30 (0.04)

SFMR_10 0.65 (0.03) 0.02 (0.02) 0.33 (0.04)
SFMR_15 0.63 (0.04) 0.02 (0.02) 0.35 (0.04)
SFMR_20 0.59 (0.04) 0.02 (0.02) 0.39 (0.04)
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This meant that the PLS-DA model, except for some uncertainties between “Saffron” and
“Marigold”, was able to discriminate the three studied spices and to detect both an adulteration with
at least 15%w/w of turmeric and at least of 20%w/w of marigold in saffron and, at least qualitatively,
some contamination in saffron with the other two spices.

2.3. Comparison between PLS-DA and LDA Models

PLS-DA and LDA models returned good results. Indeed, both models had good performances in
LOO-CV, and both were able to determine the adulterations of saffron simulated with the test samples
listed in Table 1.

In particular, PLS-DA showed some overlap and some uncertainties of classification between
“Saffron” and “Marigold” classes. On the other side, the LDA model did not show any class overlap,
and it was better than the PLS-DA model in the identification of the pure test samples. Both methods
had good ability in the discrimination of the “Turmeric” class from the other two. However, it is
important to underline that, even for pure_MR and pure_SF samples, the PLS-DA model was able to
correctly classify them.

Regarding the artificial adulteration mixtures, PLS-DA and LDA had similar performances. In fact,
for the mixture samples classified by the PLS-DA model, the calculated values of the dummy variables
increased with the percentage of adulteration, although they never reached the thresholds, and some
doubts persisted about the assignment to the “Saffron” class of such samples. However, the LDA
model, by the calculation of the Euclidean distances between the test samples and the class centroids,
showed some uncertainties between “Saffron” and “Marigold” classes, but it showed an excellent
visual classification in the discriminant plot.

3. Materials and Methods

3.1. Samples

After an accurate commercial search, it was found that certified standards were not available
(with the only exception of saffron pistils). Hence, the training-set samples were purchased in
food retails; the reliability of these standards was subsequently verified through chemometric tools
(see Paragraph 3.5, principal component analysis (PCA), and Hotelling). The spice samples were taken
in the same period (April 2017) from several supermarkets, herbalist’s shops, and medicinal herb
gardens in Emilia Romagna (Italy). It was verified that these samples arrived at the sales centers within
a month before the purchase. Twenty-eight samples of saffron, 19 samples of turmeric, and 14 samples
of marigold (61 total samples, “calibration samples”) were purchased by the laboratory facilities at
Coop Italia. Coop Italia is one of the most important supermarket retail chains in Italy. It also has an
internal food quality control laboratory in Casalecchio di Reno (Bologna, Italy), where this work was
carried out.

Moreover, three samples of pure saffron, turmeric, and marigold (“test samples”) were purchased
for validation purposes. The pure saffron sample was taken from a supermarket and was a product
certified by the SGS certification authority with the certification “Process Control IT MI. 13.P04
STP 013/24”. Additionally, no further analyses by means of the ISO 3632-1:2011 [1] were necessary,
because the commercially available samples had been controlled before their packaging and sales.
The pure turmeric sample was purchased directly from a producer in the Agricultural fair of Santerno
(Imola, Bologna, Italy). The pure marigold sample was taken from the Herb Garden of Casola Valsenio
(Ravenna, Italy).

3.2. Sample Preparation

All the spice samples were stored in a dark place at low temperature until instrumental analysis.
Analyses were carried out within two weeks after sample acquisition.
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Regarding the calibration samples, saffron and turmeric powders did not undergo any
pre-treatment, while the petals of marigold samples were powdered with Ultra Turrax Tube Drive
control (IKA, Staufen im Breisgau, Germany). An aliquot of the sample was placed inside a 20-mL
plastic tube with ten stainless steel spheres (5-mm diameter). The tube was subsequently sealed with
the appropriate cap and was subjected to stirring at 6000 rpm for 5 min until a medium-grained powder
was obtained.

Moreover, the three test samples of saffron, turmeric, and marigold (pure_SF, pure_TR,
and pure_MR) were used to prepare eight artificial mixtures (SFTR_5, SFTR_10, SFTR_15, SFTR_20,
SFMR_5, SFMR_10, SFMR_15, and SFMR_20) in order to simulate partial adulterations of saffron with
the other spices. These samples were obtained by mixing the pure spices in different proportions
to cover a wide range of adulteration degrees. In particular, four different percentages (w/w) of
adulteration were examined: 5%, 10%, 15%, and 20%. These pure samples and mixtures did not
undergo the chemometric procedure described later but were used to validate the final partial least
squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) models.

3.3. Flash Gas-Chromatography (Flash-GC)

All samples from both the calibration set (training set) and the test set were analyzed according to
the following procedure.

For GC analysis, an aliquot of (30 ± 3) mg of each powdered sample was placed in a 20-mL glass
vial sealed with a magnetic cap. Each sample was prepared in quadruplicate to assess the repeatability
and the reproducibility of the method as well as to increase the degrees of freedom of statistical
problems. The replicate measurements generated four objects (rows of the dataset-matrix) for each
sample. Flash HS-GC-FID analysis was performed by Heracles II instrument at Coop Italia Laboratories.

In particular, this instrument was equipped with two capillary chromatographic columns
working in parallel, namely a non-polar column (MXT5: 5% diphenyl, 95% methylpolysiloxane,
10 m length, and 180 µm diameter) and a slightly polar column (MXT1701: 14% cyanopropylphenyl,
86% methylpolysiloxane, 10 m length, and 180 µm diameter) and two flame ionization detectors (FIDs)
at the end of each column. GC operation, auto sampling, and chromatographic output were managed
by Alphasoft V12.4 software (AlphaMos, Toulouse, France).

The parameters of the chromatographic analysis were chosen after an optimization step to avoid
significant problems such as low sensitivity, overcoming of full-scale, and low peaks resolution.

The instrument was also equipped with an auto-sampler HS100 (CTC Analytics AG, Zwingen,
Switzerland), which managed up to 96 samples in the same program. The sample vials were placed in
a shaker oven at 50 ◦C and 500 rpm for 20 min. Then, the auto-sampler syringe took 5000 µL of the
head-space (by piercing the silicone septum of the vial plug). The sample was injected at 100 µL s−1

(the injector temperature was 200 ◦C). The carrier gas was molecular hydrogen (H2) produced by an
Alliance High Purity Hydrogen generator (F-dgsi, Évry, France). A solid adsorbing trap Tenax TA
60/80 (Tenax SPA, Verona, Italy) was placed before the chromatographic columns and was maintained
at 40 ◦C and 60 kPa for 65 s while carrier gas was flowing and then heated at 240 ◦C. This allowed for
absorption of the volatile molecules onto the trap and removal of excess air and moisture to concentrate
the analytes. Analytes were then introduced into the GC columns by a rotatory valve. The column’s
initial temperature was 40 ◦C, which was maintained at such a value for 2 s and then increased by
3 ◦C s−1 until reaching 270 ◦C, then it was kept at this value for 21 s. The total acquisition time was 100 s,
and the signal was digitalized every 0.01 s. While a sample was injected, other samples were shaken;
the entire process was automated and managed by the instrument in the absence of personnel. As a
result, if 96 samples were analyzed in the same program, the overall time needed was not 20 × 96 min
but about 180 min.
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3.4. Working Datasets

After flash GC analysis, the gas-chromatographic data obtained were tabled into a source matrix
(dataset). The dataset rows represented the replicates of the 61 samples (244 rows or objects, 4 replicates
for each sample). The labels of the dataset columns corresponded to GC variables, which were the
acquisition times derived from the digitalization of the GC signal. Each dataset cell reported the FID
signal registered at the corresponding GC time for the relevant object. A further column was the class
variable reporting the a priori class to which the relevant object belonged. Objects were grouped into
classes based on their labeled identity (saffron, turmeric, and marigold).

In particular, two different datasets were created: the “area dataset” and the “intensity
dataset”. The “area dataset” (AD) variables corresponded to peak areas (56 columns); these
variables corresponded to the chromatographic peaks identified by the automatic integration tool of
AlphaSoft. The “intensity dataset” (ID) variables were the full chromatograms recorded by Heracles II
(20002 columns); cell values were the electric current intensities of FIDs. The signal was digitalized
every 0.01s for 100 s (10,001 signals), and the chromatogram of the second column was appended to
the one of the first column.

Both datasets were obtained from the chromatograms elaborated by Alphasoft V12.4 software.

3.5. Chemometrics

Before applying any of the chemometric techniques used in this work, all the data were
standardized [33]. In particular, two different scaling methods were applied to the datasets: autoscaling
for the “area dataset” and centering for the “intensity dataset”.

Two models for the determination of partial or total adulteration of saffron with turmeric and
marigold were created and evaluated, LDA [30] and PLS-DA [29,32]. In particular, the LDA model
was computed for AD, while the PLS-DA model was computed for ID.

For each dataset, the following chemometric procedure was carried out in parallel. First, for each
class, the elimination of the outliers was performed by PCA and Hotelling analysis [34] at a confidence
level of 95%, as already described in a previous work [25].

Then, the refined datasets including only statistically significant samples were subsequently
subjected to LDA and PLS-DA. Both chemometric models were then validated by internal
cross-validation (CV) [29,30] and by projecting the eleven test samples (not used for model creation) [29].
CV is a statistical technique that allowed evaluating the prediction ability of a model (i.e., the ability to
determine the values of the response variables from the predictors for the test samples). CV performed
the following steps iteratively: exclude some samples (randomly selected) from the training set,
build the model without the excluded samples, and classify the excluded samples with this model.
During this procedure, each sample of the training set was used as a test sample at least one time.
However, the results of CV were different for LDA and PLS-DA.

LDA computed a model characterized by the definition of new variables starting from the original
variables (in the case of AD, chromatographic peak areas) as well as in PCA. However, LDA, unlike PCA,
defined linear discriminant functions (LDs) rather than principal components (PCs) that were more
effective in separating the examined classes [29]. Such a model could classify unknown samples by
projecting them in the LDs space. An unknown sample was always assigned to the class for which
the calculated posterior probability [35] was higher; however, the distance of objects from the classes
needed to be taken into account in order to finely evaluate the degree of membership to a class.

For LDA, the CV output was represented by the confusion matrix. In this matrix, the lines
represented the “a priori” classes, and the columns represented the calculated “a posteriori” classes,
to which CV reassigned the samples. The ideal situation was a diagonal matrix (i.e., the matrix in which
the entries outside the main diagonal were all zero) because it was the situation in which all of the
samples were correctly assigned to the corresponding “a priori” classes. Subsequently, starting from
the confusion matrix, it was possible to compute the “non-error-rate” (NER) as the ratio between the
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objects correctly classified and the total number of objects, which represented the ability of the model
to correctly recognize its objects.

PLS-DA [32] is instead a regression method in which the predictor variables (X-matrix) were the
experimental ones (in the ID case, the full chromatograms), while the responses (Y-matrix) were the
so-called “dummy variables”. These dummy variables were the degrees of belonging to the examined
classes (in this work, saffron, turmeric, and marigold) and assumed the values for calibration objects to
be 0 and 1 (where 1 represented the certainty of belonging to the considered class, while 0 represented
the certainty of not belonging to the considered class). The projection of an external sample onto a
PLS-DA model returned a set of values for the dummy variables that could be considered as “degrees
of belonging” to each class.

CV results for a PLS-DA model were represented by the calculated values of dummy variables for
each sample, which meant the predicted degree of belonging of each sample to each class. These values
could be used to calculate a threshold value for each class that optimized both sensitivity and specificity
for the classification. The procedure for computing such threshold values is described by Ballabio and
Consonni (2013) [32]. The projected samples of the test set could then be assigned to a class if their
corresponding calculated value of the dummy variable overcame the threshold.

Outliers elimination was carried out by the software The Unscrambler V10.4 (Camo, Oslo,
Norway), while LDA and PLS-DA were carried out (with relative CV and projections) by the software
R V3.4.3 (R Core Team, Vienna, Austria) with the packages “MASS” [31] and “pls” [35].

4. Conclusions

The achieved results illustrate that the herein proposed, non-targeted strategy based on the
combined application of chemometrics with Heracles II flash HS-GC-FID may provide a rapid and
low-cost screening method for the authentication of saffron.

The samples were analyzed without any preparation or after a rapid grinding operation, allowing
us to avoid expensive pre-treatments and any contamination before analysis by gas-chromatography.
Furthermore, once the sample is put into the auto-sampler of the instrument, this instrumental analysis
is entirely automated and requires a short analysis time (overall, less than 20 min for a single sample
and a couple of minutes per sample for 96 samples simultaneously put in the auto-sampler).

Finally, with chemometrics, it was possible to use the GC data both as they are produced by the
instrument (chromatograms) and by integrating the chromatographic peaks to build classification
models (PLS-DA and LDA). These models had good calibration ability, evaluated by cross-validation
(CV) and, most of all, good prediction ability, evaluated by projecting external test samples that
simulated adulterations of saffron with turmeric and marigold. Moreover, for adulterant additions
below 33%w/w, the official UV-VIS spectrophotometry method was not able to detect adulteration [8].
On the contrary, Heracles II combined with chemometrics allowed us to go far below this limit;
a PLS-DA model able to detect down to 15 ÷ 20%w/w of adulteration was validated. Moreover,
a discriminant plot obtained through LDA showed significant differences between pure samples and
adulterated samples down to 5 ÷ 10%w/w.

Another important characteristic of the chemometric approach is that it does not require the
identification of the volatile compounds to create a model able to find an adulterated saffron sample.
The use of the entire chromatograms ensures that all the possible markers for turmeric or marigold
adulteration are taken into account in the model construction.
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