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Abstract: Considering that compressive strength (CS) is an important mechanical property parameter
in many design codes, in order to ensure structural safety, concrete CS needs to be tested before
application. However, conducting CS tests with multiple influencing variables is costly and time-
consuming. To address this issue, a machine learning-based modeling framework is put forward in
this work to evaluate the concrete CS under complex conditions. The influential factors of this process
are systematically categorized into five aspects: man, machine, material, method and environment
(4M1E). A genetic algorithm (GA) was applied to identify the most important influential factors for
CS modeling, after which, random forest (RF) was adopted as the modeling algorithm to predict the
CS from the selected influential factors. The effectiveness of the proposed model was tested on a case
study, and the high Pearson correlation coefficient (0.9821) and the low mean absolute percentage
error and delta (0.0394 and 0.395, respectively) indicate that the proposed model can deliver accurate
and reliable results.

Keywords: ready-mix concrete; compressive strength; random forest; feature selection; genetic algorithm

1. Introduction

Concrete has long been the most widely used building material all over the world
due to its multifold merits in integrity, durability, modularity and economy. According to
the development report of China’s ready-mix concrete industry in 2020, the production in
the first three quarters reached 1.94 billion cubic meters. Among the various performance
indices of concrete, compressive strength (CS) is the most important, as it directly affects
the building’s structural safety.

Traditionally, the CS of concrete is obtained by testing specifically prepared and cured
cubic or cylindrical specimens using a compression test instrument, which is cumbersome,
time-consuming and costly in the entire experimental process. To improve this situation,
empirical regression methods [1,2] and numerical simulation [3,4] have been developed
to predict concrete CS based on the design recipe. The concrete production process is
affected by several factors, which have strong nonlinear relationships with the product
CS and are strongly interrelated. With the rapid development of machine learning, there
is a trend to employ data-driven techniques for concrete CS prediction. Compared with
the conventional regression methods, machine learning-based approaches adopt suitable
algorithms to automatically “learn” from the process data, “distinguish” important influ-
ential factors from the interfering factors, approximate the intricate process mechanism
with deterministic mathematical forms, and perform prediction with high accuracy over
a specified confidence interval. To date, various machine learning algorithms have been
applied to studying the correlations between the concrete recipe and the product CS.
Sobhani et al. [5] constructed both traditional regression models and machine learning
models to predict the 28-day CS of no-slump concrete, based on the concrete ingredients
(including the amount of cement, silica fume, water, coarse aggregates, fine aggregates,
and fillers). They found that the machine learning models were more feasible than the
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traditional models. Chou et al. [6], Al et al. [7], and Cheng et al. [8,9] exploited several
machine learning techniques to study the high nonlinear relationships between the ingre-
dients and high-performance concrete CS. Besides the basic ingredients for conventional
concrete, the authors also considered supplementary cementitious materials, including
fly ash, blast-furnace slag and chemical admixtures. Aiyer et al. [10] examined the ca-
pability of least-squares support vector machine (SVM) and relevance vector machine
for the determination of self-compacting concrete CS, and concluded that the latter can
deliver robust prediction results. Behnood et al. [11] applied the M5P model tree for the
CS prediction of normal concrete and high-performance concrete based on the amount of
concrete constituent. Recently, Yu et al. [12] developed an optimized self-learning method
for the CS prediction of high-performance concrete. Feng et al. [13] employed the adaptive
boosting algorithm to construct a strong learner by integrating several weak learners, to
enhance the predictive accuracy. Their model also considered the influence of the curing
time in addition to the concrete mixture components.

The aforementioned methods are based on the assumption that the quality of raw
materials is stable, which in most cases is not true, especially when construction and
demolition wastes (i.e., recycled aggregate concrete) and manufactured sand concrete
are used. Considering this, several machine learning algorithms have been applied to
predict the CS of concrete built from various types and sources of aggregates as raw
materials, including artificial neural networks (ANNs) [14–18] and enhanced support
vector regression (SVR) [19]. Dantas et al. [14] developed an ANN to predict the CS
of concrete containing construction and demolition waste, in which aggregate quality
was added as input. Multiple studies have confirmed the impact of aggregate quality
on concrete CS [16,17,19–21]. In addition to aggregates, the properties of cementitious
materials, such as CS and tensile strength, have also been proposed as variables to predict
the concrete CS [22].

Researchers have also proved that besides the type and basic properties of raw mate-
rials, environmental factors, such as temperature [23,24], and relative humidity [25], also
significantly determine the concrete CS. To exclude the influence from these environmental
factors, Atici [26] outlined the need of fixing the ambient temperature and relative hu-
midity when comparing the prediction performances of different methods. Additionally,
the recipe and environmental variables may not be sufficient in covering all the possible
factors influencing concrete CS. It has been proved in many areas that to comprehensively
evaluate the quality of an engineering product, the influences from man, material, machine,
method and environment (shortened to 4M1E), should be considered [27–31]. Each of
these factors further represents the aggregation of various detailed influential factors. For
example, the “man” aspect includes the comprehensive capacity of project participants,
covering the leadership ability of managers, the technical ability of direct operators, and
the understanding of quality supervisors.

The combined effect of the above factors (4MIE) poses new challenges for the accu-
rate prediction of concrete CS. Since the influence from the “material” aspect is already
inherently complicated, when the joint influences from the other four aspects are included,
the problem dimension becomes high, and it will be more difficult to manually identify
the most relevant factors from the interfering ones. Computer-aided feature selection
techniques provide an alternative solution to this situation. Common feature selection
algorithms can be categorized into two classes based on the search strategies—the filter
methods and the wrapper methods. Dantas et al. [14], and Ly et al. [22] applied principal
component analysis (PCA) to reduce the noise in the input space and consequently improve
the model predictive performance. Principal component analysis is a typical filter method
that performs feature selection based on the statistical performance of the original dataset
and is independent of the subsequent learning algorithm. Different from the filter methods,
the wrapper methods tightly couple the subsequent prediction algorithm with the feature
selection process [32]. In other words, the feature selection process is optimized based on
the feedback from the subsequent algorithm performance. Therefore, wrapper methods
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usually have a better learning effect than filter methods [33,34]. Commonly used wrapper
methods include genetic algorithms (GAs) [35] and particle swarm optimization (PSO) [36].

This paper proposes a machine learning-based predictive model that integrates a
genetic algorithm (GA) and random forest (RF) to comprehensively evaluate the various
influencing factors from different aspects, aiming to accurately predict concrete CS. First,
influential factors from five perspectives (i.e., man, machine, material, method, and envi-
ronment) are collected to support a comprehensive evaluation of the concrete production
process. Second, GA is applied to perform feature selection automatically based on the
predictive performance of the subsequent modeling algorithm. In this way, disturbance
variables can be adaptively eliminated, and the best model prediction accuracy can be
achieved. Third, RF is used to correlate the selected process features to the concrete CS.
Given the characteristics of the concrete production process, RF is considered a very suitable
modeling algorithm, due to its versatile merits, such as its good tolerance for outliers and
noises, its ability to avoid overfitting, and its ability to deal with multicollinearity [37,38].

2. Research Significance

The main contributions of this research can be divided into two points. First, to the
best of our knowledge, so far there is no work that focuses on the prediction of concrete
CS considering the comprehensive process features (4M1E). The introduction of the 4M1E
quality management concept takes into account every influencing factor as much as possi-
ble, so that the proposed model fills the lack of reliable prediction models of early concrete
CS in actual production. Second, GA is applied to automatically select suitable features for
concrete production modeling. The combination of multi-dimensional influencing factors
(4M1E) increases the complexity of manual identification of the most relevant variables
from interference variables. For this problem, adaptive feature selection performed by GA
can effectively eliminate redundant variables and improve model prediction accuracy.

3. Data Collection and Pre-Processing

To support comprehensive evaluation, production process factors influencing concrete
CS are systematically collected from five perspectives—man, machine, material, method
and environment (Table 1). First, the “man” factors reveal the comprehensive capacity
of the concrete production participants, who can indirectly affect the concrete quality by
impacting the material, the machine, the method used, and the environment. In this work,
three indicators are used to study the influence of the personnel aspect: the work shifts (a1),
age (a2), and seniority (a3). Second, as the indispensable tool for production, the machine
directly affects the concrete property. In this study, the considered impact from the machine
aspect mainly covers the reliability of the material weighing scales and the stable current
value of the mixing unit. The former directly affects the real constituent of the final concrete
product and is quantitatively characterized by the measurement deviation, while the latter
reflects the resistance fluctuation of the material mixing process and is represented by the
value of stable current. Equation (1) calculates the measurement deviation for the material
weighing scales, wherein positive values indicate an overdose of the corresponding raw
material, and negative values denote an underdose.

deviation =
xactual − xplan

xplan
× 100% (1)

where xactual and xplan are the actual and planned weighted values of raw materials,
respectively.
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Table 1. Influential process factors for concrete production from five perspectives.

Input Variable Unit Variable Unit

Man a1: work shifts - a2: age year
a3: seniority month

Machine b1: gravel scale % b2: coarse sand scale %
b3: fine stone scale % b4: powder scale 1 1 %
b5: powder scale 2 % b6: additives scale 1 %
b7: additives scale 2 % b8: tap water scale %
b9: recycled water scale % b10: stable current value A

Material c1: cement content 2 - c2: compressive strength of cement MPa
c3: cement paste fluidity mm c4: slag powder content -
c5: fluidity ratio - c6: activity index of slag powder %
c7: fly ash content - c8: fineness of fly ash %
c9: water demand ratio of fly ash % c10: activity index of fly ash %
c11: fine stone content - c12: silt content of fine stone %
c13: gravel content - c14: silt content of gravel %
c15: aggregate water-content % c16: fine sand content -
c17: fineness modulus of fine sand - c18: silt content of fine sand %
c19: coarse sand content - c20: fineness modulus of coarse sand -
c21: silt content of coarse sand % c22: tap water content -
c23: recycled water content - c24: superplasticizer content -
c25: expansive agent content -

Method d1: water-cement ratio - d2: sand ratio -
d3: design strength MPa

Environment e1: Minimum temperature ◦C e2: maximum temperature ◦C
e3: average temperature ◦C e4: relative humidity %

1 The measuring range of weighing scale 1 is generally larger than that of weighing scale 2. 2 The material
content is a percentage without unit.

Third, the “material” factors mainly refer to the quality and the content of materials
used. The material constituents included in “material” part are—ordinary Portland cement,
slag powder, fly ash, fine stone, gravel, fine sand, coarse sand, tap water, recycled water,
superplasticizer and expansive agent. The considered material quality includes the CS of
cement (c2), the fineness of fly ash (c8), the aggregate water-content (c15), and the fineness
modulus of coarse sand (c20). To eliminate the influence of different production batches,
the raw material consumption amount is converted into percentage based on the overall
raw material consumption amount. Fourth, the “method” factors in this study consider
the engineering design for the concrete production, including the water-to-cement ratio
(W/C), sand ratio (SR), and design strength. The following equations give the calculation
formulas for W/C and SR:

W/C =
c22 + c23

c1
(2)

SR =
c16 + c19

c11 + c13
(3)

where c1, c22 and c23 denote the contents of cement, tap water, and recycled water, respec-
tively; c11 and c13 represent the contents of fine stone and gravel, respectively; c16 and c19
represent the contents of fine sand and coarse sand, respectively.

Finally, the “environment” factors considered are temperature (including the mini-
mum temperature, maximum temperature and average temperature) and relative humidity.

To sum up, 45 process features reflecting impacts from the five engineering production
aspects (4M1E) were collected to comprehensively evaluate and accurately predict the
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corresponding concrete CS. The actual concrete CS is measured by the compressive testing
of a cube sample with a height of 150 mm. For method validation, 321 datasets were
collected from the production process of ready-mix concrete of an enterprise in Southeast
China. The data sample was small. Table 2 presents the profile of the collected data.
Detailed information is provided in the Supplementary Materials.

Table 2. A brief illustration of the collected input data from the five engineering aspects and
the output.

Variable Unit
No

Range
1 2 ... 321

Input

a1 - 0 1 ... 1 0, 1
... ... ... ... ... ... ...
a3 month 60 14 ... 24 12–60
b1 % −0.095 0.2083 ... 0.0417 −1.80–1.84
... ... ... ... ... ... ...
b10 A 64.94 65.67 ... 69.81 35.1–76.3
c1 - 0.1305 0.1533 ... 0.1407 0.07–0.17
... ... ... ... ... ... ...
c25 - 0.0153 0.016 ... 0.016 0–0.016
d1 - 0.6071 0.4396 ... 0.4278 0.41–1.14
... ... ... ... ... ... ...
d3 MPa 50 45 ... 40 15–50
e1

◦C 19.4 19.9 ... 22.8 5.9–27.5
... ... ... ... ... ... ...
e4 % 85 78 ... 68 38–98

Output s MPa 49.4 45.8 ... 43.5 17.7–61.1

For convenience, the collected process features from the five aspects were combined
into one vector by following a certain order, and the jth individual process feature recorded
for concrete production batch i is denoted as xi,j. Thus, the process features collected for
concrete CS modeling can be expressed as a matrix X, which is of dimension d×m.

X =



x1,1 · · · x1,j · · · x1,m
...

. . .
...

. . .
...

xi,1 · · · xi,j · · · xi,m
...

. . .
...

. . .
...

xd,1 · · · xd,j · · · xd,m

 (4)

where m denotes the number of all the collected process features, and d represents the
number of data entries collected from different concrete production batches. Here, m equals
45. Each row of the matrix, denoted as Xi, represents the process features collected for
concrete production batch i.

Xi = [xi,1, ..., xi,j, ..., xi,m] (5)

and,
X = [X1, ..., Xi, ..., Xd]

T (6)

Meanwhile, the actual concrete CS for production batch i is denoted as yi, and the
collection of all the production batches is denoted as Y. Then, the predicted variable can be
expressed as a matrix of dimension 1× d.

Y = [y1, ..., yi, ..., yd]
T (7)
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Dataset noise, incomplete data entry, and outliers were removed to ensure model
accuracy. Furthermore, the processed data were mapped to the scale of [0, 1] based on the
following equation to eliminate the effect of dimensional difference:

x′j =
xj − (xj)min

(xj)max − (xj)min
(8)

The collected datasets [X, Y] were then proportionally divided into a training set
(matrix size: 257× 45) and a test set (matrix size: 64× 45) at 4:1 for the later stage of model
training and model validation, respectively.

4. The Proposed GA-RF Methodology for Concrete CS Prediction

In this section, a hybrid machine-learning-based method is introduced for the pre-
diction of concrete CS. The flowchart of the proposed method is illustrated in Figure 1.
As is shown, the method is composed of two collaborative modules—a GA-based feature
selection and an RF for the concrete CS modeling and prediction. The modeling process is
described in detail in the following subsections.

Figure 1. Flowchart of genetic algorithm-random forest (GA-RF) for the compressive strength
(CS) prediction.

4.1. RF for Concrete CS Prediction

Random forest is an ensemble learning algorithm that has been extensively applied
in complex engineering problems due to its capability in dealing with outliers, noises,
and multicollinearity and avoiding overfitting. In this study, RF was adopted to solve
the regression problem of concrete CS prediction. This section briefly introduces the
formulations for the model development of concrete CS prediction. More details on RF can
be found in Appendix A. All the selected process features were used as inputs for concrete
CS modeling by RF. For regression problems, the final prediction result was performed by
averaging the outputs of all trees. This process is represented as follows:

Ỹ =
1
n

n

∑
k=1

Ỹk =
1
n

n

∑
k=1

fk(X) (9)
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Ỹ = [ỹ1, ..., ỹi, ..., ỹd]
T (10)

where Ỹk represents the output of the kth decision tree model fk(X), n denotes the number
of decision trees; and ỹi denotes the predictive CS of production batch i.

4.2. GA for Feature Selection

After the inclusion of the various influential factors from the five different aspects
(4M1E), the problem of concrete CS prediction becomes much more complex than the
original one, since some of those factors may or may not play important roles in determining
the CS of the corresponding product concrete. The existence of redundant and irrelevant
process features not only increases the computational complexity, but also decreases the
accuracy of the predictive model. Thus, important process features must be identified
and trivial ones must be excluded. In this section, a GA-based feature selection procedure
is introduced for the selection of critical features of concrete production process. The
GA is suitable for optimization problems with both continuous and discrete functions
and can efficiently search huge and complex optimization spaces. Regarding the GA
application in feature selection, Table 3 presents an analogy between biological terms and
feature selection.

Table 3. Common terms in GA versus biology.

Terms in Biology Genetic Algorithm (GA) in Feature Selection

Gene
Binary variables indicating the inclusion or exclusion of a process feature from
the following five aspects (man, machine, material, method, environment)

Chromosome A vector consists of the whole set of genes for the concrete production process
Crossover Exchange of variables between two parent individuals at randomly selected sites
Mutation Change the selection state of variables at randomly selected sites
Fitness Performance evaluation of RF model

4.2.1. Initialization of Population

The GA is a population-based optimization algorithm. In this work, each individual
in the population corresponds to a subset of the collected process features. For example,
the pth individual is denoted as follows:

Bp = [bj] j = {1, 2, ..., m} (11)

subject to

bj =

{
0 exclusion of the corresponding process feature,
1 inclusion of the corresponding process feature.

(12)

Figure 2 illustrates the relationship between a process feature collection Xj and an
individual Bp. Population initialization was performed by randomly generating a number
of individuals.

Figure 2. Representation of an individual as a binary string.
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4.2.2. Calculation of Fitness for Individuals

After the population initialization, the corresponding variable sets were used as inputs
for RF modeling. The input for RF modeling was determined by the following equation,
where Sp represents the selected process features for the pth individual:

Sp = Bp × X (13)

Subsequently, the selected process features determined by each population individual
served as input variables for concrete CS model training by the RF.

After the model training process, each of the obtained RF were evaluated. In this
paper, R2 was selected as the fitness function for each population individual to assess the
predictive accuracy of the obtained RF model. The larger the fitness, the higher the model
accuracy. The fitness is calculated by the following formula:

R2 = 1− ∑(Y− Ỹp)2

∑(Y− Ȳ)2
(14)

where Ỹp denotes the output of the RF model corresponding to the p-th individual and Ȳ
denotes the average of Y.

4.2.3. Termination Condition Evaluation

The termination of the feature selection process was determined by generation in-
formation of individuals. If the number of evolution generations G is met, the fifth step
follows; otherwise, the process goes to the next step.

4.2.4. Evolution of the Population

After the fitness assessment for the individuals in a generation, if the termination
condition was yet to be met, individuals of the current generation then underwent a
series of evolution processes, including the selection of superior individuals, crossover and
mutation, to produce populations of a new generation with high diversity. In this study, the
roulette wheel selection method was used to select individuals with superior performance.
The selection process is based on a calculated probability by the following formula:

pl(Bp) =
f (Bp)

∑ f (Bp)
(15)

where f (Bp) is the calculated value of the p-th individual in the population. To maintain
population diversity, random sampling with replacement was adopted. The same number
of individuals as the primary population were selected as parents for the next step.

The crossover and mutation operations were performed based on two predefined
probabilities. In this study, the crossover probability and mutation probability were set to
0.7 and 0.2, respectively.

4.3. GA-RF Model Validation

After G generations of evolution, the best individual B∗p was obtained; that is, the
CS forecast model with the optimal feature subset was determined. The GA-RF model
was then retrained based on the tuned hyper-parameters by a grid-search algorithm. The
testing set was then used for model validation.

To better evaluate the performance of the proposed model, four commonly used
statistical parameters were used.



Materials 2021, 14, 1068 9 of 18

Pearson correlation coefficient (R) is widely used to measure the statistical relation-
ship between two variables. The closer the value is to 1, the better the model fits. The
mathematical expression of R is as follows:

R =
N ∑ yi · ỹi − (∑ yi)(∑ ỹi)√

N(∑ y2
i )− (∑ yi)2 ·

√
N(∑ ỹ2

i )− (∑ ỹi)2
(16)

where N is the number of data points.
Mean absolute error (MAE) and Root mean squared error (RMSE) are used to describe

the differences between predictive values and the actual values. For a good fit, their
value should be close to zero. Compared with MAE, RMSE gives outliers more weight by
squaring to amplify deviation. Therefore, RMSE is more sensitive to outliers and reflects
the variation of error; MAE is more robust to outliers, and better reflects the real situation
of predicted value errors. MAE and RMSE are calculated by the following equation:

MAE =
1
N ∑ |yi − ỹi| (17)

RMSE =

√
1
N ∑ |yi − ỹi|2 (18)

In order to better represent the magnitude of the prediction error change, delta is
introduced to represent the difference between RMSE and MAE. The smaller the delta, the
more stable the prediction result [39].

∆ = RMSE−MAE (19)

Mean absolute percentage error (MAPE) uses the percentage of error relative to the
actual value to measure the accuracy. Compared with MAE and RMSE, MAPE is equivalent
to normalizing the error of each point, reducing the influence of the absolute error caused
by individual outliers. The smaller the MAPE value, the smaller the relative overall error.
Calculation formula for MAPE is as follows:

MAPE =
1
N ∑ |

yi − ỹi
yi
| (20)

5. Results and Discussion

The collected process features were analyzed and the concrete CS prediction model
was developed based on the analysis results. This section presents the analysis and
modeling results. Random forest was used to assess the importance of each collected
process feature to the concrete CS, and the evaluation result is partially given in Figure 3.
The top seven most important factors all come from the “material” aspect, implying that
the material ingredients are the most critical impact factors for concrete CS. Also, c10 (the
activity index of fly ash) ranks as the sixth important factor, suggesting that the quality of
materials is not trivial for high-accuracy prediction models.

It is worth reminding that some specific feature rankings will vary with different
enterprises. In this case, recycled water content (c23) ranking first is in line with the actual
production of the studied enterprise. In response to the call of environmental protection,
the company usually adopts the method of partial or complete recovery of wastewater to
achieve the goal of zero discharge of slurry water as much as possible. Recycled water can
affect the mechanical properties and microstructure of concrete [40,41]. Due to different
sources and random consumption of recycled water, its composition and content vary
greatly. Compared with the precise control of cement content (c1) and water-cement ratio
(d1), the large fluctuation of recycled water has the most obvious impact on the CS of
concrete, followed by tap water used for supplementation. Therefore, in order to better
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control the concrete CS, it is recommended to use tap water alone or other water with
small fluctuations.

Figure 3. Variable importance of concrete CS measured by using RF model.

Although the importance of the factors from other production aspects is not so remark-
able, they may be nonnegligible for the enhancement of process model accuracy. To verify
this conjecture, three modeling approaches were applied to a case study—a traditional
method that takes the concrete ingredients as the only input features for RF modeling
(model-a); a comprehensive modeling method that considers all the collected influential
factors from the five aspects (4M1E) as input features for RF modeling (model-b); and the
proposed modeling methodology, which integrates RF modeling with a feature selection
process (the proposed model). As shown in Figure 4, the results derived from these three
models were compared and discussed in the following section.

Figure 4. Framework of results discussion.

5.1. Result Comparison between the Concrete Ingredient Modeling and the Comprehensive
4M1E Modeling

Figure 5 compares the recorded actual concrete CSs and the predicted values from
model-a and model-b. For both cases, most of the predictive concrete CS values are closely
distributed along the diagonal lines, implying that the RF algorithm is suitable for the
concrete CS modeling and prediction. Additionally, several predictive values fell out of
the ±10% error range when only concrete ingredients were considered in the modeling;
this phenomenon is significantly improved in the case of model-b, where comprehensive
modeling is performed based on influential factors from the 4M1E aspects. Furthermore,
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regarding the predictive performance of these two models, model-b presented a remarkably
higher R (0.9707 vs. 0.9564), and much lower MAE (1.846 vs. 2.081), RMSE (2.428 vs. 3.079),
and MAPE (0.0475 vs. 0.0551) (Table 4). The lower delta value (0.582 vs. 0.998) also
suggests that the model-b performance based on a more comprehensive evaluation is more
stable and reliable. This can be further confirmed by the visualization of the calculated
prediction error of the two models. As illustrated by the boxplots in Figure 6, a narrower
interquartile range with relatively smaller upper quartile and fewer outliers were observed
from model-b; moreover, the median of the boxplot of model-a is closer to the bottom of the
box, which means that the calculated errors above the median value are more dispersed.

(a) (b)

Figure 5. Comparison between the recorded actual concrete CS and the predicted value from: (a) concrete ingredient
modeling, and (b) comprehensive 4M1E modeling.

Table 4. Predictive performance comparison of model-a and model-b.

Input Performance Measures
R MAE(MPa) RMSE(MPa) MAPE ∆

model-a 0.9564 2.081 3.079 0.0551 0.998
model-b 0.9707 1.846 2.428 0.0475 0.582

Figure 6. Boxplot of error on testing set obtained by model-a and model-b.

The reasons for the above results are proposed as follows—the development of model-
a is based on the following assumptions: (1) concrete ingredients are the key factors
affecting the CS, which is true according to the data analysis results shown in Figure 3 and
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(2) other possible influential factors from the production process (such as man, machine,
method, and environment) remain fixed. However, in most cases, this is not true. For
example, in most of the production processes, operators shift according to certain working
schedules. The difference in the comprehensive capacity of direct operators can indirectly
affect the concrete quality by impacting material, machine, method, and environment. Also,
due to mechanical and/or aging reasons, the performances of machines are usually not
stable. As shown in Figure 7, the measured weight for fine stone (Figure 7a) and recycled
water (Figure 7b) and the expected targeting weight usually do not match. In some
cases, the deviation even exceeds 10% and is close to 20%, which will directly affect the
actual consumption of these materials. As for the environmental factors, they are usually
time-dependent variables according to the local climate. Figure 7c,d show the average
temperature and relative-humidity distribution of the collected datasets for the case study.
The average temperature spans between 10 ◦C and 30 ◦C, and the relative humidity falls in
the range of 38% to 100%.

Figure 7. Scatter plot of some influencing factors of concrete, (a) fine stone scale; (b) recycled water scale; (c) average
temperature; (d) relative humidity.

5.2. Result Comparison between the Comprehensive 4M1E Modeling and 4M1E Modeling with
Feature Selection

The previous section discusses the necessity of performing comprehensive modeling
based on influential factors from 4M1E, to improve the model accuracy. This section ad-
dresses the need for proper feature selection for further improving the model performance.

Although the inclusion of the influential factors from the other four production aspects
significantly enhanced the model accuracy, it also increased the problem dimension and
thus the computational burden. Additionally, interfering factors may have been introduced.
To further improve the predictive accuracy, the proposed modeling approach with the GA
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integrated as the automatic feature selection algorithm was applied. Figure 8 compares the
recorded actual concrete CS and the predicted value from the proposed GA-RF modeling.
For both the training and testing sets, the predicted values are evenly distributed alongside
the diagonal line and fall within the ±10% error range. The slight errors between the
predicted values and actual concrete CS depicted on the horizontal axis indicate the high
prediction accuracy of the proposed GA-RF model. Table 5 compares the predictive
performance among model-a (modeling with the concrete ingredient), model-b (modeling
with comprehensive factors from 4M1E), and the proposed model (modeling with feature
selection from 4M1E factors). The proposed model presented the highest R (0.9821) and
the least MAE, RMSE, and MAPE (1.429, 1.824, and 0.0394, respectively) implying that
the predictive accuracy of the obtained model with feature selection was the highest.
Furthermore, the stability and reliability of the obtained model were also improved, as
seen from the decreased delta (0.395). To better compare the model performances, the
calculated prediction errors of all three models are visualized in Figure 9 via boxplots. As is
shown, after a feature selection procedure, the interquartile range was further reduced
by a smaller upper quartile and almost no outliers occurred. This is because among the
influential factors outside the “material” aspect, some important ones affect the concrete
CS, such as the fluctuating process factors shown in Figure 7; there are also insignificant
ones that do not significantly affect the concrete CS, but instead will interfere with other
factors in the modeling process. A feature selection process can identify the important ones
and exclude the trivial ones. For example, Figure 10 illustrates the data distribution of two
of the excluded unimportant process factors, including the weighting error of the gravel
weighing scale and the silt content of fine stones. As can be seen, the fluctuation magnitude
of the weighting error for gravel is rather small, and the silt content of fine stone is roughly
distributed on several fixed levels. This is because, in this case, the silt content of the fine
stone is obtained from human estimations, rather than from experiments, implying that
the quality of this data item is considerably influenced by the engineering experience of
the direct operators (man). A low data accuracy will interfere with the model accuracy;
therefore, it is better to exclude redundant, disturbing data from the modeling procedure.

Figure 8. Comparison between the recorded actual concrete CS and the predicted value on the training set (a) and testing set (b) from
the proposed GA-RF modeling.

Table 5. Predictive performance comparison of the three obtained models.

Input
Performance Measures

R MAE(MPa) RMSE(MPa) MAPE ∆

model-a 0.9564 2.081 3.079 0.0551 0.998
model-b 0.9707 1.846 2.428 0.0475 0.582

the proposed model 0.9821 1.429 1.824 0.0394 0.395
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Figure 9. Boxplot of error on testing set obtained by different inputs.

Figure 10. Data distribution of two of the excluded unimportant process factors: (a) weighting error of gravel weighting
scale, and (b) the silt content of fine stones.

5.3. Comparison with Other Methodologies

This section compares the proposed approach and several other feature selection and
modeling methods to assess the competitiveness of the proposed method.

The comparison involves the following feature selection approaches—PCA and grey
relational analysis (GRA) and the following process modeling methods—multiple linear
regression (MLR), ANN, and SVR. The results are presented in Table 6.

As shown in the first row of the table, through the application of RF for process
modeling, a relatively high predictive accuracy was reached. Compared with the other
three modeling methods, ANN was not suitable for this modeling task. Moreover, the
model accuracy and the model reliability of ANN combined with the GA feature selection
procedure (GA-ANN) were not as satisfactory as those of RF alone. The proposed method
(GA-RF), that is RF integrated with the GA feature selection procedure, reduced the process
features (20 vs. 44 for RF alone) and improved the model accuracy to 0.9821. Additionally,
compared with RF and the combinations of the GA and the other three modeling methods,
the GA-RF presented a reduced delta value, indicating enhanced model reliability. Hence,
RF is more suitable for the modeling and prediction of concrete CS. This is because the
sampling approach and voting mechanism of the RF algorithm prevent the model from
overfitting and can reduce noise interference. Based on these results, compared with ANN,
SVR, and MLR, RF might be more suitable for predicting concrete production process data
because of its better resistance to interference. Furthermore, the GA outperformed the
other two feature selection algorithms by increasing the model accuracy from 0.9707 to
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0.9821. Although PCA could significantly reduce the process feature (from 44 to 9), which
implies reduced computational burden of the modeling process, the model accuracy was
not satisfactory. For GRA, it could remove the redundant process feature and slightly
enhance the model accuracy and reliability, but the effectiveness was not as encouraging as
that of the GA.

Table 6. Predictive performance of different model on the testing set.

Model Performance Measures
Feature-SelectedR MAE (MPa) RMSE (MPa) MAPE ∆

RF 0.9707 1.846 2.428 0.0475 0.528 44
GA-ANN 0.9619 2.155 2.686 0.0631 0.531 21
GA-SVR 0.9708 1.919 2.327 0.0541 0.408 18
GA-MLR 0.9723 1.821 2.246 0.0521 0.425 20
GA-RF 0.9821 1.429 1.824 0.0394 0.395 20
PCA-RF 0.9167 2.587 3.862 0.0797 1.275 9
GRA-RF 0.9724 1.835 2.343 0.0468 0.508 17

6. Conclusions

To establish a reliable concrete CS prediction model and thus reduce the time-consuming
and laborious laboratory tests, this study investigated the influencing factors of concrete
CS from the perspective of quality management; moreover, a GA-RF forecasting model
considering process factors from five process aspects, including man, machine, material,
method and environment, as the model inputs is proposed. A GA was applied to perform
feature selection adaptively based on the predictive performance of the subsequent model-
ing algorithm and RF was used to correlate the selected process features to the concrete CS.
The proposed method was applied to the production of an actual ready-mix concrete enter-
prise in Southeast China, and the results proved its applicability and effectiveness. The
following conclusions were derived: (1) A comprehensive process-evaluation from related
five engineering aspects (man, machine, material, method, and environment), rather than
considering only for factors from the “material” aspect, can improve the model accuracy; (2)
an automatic process feature selection procedure can not only alleviate modelers’ burden
but also effectively reduce the model complexity and improve the model accuracy; (3)
compared with ANN, SVR, and MLR, RF is more competent in the modeling of concrete
production process.

In conclusion, the proposed approach performs comprehensive system modeling
by considering influencing factors from five engineering aspects and automatically elim-
inating process disturbance variables. As a methodology, it provides the possibility of
individualized and refined quality management for various concrete enterprises. It can be
extended to the modeling and prediction of tensile strength, slump, and other properties of
concrete. Early determination of the mechanical properties of concrete is very important for
concrete technology and civil engineering. On the one hand, it checks whether the concrete
strength meets the requirements and gives feedback to guide the production process; on
the other hand, the early determination of the concrete strength assists the engineer in
the safety design analysis during the construction phase to reduce lag. However, further
efforts are still required. For example, some of the process features (model inputs) will shift
over time; thus, the time threshold needs to be further discussed. Also, more extensive
datasets need to be collected to more comprehensively describe the production process and
further improve the generalization ability of the GA-RF model.
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Appendix A. Detailed Introduction to the RF Modeling Technique

Random forest, proposed by Breiman and Cutler in 2001 [42], is an ensemble-learning
algorithm based on tree predictors. It uses the bootstrap resampling approach to extract
samples with replacement from the original training set, conducts decision tree modeling
for each bootstrap sample, and then aggregates the prediction outputs of multiple decision
trees. When RF is used for regression problems, the final output of the regression is the
average of results produced by decision-tree predictors. As displayed in Figure A1, each
tree in the “forest” is grown with a randomized subset. Some data may be used more than
once in the training, while other may never be used. Moreover, each split at each tree node
is created based on a randomly selected subset of input features. The introduction of two
randomness increases the diversity of the trees. Thus, greater stability or less overfitting
of RF is achieved due to the randomness, which makes RF more robust when there are
slight variations in input data [42]. Another advantage is the immunity to noise, since non-
correlated trees are generated through different training samples. A weak predictor may be
sensitive to noise, but the average of several decorrelated decision trees can largely decrease
the noise sensitivity [43]. Compared with the traditional machine learning methods, such
as artificial neural networks, RF is easy to train and has fewer parameters. In addition, the
feature importance can be identified by out-of-bag samples, which are not used in the RF
training process.

Figure A1. The schematic diagram of random forest regression.
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