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During the last decade, the development of anticancer therapies has focused on targeting neoplastic-related metabolism. Cancer
cells display a variety of changes in their metabolism, which enable them to satisfy the high bioenergetic and biosynthetic demands
for rapid cell division. One of the crucial alterations is referred to as the “Warburg effect”, which involves a metabolic shift
from oxidative phosphorylation towards the less efficient glycolysis, independent of the presence of oxygen. Although there are
many examples of solid tumors having altered metabolism with high rates of glucose uptake and glycolysis, it was only recently
reported that this phenomenon occurs in hematological malignancies. This review presents evidence that targeting the glycolytic
pathway at different levels in hematological malignancies can inhibit cancer cell proliferation by restoring normal metabolic
conditions. However, to achieve cancer regression, high concentrations of glycolytic inhibitors are used due to limited solubility
and biodistribution, which may result in toxicity. Besides using these inhibitors as monotherapies, combinatorial approaches using
standard chemotherapeutic agents could display enhanced efficacy at eradicatingmalignant cells.The identification of themetabolic
enzymes critical for hematological cancer cell proliferation and survival appears to be an interesting new approach for the targeted
therapy of hematological malignancies.

1. Introduction

This paper will review a variety of important aspects of
metabolic processes relevant to cancer development and
maintenance, with a focus on haematological malignancies
(HMs). In addition, we will highlight small molecule com-
pounds that inhibit glycolysis and other interconnected
processes and their potential applications in HMs treatment.

Over the past decades, many research groups have com-
monly reported that one of the main features of tumor cells
is to bear a variety of mutations that combine to redirect the
network of intracellular signalling pathways.Moreover, mod-
ern high-throughput DNA sequence analysis has suggested
that these mutations are more numerous and heterogeneous
than previously thought [1, 2]. In some cases, the mutations
differ among histopathologically identical tumors and are
altered during the process of tumor progression [3]. As a con-
sequence, tumor development and progression are increas-
ingly considered to be extremely complex processes. Thus,

in most cases, it will be difficult or impossible to specifically
eradicate cancer cells by targeting a single oncogene. Hence,
further insights into the biological differences between cancer
cells and normal cells are necessary to design and develop
novel selective and effective anticancer therapies. However, it
is becoming extensively clear that many oncogene-activated
signalling pathways converge towards an adaptation of tumor
cell metabolism to provide energy and essential biomolecules
required for the rapid cell division [4–6]. Within the last
years, a large variety of different solid tumors have been asso-
ciated with increased metabolism (i.e., prostate cancer [7],
breast cancer [8], glioblastoma [9], ovarian carcinoma [10],
pancreatic cancer [11], and many others). It is now accepted
that the metabolism of cancer cells has extremely unique
characteristics compared to the one of healthy nonproliferat-
ing cells [4]. Indeed, cancer cells display a metabolic adap-
tation called aerobic glycolysis or “Warburg effect”, which
consists of ametabolic shift to increase the glycolytic pathway
as amain source of ATP, instead of oxidative phosphorylation
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Figure 1: Glycolysis and molecular targets of glycolytic inhibitors. The solid arrows indicate glycolytic reactions. 2-Deoxyglucose (2-
DG) inhibits hexokinase (HK), inducing early blockage of glycolytic pathway. 3-Bromopyruvate (3BrPA) inhibits HK and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), both blocking glycolytic flux. [3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-
carboxilic acid] (FX11) inhibits lactate dehydrogenase (LDH), further preventing the lactate production. Dichloroacetate (DCA) inhibits
pyruvate dehydrogenase kinase (PDK), limiting the acetyl-CoA production by pyruvate dehydrogenase (PDH). GLUT1, glucose transport 1;
HK, hexokinase; PGI, phosphoglucose isomerase; PFK, phosphofructokinase; TPI, triosephosphate isomerase; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglyceratemutase; ENO1, enolase; PK, pyruvate kinase; LDH, lactate
dehydrogenase; PDH: pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase.

(OXPHOS), independent of the presence of oxygen [12, 13].
Several studies have demonstrated that this shift massively
contributes to satisfying the high bioenergetic and biosyn-
thetic demands for rapid cell division in cancers [12–14]. In
addition, high rates of glycolysis in tumor cells have been
related to resistance to chemo- and radiotherapy treatment
[15]. These observations suggest that blocking glycolysis may
negatively affect tumor progression and may enhance the
efficacy of chemo- and radiotherapy. Indeed, a variety of
studies performed in vivo (i.e., human osteosarcoma, lung
carcinoma [15], and ovarian cancer [16]) and in vitro (i.e.,
glioma, squamous carcinomas, and colon carcinoma cells
[17]) have revealed that targeting the glycolytic pathway with
specific compounds increases the cellular sensitivity toward
commonly used anticancer drugs.

2. Glycolysis

Glycolysis is a 10-step pathway that converts a glucose
molecule into 2 pyruvates with a net production of 2 ATP
molecules and in parallel provides intermediates for anabolic
pathways (Figure 1). Each step of the glycolytic reaction is

catalyzed by a specific enzyme or enzyme complex. Some of
these enzymes comprise isoform variants that are expressed
in a context- and tissue-dependent manner [18], leading to
enhanced complexity in the glycolytic pathway. Different gly-
colytic proteins have been reported to be deregulated in vari-
ous cancers, thus contributing to aerobic glycolysis (Table 1).

3. Glucose Transporters

The entry of glucose into cells is achieved via facilitated dif-
fusion through the glucose transporters (GLUT) family [18].
This family consists of 14 proteins grouped in 3 subclasses,
which differ fromone another in their affinity for glucose [19].
GLUT1 promotes elevated rates of glucose transport into cells,
and the deregulation of its expression has been reported in
many tumours, but not in normal tissues [20].

4. Hexokinase

Hexokinase (HK) comprises four isoforms (I to IV), which
differ in their kinetics proprties, as well as in their tissue-
specific expression and subcellular localization [21, 22]. The
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Table 1: Summary of reported alterations in proteins involved in metabolism in different types of cancer.

Protein Alteration Tumor type Reference
GLUT1 mRNA overexpression Endometrial and breast cancer [19, 125]
HKII mRNA overexpression Glioblastoma multiforme [126]
PGI mRNA overexpression Colorectal cancer [31]
PFK1 mRNA overexpression Breast cancer [34–36]
GAPDH mRNA overexpression Lung, renal, breast, colorectal, hepatocellular, and pancreatic cancers [127–129]
PKM2 mRNA overexpression Lung, renal, breast, colorectal, and gastrointestinal cancers [129–133]
LDH-A Gene amplification Lung, pancreatic, and colorectal cancers [92]
GLUT1: glucose transport 1; HK: hexokinase; PGI: phosphoglucose isomerase; PFK: phosphofructokinase; GAPDH: glyceraldehyde-3-phosphate dehydroge-
nase; PKM2: pyruvate kinase M2; LDH-A: lactate dehydrogenase A.
Information was retrieved from http://www.ncbi.nlm.nih.gov/pubmed.

hexokinase isoform II (HKII) is known to play a crucial
role in initiating and maintaining the high glucose catabolic
rates of rapidly growing tumors [23, 24]. Certain tumor cells
display an increased gene copy number in HKII [25]. The
HKII gene promoter is the target of multiple signals activated
by glucose, hypoxic conditions, and insulin, all of which
enhance the rate of its transcription [26, 27]. Due to the
binding ofHKII to themitochondrial outermembranewhere
the voltage-dependent anion channel (VDAC) is located [22],
this enzyme uses the ATP produced by oxidative phospho-
rylation as a substrate to produce G-6-P. This interaction
of HKII with the mitochondrial membrane appears to be
tighter in tumor cells than in normal cells [28]. The HKII-
VDAC interaction is thought to be the link between altered
cellular metabolism and inhibition of apoptosis because it
confers resistance against mitochondrial membrane perme-
abilization, which is a critical step in apoptosis [29].

5. Glucose-6-Phosphate Isomerase

The third glycolytic enzyme in the pathway is glucose-
6-phosphate isomerase (PGI). This enzyme is used as a
prognosticmarker, as the expression of PGI is associated with
cancer progression and an aggressivemalignant behavior [30,
31]. However, the involvement of PGI in cancer metabolism
has not been completely elucidated yet.

6. Phosphofructokinase

The following enzyme in the pathway is phosphofructokinase
(PFK), which is an important control point in the glycolytic
pathway and is generally thought to maintain the glycolytic
flux [32, 33]. PFK activity is markedly increased in cancer
cell lines and primary tumor tissues in situ [34–36]. Elevated
PFK-1 activity is also characteristic of cancer cells and is
induced in response to oncogenes or following hypoxia-
inducible factor 1𝛼 (HIF1𝛼) activation [21, 37]. It has been
recently reported that the inhibition of PFK by posttransla-
tional modification, such as glycosylation, confers a selective
growth advantage to cancer cells [38].

7. Glyceraldehyde-3-Phosphate Dehydrogenase

Another enzyme associated with increased glycolytic activity
is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [39,
40]. GAPDH affects multiple cellular processes including
endocytosis, exocytosis, membrane fusion, vesicular secre-
tory, neuronal apoptosis, DNA replication and repair, nuclear
tRNA transport, and cytoskeletal organization [21, 41], due
to its known nonenzymatic activities, such as binding to
NAD+or NADH and also to DNA and RNA [35, 42–44].

8. Pyruvate Kinase

The final reaction of glycolysis is catalyzed by pyruvate
kinase (PK), which has been reported to play a crucial role
in reprogramming glycolytic metabolism. There are four
mammalian PK isoenzymes (M1, M2, liver isoform (L), and
a red blood cell isoform (R)). PKM2 is the embryonic and
cancer-associated isoform and exerts its function by forming
a tetramer or a less active dimer [45]. The less active dimeric
formof PKM2 ismainly found in cancer. It ismost commonly
expressed in colon cancer [46], renal carcinoma [47], breast
cancer [48], lung cancer, and gastrointestinal tumors [49].
PKM2 is known to directly contribute to the Warburg effect
[46], as it contributes to the accumulation of glycolytic
intermediates for the following anabolic processes: nucleic
acid, amino acid, and phospholipid synthesis [50]. PKM2
imparts a growth advantage to tumor cells, particularly under
hypoxic conditions. Replacement of PKM2 by the normal
adult isoform PKM1 in tumor cells decreased their glycolytic
rate and diminished their ability to grow as xenografts [46].

9. Lactate Dehydrogenase

Lactate dehydrogenase (LDH) is a tetrameric enzyme that
exists in five isoforms, mostly located in the cytosol [51]. The
five isoforms are made up of various possible combinations
of the two types of subunits: LDH-A and LDH-B [52]. It has
long been appreciated that many human cancers have higher
levels of LDH expression than normal tissue [53, 54], and,
therefore, LDH has already been acknowledged as one of
the most promising cancer targets. In fact, the inhibition of
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LDH-A had an antiproliferative effect on breast tumor [55,
56]. In addition, studies in primary lymphoma of the breast
suggest that aggressive behavior and elevated LDH levels are
prognostic factors for poor prognosis and survival [57].

10. Tricarboxylic Acid Cycle

Mitochondrial pyruvate dehydrogenase (PDH) converts
pyruvate into acetyl-CoA, which is further directed into
the tricarboxylic acid cycle (TCA cycle) and oxidative
phosphorylation. PDH is negatively regulated by pyruvate
dehydrogenase kinase (PDK) via phosphorylation [58]. This
phosphorylation of PDH decreases the entry of pyruvate
into the mitochondrial oxidative metabolism [59]. PDK is
known to be a key regulator of the Warburg effect [60] and
considered as a novel therapeutic target in oncology [61].

A broad range of cancer types appear to have an increased
glycolytic pathway and to take advantage of using intermedi-
ates for anabolic reactions [62, 63]. Transcription factors such
as HIF1𝛼 [64, 65], c-Myc [66–68], and p53 [69] contribute
directly or indirectly to this metabolic adaptation of tumors.
These interactions seem to be fundamental to direct the aber-
rantmetabolic behavior of tumor cells by promoting theWar-
burg effect [67–70]. Nevertheless, the gene networks involved
in cancer metabolism have not been completely elucidated
yet. Thus, it would be beneficial to reverse theWarburg effect
in order to normalize tumor metabolism, which may be a
potential therapeutic strategy for the treatment of cancer.

Since one feature of HMs is their potential for rapid pro-
liferation andhighmetabolic demand, a better understanding
of the regulation of the multiple metabolic pathways in HMs
may reveal new therapeutic opportunities, particularly by
restoring the altered cancer energy metabolism.

11. Preclinical Efficacy of Glycolytic Inhibitors

Glycolysis inhibitors have been usually developed to target
enzymes that are deregulated in cancer cells compared to
their normal counterparts. Many glycolytic inhibitors have
been developed so far, and their efficacy has been demon-
strated by both in vitro and in vivo studies [71]. Moreover,
some of these inhibitors have already undergone clinical
testing (Table 2). Although the exact molecular mechanisms
underlying the reliance of tumors on glycolysis remain
not completely understood [71], glycolysis inhibition opens
feasible therapeutic windows for cancer treatment. Indeed,
several small molecules have been identified and have been
shown to exhibit promising anticancer activities both in vitro
and in vivo, as single agents or in combination with other
therapeutic modalities.

12. Hexokinase Inhibitors:
2-Deoxyglucose (2-DG)

2-Deoxyglucose (2-DG) (Figure 2) is an early glycolytic
inhibitor, which has been proven to be effective at depleting
cellular ATP [72, 73]. 2-DG is a glucose analogue, which
is phosphorylated by the enzyme HK to 2-deoxyglucose-
6-phosphate (2-DG-6-P). 2-DG-6-P cannot be further

metabolized and accumulates in the cytoplasm, leading to
a proximal blockade of glycolysis [73]. Several reports have
shown that the cytotoxic effects of 2-DG are heterogeneous
[74, 75].The cytotoxic effects of 2-DGwere found to be higher
in cancer cells under hypoxic conditions or in cells with
mitochondrial defects [76–79]. Recent studies have reported
the therapeutic efficacy of 2-DG combined with chemothera-
peutic drugs or ionizing radiation, and indeed, in both cases,
the inhibitor enhanced the damage to cancer cells, while
reducing the damage to normal cells [78, 79] (i.e., 2-DG in
combination with cisplatin and doxorubicin had a significant
cytotoxic effect in rapidly dividing cells, whereas no effect was
seen in slowly growing cells [80].) 2-DG can also enhance
DNA damage caused by irradiation in cancer cells [76].

13. Multiple Glycolytic Inhibitors:
3-Bromopyruvate (3-BrPA)

Themetabolic blocker 3-bromopyruvate (3-BrPA) (Figure 2)
is a halogenated analogue of pyruvic acid with strong alky-
lating properties and has received significant attention due
to its remarkable antitumor activity [71, 81]. In vitro testing
demonstrated that 3-BrPA inhibits glycolysis and blocks
ATP production, thus causing apoptosis in a dose-dependent
manner [71]. Like 2-DG, 3-BrPA exhibited a potent cytotoxic
activity against cancer cells with mitochondrial respiratory
defects and against cells in a hypoxic environment [82]. 3-
BrPA is believed to inhibit HKII through a covalentmodifica-
tion at one ormore cysteine residues leading to an attenuation
of the glycolytic rate [83]. Further studies using radiolabelled
3-BrPA have identified the glycolytic enzyme GAPDH as the
primary intracellular target of this agent [84]. The binding of
3-BrPA toGAPDHcaused an inhibition of its enzyme activity
and, consequently, of the glycolytic production of ATP, which
led to cell death by apoptosis [85]. The antineoplastic effects
of 3-BrPA resulted from a reduction in some intermediates
of glycolysis, thus impairing the replenishment of anabolic
reactions branching from the glycolytic pathway [86]. Indeed,
the 3-BrPA-mediated inhibition of HKII could result in a
reasonable reduction in ribose-5-phosphate synthesis [71].
Similarly, GAPDH inhibition could decrease the levels of its
downstream metabolite, 3-phosphoglycerate, thus reducing
the production of lipids and amino acids deriving from it
[87]. 3-BrPA also displayed an effect on the extra-glycolytic
enzyme succinate dehydrogenase (SDH) [88], which con-
tributed to a block in ATP production and to an impairment
of mitochondrial respiratory function. 3-BrPA is effective at a
concentration of 100 nM, meaning that it is more potent than
2-DG, which is effective in the mM concentration range [88].

Although, many preclinical studies have confirmed its
anticancer properties, the molecular targets and the mecha-
nisms underlying 3-BrPA-induced cytotoxicity have not been
completely defined thus, its application in human has not
been tested by clinical trials yet.

14. Inhibition of PKM2

Inhibition of PKM2 has so far been achieved by using RNA
interference (RNAi), which induced apoptosis and tumor
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Table 2: Summary of preclinical studies and ongoing clinical trials with glycolysis inhibitors.

Drug Target Group or cell lines Phase Reference
2-DG HK Lung, breast, head and neck, pancreatic, and gastric cancers Completed in 2009 [134]
2-DG HK Patients with advanced cancer and hormone refractory prostate cancer Completed in 2011 [135]
3-BrPA HK Childhood acute lymphoblastic leukemia cell lines Preclinical [110, 121]
FX11 LDH-A Tumor growth Preclinical [92]
2-Deoxyglucose (2-DG), 3-bromopyruvate (3-BrPA), (FX11 [3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxilic acid]) (FX11), and
dichloroacetate (DCA). Information was retrieved from http://www.ncbi.nlm.nih.gov/pubmed.

OH

OH

OH

OH

HO

HO

HO

O

O

O

O

Br

2-DG

FX11

COOH

NA+

−O

Cl

Cl

3-BrPA

DCA

Figure 2: Chemical structures of glycolytic inhibitors. 2-Deoxyglucose (2-DG) and 3-bromopyruvate (3-BrPA) have been both applied in
preclinical studies in HMs [110, 113, 121], whereas (FX11 [3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxilic acid])
(FX11) and dichloroacetate (DCA) have been applied in different solid tumors [92, 96].

regression, partially by enabling a reversion of the metabolic
shift [89].

15. LDHA Inhibitors: (FX11
[3-Dihydroxy-6-methyl-7-(phenylmethyl)-
4-propylnaphthalene-1-carboxilic Acid])

FX11 [3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propyl-
naphthalene-1-carboxilic acid] (FX11) (Figure 2) is a small-
molecule inhibitor selective for LDHA [90]. FX11 was
identified through screening a library of compounds derived
from the natural product gossypol, a known antimalarial
LDH inhibitor [91]. FX11 was shown to induce oxidative
stress and cells death in vitro, as well as an inhibition of the
progression of human lymphoma and pancreatic xenografts
in vivo [92]. Additional studies have described a reduction
in ATP levels and the induction of significant oxidative
stress and cell death upon treatment with FX11 [92]. Several
studies have documented that inhibition of LDHA can

reduce cellular transformation and markedly delay tumor
formation, indicating that LDHA is required for tumor pro-
gression [93, 94]. It has also been shown that FX11, when
combined with FK866, anothermetabolic inhibitor that inhi-
bits NAD+ synthesis through a direct inhibition of nicotin-
amide phosphoribosyltransferase, can induce lymphoma
regression [95]. Nevertheless, the evaluation of FX11 in clin-
ical studies has not been reported on yet.

16. PDK1 Inhibitors: Dichloroacetate

Dichloroacetate (DCA) is a mimetic form of pyruvate, and
among several glycolytic inhibitors it is known to significantly
decrease lactate production inmyeloma cancer cell lines [96].
This is due to the ability of DCA to inhibit PDK1 [97–99],
resulting in impaired phosphorylation of PDH. DCA treat-
ment restored the activity of PDH which can supply acetyl-
CoA to the TCA cycle and oxidative metabolism [98]. The
antitumor activity of DCA was documented against a variety

http://www.ncbi.nlm.nih.gov/pubmed
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of cancer cells type derived from the lung [97], breast [100],
prostate [101], endometrial [102], and colorectal cancers [103].

17. Hematological Malignancies

HMs comprise a collection of heterogenous diseases, all orig-
inating from cells from the bone marrow and the lymphatic
system. The overall prevalence of haematological cancers
is increasing representing the fifth most common cancer
group [104]. HMs include lymphomas, leukemia, myelo-
proliferative neoplasms, plasma cell dyscrasias, histiocytic
tumor, and dendritic cell neoplasms. The incidence of HMs
increases with age (mean age at diagnosis: 63 years). There
is no gold standard for hematopoietic disease classification
thus; multiple methods were applied over the years. Among
them, the most frequently used systems include Revised
European-American classification in 1994 (REAL), French-
American-British system (FAB), and World Health Organi-
zation (WHO) classification in 2001 (updated in 2008) [105].
The inability of the earliest classification, based on cellular
morphology and histological architecture, to distinguish
HMs subtypes led to the incorporation of two additional
criteria into the REAL classification by theWHO in 2001: the
immunophenotype and the genetic background.

Nowadays, the WHO classification updated in 2008 is
widely used and accepted [106]. Indeed, this system classifies
malignancies of the hematopoietic and lymphoid tissues
based on morphological, immunophenotypic, genetic, and
clinical features with the aim of increasing diagnostic accu-
racy. In addition, this classification has created borderline
categories for cases that do not fit into a particular subgroup.
When possible, the different cancer types are grouped by
lineage into myeloid neoplasms, lymphoid neoplasms, and
histocytic/dendritic neoplasms [105]. There are also neo-
plasms that show evidence of both myeloid and lymphoid
differentiations, probably due to the fact that they are derived
from multipotent progenitors cells, and these are then classi-
fied as neoplasms of myeloid and lymphoid lineages.

18. Myeloid Neoplasms

Myeloid neoplasms are usually derived from bone marrow
committed progenitors restricted to give rise to erythro-
cytes, granulocytes (neutrophils, basophils, and eosinophils),
monocytes, or megakaryocytes. Myeloid neoplasms are gen-
erally adult diseases presenting symptoms at a median age of
64 years. They are be subgrouped into three broad clinical
classes: acute myeloid leukemias (AML), myeloproliferative
neoplasms (MPN), and myelodysplastic syndromes (MDS).
The first one, AML, has a very aggressive outcome and
requires immediate therapy, whereas the clinical behaviour
of MPN and MDS can be quite indolent. AML is charac-
terised by more than 20% of myeloid blasts in the bone
marrow or in the peripheral blood and is subdivided into
five groups: (a) AML with recurrent genetic abnormalities,
(b) AML with myelodysplasia-related changes, (c) therapy-
related myeloid neoplasms, (d) AML not otherwise specified,
and (e) myeloid sarcoma and myeloid proliferation related to
Down syndrome.

The second myeloid neoplasms, MPN, is a group of
disorders associated with the proliferation of one specific
myeloid lineage (i.e., granulocytes, erythroid, megakary-
ocytic, or mast cells). This disease is often associated with
mutations causing abnormal increases in tyrosine kinase
activity and growth factor-independent proliferation of bone
marrow progenitors. The MPN can be divided into (a)
chronic myeloid leukemia (CML), (b) chronic neutrophilic
leukemia (CNL), (c) polycythemia vera (PCV), (d) essential
thrombocythemia (ET), (e) primarymyelofibrosis (PMF), (f)
chronic eosinophilic leukemia (CEL), (g) mastocytosis, and
(h) unclassificablemyeoloproliferative neoplasms (referred to
as atypical MPNs). The third subtype of myeloid neoplasms,
MDS, refers to disorders exhibiting dysplasia and with a vari-
able risk of transformation to acute leukemia. Furthermore,
the hematopoiesis is ineffective and results in cytopenias. Like
AML and MPN, MDS is composed of several subtypes: (a)
refractory cytopenia with unilineage dysplasia, (b) refractory
anemia with ring sideroblasts, (c) refractory cytopenia with
multlineage dysplasia, (d) refractory anemia with excess
blasts, (e) unclassifiable MDS, and (f) childhood MDS.

19. Lymphoid Neoplasms

Lymphoid neoplasms are those derived from cells that
develop into T lymphocytes (cytotoxic T lymphocytes, helper
T lymphocytes, or regulatory T lymphocytes) or B lym-
phocytes. Lymphoid neoplasms are divided into 2 groups:
neoplasms derived from lymphoid precursors (i.e., acute
lymphoblastic leukemia/lymphoma, ALL) and neoplasms of
mature lymphocytes and plasma cells. The first group is
composed two main categories: precursor B lymphoblas-
tic leukemia/lymphomas and precursor T lymphoblastic
leukemia/lymphoma. Concerning the neoplasms of mature
lymphocytes, the WHO grouped the diseases based on B or
T cell origin. The classification of mature B cell neoplasms
is based on a comparison of aberrant and normal B cell
development and is divided into (a) chronic lymphocytic
leukemia/small lymphocytic lymphoma (CLL/SLL), (b) lym-
phoplasmacytic lymphoma (LPL), (c) mantle cell lymphoma
(MCL), (d) B cell prolymphocitic leukemia (B-PLL), (e)
follicular lymphoma (FL), (f) diffuse large B cell lymphoma
(DLBCL), (g) Burkitt lymphoma/leukemia (BL), (h)marginal
zone B cell lymphoma (MZL), (i) hairy cell leukemia (HCL),
and (l) plasma cell myeloma/plasmacytoma. Hodgkin’s dis-
ease or Hodgkin lymphoma (HL) is separated from the other
B cell lymphomas based on its unique cellular composition,
containing a minority of neoplastic cells in an inflammatory
background. HL can be divided into two major subgroups:
nodular lymphocyte predominant HL and classical HL.

The mature T cell and natural killer (NK) cell neoplasms
are lymphoid neoplasms of mature T cell or NK cells includ-
ing (a) peripheral T cell lymphoma (PTCL), (b) anaplastic
large cell lymphoma (ALCL), (c) primary cutaneous periph-
eral T cell lymphomas, adult T cell leukemia-lymphoma
(ATL), (d) T large granular lymphocyte leukemia (LGL), (e) T
cell prolymphocytic leukemia (T-PLL), and (f) NK cell large
granular lymphocyte leukemia (LGL).
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The last group of HMs, according to the 2008WHO clas-
sification, includes histiocytic/dendritic neoplasms derived
from accessory antigen-presenting precursor cells (APC or
dentritic cells) or connective tissue macrophages (histio-
cytes). Histiocytic/dendritic neoplasms are divided into 3
groups: (a) histiocytic sarcoma, (b) tumors derived from
Langerhans cells, and (c) follicular dendritic sarcoma.

20. Risk Factors and Standard Protocol
for HMs

There are many risk factors playing a role in HMs devel-
opment. Age is the most significant risk factor, since these
cancers most often occur in patients aged 60 or older. Fur-
thermore, benzene exposure, ionizing radiation, or certain
types of viral infections (i.e., HTLV1 orHIV) have been linked
to the development of leukemia.The type of cancer, stage, age,
sex, race, and the presence of chromosomal abnormalities are
important factors in HMs treatment. Based on these factors,
treatment may include chemotherapy, radiotherapy, targeted
therapies, and hematopoietic stem cell transplantation. The
frequent chromosomal abnormalities in HMs include gene
deletions, amplifications, and translocations. The major and
most important chromosomal abnormality in CML is the
presence of the Philadelphia chromosome (Ph+) arising from
a translocation t(9;22) resulting in the BCR/ABL (Breakpoint
Cluster Region/ABelson murine Leukemia viral oncogene
homolog) gene fusion. More than 85% of patients diagnosed
with CML have the Ph+ chromosome. The presence of the
Ph+ chromosome, in the absence of additional chromosomal
changes, is associated with a good prognosis in CML. A large
number of structural and numerical chromosomal changes
have been described in ALL [107]. However, some of these
changes occur more frequently than others. The human
mixed lineage leukemia (MLL) gene on chromosome 4, the
t(12;21) translocation resulting in the TEL/AML (Translo-
cation Ets-Leukemia/Acute-Myeloid-Leukemia) gene fusion,
hyperdiploidy, together with the t(9;22) translocation, which
produces the BCR/ABL fusion, are the most common kary-
otypic abnormalities in ALL. The TEL/AML fusion gene
appears to be associated with a good prognosis in ALL, while
the presence of BCR/ABL has an unfavorable prognosis [108].

21. Targeting the Glycolytic Pathway in HMs

Although there are many examples of rapidly proliferating
solid tumor cells that have a fundamental change in their
metabolism and exhibit an increased dependency on the gly-
colytic pathway for ATP generation, it has been only recently
reported that this phenomenon also occurs in HMs.The
metabolic difference between normal cells and cancer cells
provides a basis for the design of therapeutic approach to
selectively kill cancer cells. So far, studies on the alteredmeta-
bolism of HMs have been mainly focused on AML and ALL.
The available evidence supports the hypothesis that these
leukemia subtypes demonstrate a dependence on glycolysis
under aerobic conditions, thus providing a potential oppor-
tunity for the use of glycolysis inhibitors in acute leukemia.

It has been published that leukemia cells, as tumor
cells, shift their metabolism from oxidative phosphorylation
toward the less efficient glycolysis. An evidence of this
phenomenon comes from the observation that several genes
involved in glucose metabolism were reported to be differ-
entially expressed in pediatric leukemia. Expression profiling
showed that the expression of HIF-1𝛼, GLUT1, GLUT3,
carbonic anhydrase 4 (CA4), and GAPDH was significantly
higher in leukemic cells than in normal peripheral blood
[109]. In addition leukemic cells with an increase of glycolytic
rate appear to display glucocorticoid resistance, and the inhi-
bition of glycolysis, rendered otherwise resistant leukemia
cells susceptible to glucocorticoid treatment. The first gener-
ation glycolysis inhibitor, 2-DG, could reverse the glucocorti-
coid resistance in leukemia cells [110]. Treatment with 2-DG
enhanced the chemotherapeutic effects of glucocorticoids
(i.e., dexamethasone, prednisone and derivate) in particular
against leukemic cells with mitochondrial defects. The phe-
nomenon has been shown not only in cell lines but was also
observed from primary leukemic cells of pediatric leukemia
patients. However, clinical feasibility is limited with this com-
pound [111] due to the high (mM) concentrations of the drug
required for efficacy. In addition, recent studies indicated that
2-DGnot only inhibits glycolysis and consumption of glucose
to produce ATP or fatty acids but can also be metabolized
though the pentose phosphate pathway (PPP). Moreover, 2-
DG alters protein glycosylation, in particular by inhibitingN-
glycosylation. Through the inhibition of N-glycosylation, 2-
DG has been shown to kill cells in normoxia and to produce
subsequent cellular stress. For this reason, other inhibitors of
the enzyme HKII were tested in leukemia. 3-BrPA seems to
have a greater potency but still requires a high dosage and
has limited solubility and biodistribution. A report in human
lymphoma and the AML cell line HL60 documented the
induction of cell death upon treatment with 3-BrPA [112–114].

A recent study described a possible combinatorial treat-
ment using an inhibitor of glycolysis (3-BrPA) and an
inhibitor of electron transfer in the mitochondrial complex-
III (antimycin A). Antimycin A is also a potent inhibitor of
cytochrome-c-reductase. As a single agent, antimycin A was
shown to induce apoptosis and to increase glycolytic rates
[115, 116]. When 3-BrPA and antimycin A were combined,
a dramatic decrease in the ATP levels of cancer cells was
observed [117]. This study demonstrated that acute leukemia
appears to be dependent on glycolysis for survival and that
blockade of oxidative respiration can also have an effect on
cell viability. However, the combined inhibition of glycolysis
and oxidative phosphorylation led to more significant cell
death. It is at present unclear whether this combinatorial
treatment will also lead to toxicity in nonmalignant cells.

An alternative approach to potentiate the cytotoxic effects
of glycolysis inhibitors in leukemia is the targeting of the
mammalian target of rapamycin (mTOR) pathway, which
is critical for cellular responses to metabolic stress [118].
The mTOR pathway plays an important role in nutrient
uptake, regulation of energy metabolism, and cancer cells
survival [118–120]. The targeted inhibition of both glycol-
ysis and mTOR can cooperate to induce severe metabolic
deregulation, cell death, and impaired ATP generation in
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cancer cells that are more dependent on glycolysis for energy
production. In vitro and in vivo studies in leukemia and
lymphoma cells [113, 120] demonstrated that a combination of
rapamycin and 3-BrOP (3-bromo-2-oxopropionate-1-propyl
ester), a cell permeable ester of 3-BrPA, effectively depleted
cellular ATP [121]. Moreover, the combinatorial effect caused
dephosphorylation of mTOR downstream target molecules
(i.e., p70S6K) leading to alterations not only in cellular
metabolism but also in survival signals. Furthermore, the
simultaneous inhibition of glycolysis and the mTOR pathway
is a potentially less toxic approach to target cancer cells.When
ATP is depleted by glycolysis inhibition, blocking the mTOR
patway further limits nutrient uptake, cell proliferation, and
cell survival [121].

The sensitivity of leukemia cells to combinations of gly-
colytic inhibitors, such as 2-DG and 3-BrPA, and inhibitors
of oxidative phosphorylation (antimycin A) or the mTOR
pathway (rapamycin analogues) suggests a potential role
for combinatorial therapeutic approaches in HMs. These
combinations may lead to alterations not only in cellular
metabolism but also in survival signal [122, 123].

Recent findings have suggested that the Warburg effect is
also present inmultiple myeloma (MM) [96]. For this reason,
several research groups have tried to inhibit glycolysis as a
novel therapeutic approach in these HMs. A recent study
from Fujiwara et al. [124] described a new inhibitor of glycol-
ysis, DCA, which promotes pyruvate oxidation and induced
MMgrowth inhibition.The inhibition of aerobic glycolysis by
DCA occurred via the downregulation of PDK1, a kinase that
phosphorylates and inhibits PDH within the mitochondria.
The inhibition of PDK1 and the restoration of the activity of
PDH induced by DCA led to an increased supply of acetyl-
CoA to the Krebs cycle and NADH electron donation to
the electron transport chain [98]. An increase in electron
transport chain activity causes a generation of mitochondrial
reactive oxygen species (ROS)which contribute to generating
a loss of mitochondrial membrane potential and ultimately
the suppression of cell proliferation.

The standard therapy for patients with MM is based
on bortezomib, which induces a strong apoptotic response
in myeloma cells [96]. However, plasma cells can become
resistant to apoptosis, a phenomenon which is linked to
aerobic glycolysis and predicts a poor clinical outcome
in patients. Fujiwara et al. described that a combinatorial
treatment of MM with bortezomib and DCA significantly
increased superoxide production and induced apoptosis.
In addition the authors performed an in vivo study with
myeloma-bearing mice. A significantly prolonged survival of
myeloma-bearing mice was observed upon treatment with
the combinatorial therapy (DCA + bortezomib) [96], when
compared with control mice or mice treated only with a
monotherapy. Thus, inhibition of glycolysis increased the
sensitivity ofMM cells to conventional chemotherapy in vitro
and improved the survival of myeloma-bearing mice in vivo.

22. Conclusion

Targeting glycolysis has emerged as a potential novel ap-
proach to develop targeted therapies in HMs. However,

additional studies are needed to investigate the molecular
mechanisms of the dependency of HMs on glycolysis and
its importance in chemoresistance. Since the use of cell lines
from leukemia, lymphoma, or MM has certain limitations,
such as metabolic adaptation and changes in the rates of cell
growth and proliferation, it will be important to also test
combinatorial strategies involving glycolytic inhibitors in pri-
mary samples from patients with HMs. If successful, these
studies will warrant further investigations in vivo in appro-
priate models of HMs. Such work is a prerequisite for the
successful transition of targeted therapies using inhibitors of
glycolysis to perform clinical testing in patients with HMs.

Acknowledgments

Work in the author’s laboratory is supported by Grants
from the European Union’s FP7 (ASSET, project number:
259348 and LUNGTARGET, project number: 259770), the
Swiss National Science Foundation (Grant 31003A-120294
and 31003A-146464), the Fondation FORCE, the Novartis
Stiftung für Medizinisch-Biologische Forschung, the Jubi-
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[131] F. Révillion, V. Pawlowski, L. Hornez, and J.-P. Peyrat,
“Glyceraldehyde-3-phosphate dehydrogenase gene expression
in human breast cancer,” European Journal of Cancer, vol. 36,
no. 8, pp. 1038–1042, 2000.

[132] C. Rubie, K. Kempf, J. Hans et al., “Housekeeping gene variabil-
ity in normal and cancerous colorectal, pancreatic, esophageal,
gastric and hepatic tissues,” Molecular and Cellular Probes, vol.
19, no. 2, pp. 101–109, 2005.

[133] S. Waxman and E. Wurmbach, “De-regulation of common
housekeeping genes in hepatocellular carcinoma,” BMC Geno-
mics, vol. 8, article 243, 2007.

[134] L. E. Raez, K. Papadopoulos, A. D. Ricart et al., “A phase I
dose-escalation trial of 2-deoxy-D-glucose alone or combined
with docetaxel in patients with advanced solid tumors,” Cancer
Chemotherapy and Pharmacology, vol. 71, pp. 523–530, 2013.

[135] M. Stein, H. Lin, C. Jeyamohan et al., “Targeting tumor meta-
bolism with 2-deoxyglucose in patients with castrate-resistant
prostate cancer and advanced malignancies,” Prostate, vol. 70,
no. 13, pp. 1388–1394, 2010.


