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Abstract

A complex disease has, by definition, multiple genetic causes. In theory, these causes could

be identified individually, but their identification will likely benefit from informed use of antici-

pated interactions between causes. In addition, characterizing and understanding interac-

tions must be considered key to revealing the etiology of any complex disease. Large-scale

collaborative efforts are now paving the way for comprehensive studies of interaction. As a

consequence, there is a need for methods with a computational efficiency sufficient for mod-

ern data sets as well as for improvements of statistical accuracy and power. Another issue

is that, currently, the relation between different methods for interaction inference is in many

cases not transparent, complicating the comparison and interpretation of results between

different interaction studies. In this paper we present computationally efficient tests of inter-

action for the complete family of generalized linear models (GLMs). The tests can be applied

for inference of single or multiple interaction parameters, but we show, by simulation, that

jointly testing the full set of interaction parameters yields superior power and control of false

positive rate. Based on these tests we also describe how to combine results from multiple

independent studies of interaction in a meta-analysis. We investigate the impact of several

assumptions commonly made when modeling interactions. We also show that, across the

important class of models with a full set of interaction parameters, jointly testing the interac-

tion parameters yields identical results. Further, we apply our method to genetic data for car-

diovascular disease. This allowed us to identify a putative interaction involved in Lp(a)

plasma levels between two ‘tag’ variants in the LPA locus (p = 2.42 � 10−09) as well as repli-

cate the interaction (p = 6.97 � 10−07). Finally, our meta-analysis method is used in a small

(N = 16,181) study of interactions in myocardial infarction.
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Author summary

Interaction between organic molecules forms the basis of all biological systems. The avail-

ability of high-throughput genotyping and sequencing platforms enables us to cost-effec-

tively genotype a large number of individuals. For sufficiently large datasets it is possible

to reconstruct the genetic dependencies that underlie complex traits and diseases. How-

ever, there is a need for efficient statistical methodologies that can tackle the large sample

size and computational resources required to study interaction. In this work we provide

theory that reduces the required computational resources, and enable multiple research

groups to effectively combine their results.

Introduction

Large data sets are vital to counter low statistical power due to low allele frequency, small effect

sizes, and multiple testing. This has driven the GWAS field towards more collaborative efforts

as well as meta-analyses. Fortunately, there exists a standardized statistical methodology that

allows for reliability and comparability between different studies. In contrast, in association

studies aiming at identifying interactions, or epistasis, there are multiple competing methodol-

ogies with unclear relationships. As a consequence, collaborative GWAS efforts have almost

exclusively focused on single variant associations.

Conceptually, interactions in association studies are generated when multiple genetic vari-

ants affect the dynamic, non-linear and inter-connected networks that underlie complex traits

[1]. Candidate-based medical genetic studies established early that interaction may play an

important role in complex diseases [2–7]. Consequently, over the last five years, substantial

attention has been devoted to resolving the statistical and computational problems associated

with large-scale studies of interactions [8–15]. However, the formulation of these methods is

still not easily compared, and crucial differences between the underlying interaction models

are not always transparent. This makes comparability between studies still a major concern

and hampers opportunities for meta-analysis. There is, therefore, a need to harmonize interac-

tion models and investigate the implications of their assumptions.

From a statistical point of view it is non-trivial to define interaction [16] and it can often be

unclear how different assumptions, e.g., on the main effect of each variant, affect the definition

of interaction. There has been some work aimed at a standardized description of interaction

models [17, 18]. However, these studies specifically targeted a class of models, in which any

two models are related by a linear one-to-one transformation, which limits their applicability.

In this paper, we present a more general framework that enables modeling and interpretation

of genetic interactions in the context of any generalized linear model (GLM). This can be

applied to, in principle, any type of outcome (e.g., continuous, binary, factor or count phen-

toypes) or model of interaction. We show how this new formulation can be used to analyze the

relation between various interaction models.

Multiple tests for interaction have been proposed for case-control data. However, these

tests typically depend on strong assumptions about the main effects, marginal effects or LD to

reduce the computational complexity [15, 19, 20]. Recently Yu et al. introduced a closed-form

Wald test restricted to a specific parameterization of the logistic regression model [21]. Here,

we introduce a general class of computationally efficient Wald tests, that enables analysis of

case-control traits, quantitative traits, and in fact any trait modeled by a member in the expo-

nential family. More importantly, these tests allow for any combination of parameterization
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and link function to be used, that is, it can be applied to all the models considered here. More-

over, we show that our Wald test can be applied in large-scale meta-analyses.

A major complication in interpreting interactions is that they are inferred relative to a link

function. This function determines the parameter subspace that belongs to the null model and

is, in practice, unknown. Consequently, mis-specification of the link function causes an

inflated error rate that increases with sample size, which cannot be resolved by replication in a

separate cohort. Here we address this issue by testing interactions using a family of link func-

tions. Specifically we use two families of link functions that has been proposed previously [22,

23]. We also show that the previously suggested goodness-of-link test [24] is not appropriate

for joint testing of interaction parameters.

We implement these new tests in a GLM-based analysis tool for both case-control and

quantitative data. We investigate the impact of different parameterizations on both the false

positive rate and the statistical power. We finally apply our Wald tests in two genome-wide

interaction analyses. Firstly, we study a continuous phenotype, Lp(a), in the PROCARDIS

cohort. Secondly, we perform a meta-analysis of myocardial infarction by combining results

from the PROCARDIS cohort and the Myocardial Infarction Genetics Consortium cohort.

Results

Theory

Introduction to generalized linear models in genetics. In this subsection, we introduce

the theory of GLMs and their application to genetic data. We then describe how a so-called

parameterization can be used to incorporate genetic assumptions about a single variant.

Finally, we describe how a multi-variant parameterization can be constructed from several sin-

gle variant parameterizations.

In this work, we use GLMs to describe the relation between predictor variables, which here

typically are genotypes, and an outcome variable, that is, the phenotype. For each individual i,
Yi is a measured phenotype and xi is a vector of predictor variables. The observed phenotype yi
is modeled by its expected value E[Yi j Xi] = μi along with a distribution from the exponential

family that captures the stochastic variation around μi. We write yi * f(μi) and refer to f as the

dispersion distribution. The expected value μi is in turn related to the linear predictor ψ(xi)β by

g(μi) = ψ(xi)β, where g is the link function, ψ is an encoding of the predictor variables, and β is

a vector of parameters. A combination of ψ and β is called a parameterization. The parameters

are generally estimated according to the maximum likelihood principle by applying the itera-

tively reweighted least squares algorithm. The commonly used linear regression is a special

case of GLMs, obtained by using the identity link function (g(μi) = μi) and the Normal disper-

sion distribution. Moreover, logistic regression is a GLM with the logit link function

(gðmÞ ¼ logð m

1� m
Þ) and a Binomial dispersion distribution.

As our focus here is interactions, we restrict the predictor variables xi to be genotypes.

Because the set of possible genotypes for a set of variants are finite, and in practice often

fewer than the number of individuals, many individuals will have identical xi. It is therefore

convenient to define a model that is indexed by an enumeration of the genotypes h instead

of by individuals i. In this notation, ph is the design vector of the genotype that corresponds

to h, and, for an individual i with genotype h, μh, the expected value of yi, is modeled by g
(μh) = phβ. Here h can be the genotype of either a single variant or multiple variants. Fur-

thermore, we can define a design matrix P, so that ph are the rows of P; the complete rela-

tionship between the mean levels of the genotypes and the parameterization can then

expressed g(μ) = Pβ.
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In general, we will call any model where the number of parameters equals the number of

unique design vectors a saturated model, otherwise it is called unsaturated. Additionally, we

will call a model full if the number of unique design vectors equals the number of possible

genotypes, otherwise it is called constrained. A design matrix that recodes genotypes into dom-

inant and recessive states is an example of a constrained model.

Single-variant models.We first introduce a notation for the parameterization for a single

variant and, in the next section, we extend this notation to multiple variants. We let β = (α, β1,

β2)T, where α is referred to as the reference level, and β1 and β2 are deviations from the refer-

ence (the T indicates the transpose, i.e., β is a column vector). For example, if ph = (1, 2, 0) then

g(μh) = α + 2β1. For the single variant case, let A be the most frequent haploid genotype in the

population considered, and a be the less frequent. We have three possible diploid genotypes

{AA, Aa, aa} that are enumerated by h 2 {0, 1, 2}. We now describe the parameterizations cor-

responding to the most common single variant genetic models.

• SATURATED FULL PARAMETERIZATIONS

• G—Genotypic. Let β1 be the mean difference in phenotype between the reference and the

heterozygote, and β2 be the mean difference in phenotype between the reference and the

minor homozygote. Then the genotypic can be expressed as follows:

g
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m1

m2

0

B
@

1

C
A ¼

1 0 0

1 1 0

1 0 1
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1

C
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• AD—Additive/deviation. Letting β1 denote the additive component, and β2 denote the

deviation from additivity, this can be expressed as follows:
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• SATURATED CONSTRAINED PARAMETERIZATIONS

• R—Recessive. This model assumes that the effect allele has a recessive effect:

g
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• D—Dominant. This model assumes that the effect allele has a dominant effect:

g
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• H—Heterozygote. This model assumes an heterozygote advantage effect:

g
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• UNSATURATED FULL PARAMETERIZATIONS

• A—Additive. This model assumes that only additive effects are present:
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We note that G alternatively could be perceived as either a Heterozygote/deviation, HD, or a

Recessive/deviation, RD.

From single to multi-variant models.We will now show how a multi-variant parameteriza-

tion with relevant interaction parameters can be obtained from a set of single variant parame-

terizations. This provides a intuitive way to construct higher order interaction

parameterizations. Thereafter, we provide two examples of the construction of bi-variant mod-

els (see Fig 1).

A multi-variant parameterization can be constructed from single variant parameterizations

using the Kronecker-product (
) [17]. Given a design matrix, P(i), for each variant i 2 {1. . .k},

in which each row parameterizes the corresponding genotype, then the multi-variant design

matrix, P, for these variants is

P ¼ PðkÞ 
 Pðk� 1Þ 
 . . .
 Pð1Þ: ð1Þ

The parameters β for the multi-variant model can similarly be constructed by taking the Kro-

necker-product of the parameter vectors

β ¼ βðkÞ 
 βðk� 1Þ 
 . . .
 βð1Þ; ð2Þ

where, in each Kronecker operation β(k)
 β(k−1) (i) the intercept has been replaced by 1 in all

parameter vectors β(�) on the right hand side of Eq (2), (ii) the first element of the resulting vec-

tor β on the left hand side of Eq (2) is the new intercept, and (iii) any product between two dif-

ferent parameters is replaced by a new parameter that represents interaction. The number of

factors in each element represents the order of interaction and factors of order 1 are the main

effects. The matrix P and the parameters β are now related to the mean values by

gðμÞ ¼ Pβ) μ ¼ g � 1ðPβÞ :

We will below mainly focus on bi-variant models resulting from applying Eqs (1) and (2) to

two uni-variant models, say Mi and Mj, of those enumerated above in Section Introduction to

generalized linear models in genetics. We denote the resulting bi-variant modelMi × Mj. We

detail the construction of G × G and AD × AD in Fig 1. Notice that the Kronecker-product of

two saturated single-variant models yield a saturated bi-variant model.

This concludes our description of the GLM components used to model genotype-pheno-

type association. Using this uniform GLM framework, we formulate, in the next section,
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efficient tests for interaction applicable to very general families of GLMs, allowing any number

of variants and a wide variety of phenotypes and link functions. Moreover, in Section Relating

different GLMs, we use this framework in a comparative analysis of major GLM families with

respect to differences in parameterization, link function and dispersion distribution.

Fast estimation and testing of interaction in generalized linear models. In this section,

we first derive closed-form estimates of the parameters of a GLM and the corresponding

covariance matrix for any saturated parameterization. We then build on this to design an com-

putationally efficient test for interaction. A complete discussion and proofs can be found in S1

Text. We generalize these results to unsaturated models using a two-step estimation proce-

dure. Finally, we show how the Wald tests can be used in a meta-analysis.

A general Wald test for saturated models.We first describe how to estimate the parameters.

Let N be a diagonal matrix in which the diagonal element Nhh is the number of individuals

with the genotype corresponding to h. Let t be a vector in which element th contains the sum

of the phenotypic values of individuals with the genotype corresponding to h. Maximum likeli-

hood estimates of β is then obtained by

β ¼ P� 1gðN � 1tÞ ð3Þ

where the inverse of P exists because P is a full rank square matrix when the parameterization

Fig 1. Two examples of the construction of bi-variant interaction models as the Kronecker product (
) of two uni-variate models. (a) The

construction of the P matrix of the G × G model, (b) The construction of the P matrix of the AD × AD model, (c) the G × G model in bi-variant notation, (d)

the AD × AD model in bi-variant notation. For both models, the resulting parameter vector β = (α, β1, β2, γ1, δ11, δ12, γ2, δ21, δ22). In c) and d) a 2 {0, 1, 2} is

the genotype for the first variant and b 2 {0, 1, 2} is the genotype for the second variant, implicitly β0 = γ0 = δ0* = δ*0 = 0, and, lastly, I(x) is an indicator

function taking the value 1 if x is true and 0 otherwise.

https://doi.org/10.1371/journal.pcbi.1005556.g001
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is saturated (see S1 Text). The time complexity of this estimation is, assuming that matrix

inversion can be performed in cubic time, Oð3Tnþ 33T þ 32TÞ where T is the number of vari-

ants in the model and n is the number of samples. The first term is for computing the sufficient

statistics, the second for the matrix inversion of P, and the third for computing the product

between the transformed sufficient statistics and P−1. Here, P−1 only needs to be computed

once, and T is typically small (T = 2 in this article), so that the dominant time complexity is lin-

ear in the number of samples OðnÞ.
The covariance matrix of the saturated full parameterization can be similarly derived, and

has the following simple form

C ¼ PTð Þ� 1I � 1P� 1

where I is the Fisher information matrix. The inverse of the Fisher information matrix is a

diagonal matrix with elements on the form

I � 1

hh ¼
�vhg 0ðmhÞ

2

nh

where vh = Var(yh j ph, ϕ = 1), which can be calculated from the specific dispersion distribution

that is used, g 0ðm̂hÞ is the derivative of the link function evaluated at m̂h (the estimate of μh), nh
is the number of samples with genotype h, and ϕ is the dispersion parameter of the GLM (see

S1 Text).

The general test for interaction in association analysis evaluates whether the relevant inter-

action parameters are significantly different from zero. There are three asymptotically equiva-

lent tests that can be used to test the interaction parameters: the score test, the Wald test, and

the explicit likelihood ratio test (LRT). The score test requires estimation only under the null

hypothesis, the Wald test requires estimation under the alternative hypothesis, and the stan-

dard likelihood ratio test under both. For saturated GLMs, Eq (3) provides an efficient parame-

ter estimation under the alternative hypothesis, and, consequently, we base our test for

interaction on the multivariate Wald test. Let δ̂ denote the vector of estimated interaction

parameters, and Ĉd denote the sub-matrix of the estimated covariance matrix that corresponds

to the interaction parameters. The Wald test statistic is a quadratic form in δ̂ constructed

using the estimated covariance matrix, and the test is defined as

Wðδ̂Þ ¼ δ̂TĈ � 1
d
δ̂:

This Wald test requires computing the inverse of a typically small covariance matrix Cδ. Con-

sequently, the total time complexity of estimation and testing is Oð33Tnþ 33T þ 32TÞ. Again,

as T is small, the dominant time complexity is linear in the number of samples n. Our Wald

test is applicable to any saturated GLM, and contains, as a special case, the previously described

Wald test for logistic regression [21].

The score test and the LRT additionally requires estimation of β under the null model of no

interaction, for which no closed form expression exists. Hence, in this case, we need to resort

to the slower iteratively reweighted least squares (IRLS) algorithm. The average time complex-

ity for estimation and testing based on the IRLS algorithm is Oðð3Tnþ 33TÞAðnÞÞ where A(n)

is the expected number of iterations until convergence. Since the time complexity for comput-

ing the actual test statistics is similar to that of the Wald test, these two tests will have a theoret-

ical complexity that is dominated by a factor that is linear in n. The practical difference is

shown in S1 Fig, in which the Wald test derived in this paper gives a speedup of around 20-100

compared to the likelihood ratio test implemented using the ILRS algorithm. The speed of the
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Wald test also compares favorably with the less general interaction test in the highly optimized

Plink 1.9 software, we note that this test is limited to an A × Amodel with linear or logistic link

function.

Unsaturated models. For an unsaturated model the design matrix P is no longer full rank,

and for parameter estimation one usually must resort to an iterative algorithm. We develop a

two-step closed-form estimation, in which we first transform the model to a convenient satu-

rated model (e.g., G × G), by extending P and β with corresponding columns and parameters,

respectively. We estimate all parameters in this model, and then back-transform them to the

unsaturated model.

Let Pβ be the parameterization of the unsaturated model, and PSβS be the parameterization

of a corresponding saturated model. For convenience of notation let S ¼ P� 1
S P; we then obtain

the following relationship between the parameters of the saturated and unsaturated model:

βS = Sβ. Given an estimate of the covariance matrix CS of the saturated parameters we can esti-

mate β and the corresponding covariance matrix C by

β̂ ¼ ðSTĈ � 1
S SÞ

� 1STĈ � 1
S β̂S

and

Ĉ ¼ STĈ � 1
S S:

The idea underlying these estimators is that we can view the estimated parameters of the satu-

rated model β̂S as an outcome of a multivariate Normal distribution with covariance matrix CS
and mean Sβ. Maximum likelihood estimation of β in this model leads to the equations above

(this can be equivalently viewed as a generalized least squares estimation). We show in S1 Text

that this leads to a consistent estimator.

The time complexity involves estimating the saturated model, transforming these estimates

into estimates for the unsaturated model, and computing the final Wald test statistic. This time

complexity is bounded by the estimation of the saturated model, so the total time complexity is

still Oð3Tnþ 33T þ 32TÞ. For the score and LRT tests the time complexity is, assuming one

parameter per variant, Oðð2Tnþ 23TÞAðnÞÞ.
Fixed effect meta-analysis of multivariate Wald tests.We now describe how to combine asso-

ciation results, based on the Wald test, from multiple studies to perform a meta-analysis. Let β̂i
denote the vector of estimated coefficients from study i and Ĉ i the corresponding covariance

matrix. The combined β̂ across studies is estimated with

β̂ ¼
XM

k¼1

XM

i¼1

Ĉ � 1

i

 !� 1

Ĉ � 1

k β̂k

and the combined covariance matrix with

Ĉ ¼
XM

i¼1

Ĉ � 1

i

 !� 1

:

The combined Wald statistic across studies is then β̂Ĉ � 1β̂ which follows a χ2-distribution with

four degrees of freedom. Of note, each covariance matrix is commonly small and the time for

computing the combined covariance matrix is shorter than the time for estimating each indi-

vidual covariance matrix.

A practical problem for large-scale meta-analysis is that the result files from the interaction

analysis of each study will be very large, typically in the order of 1 Terabyte. We suggest one
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possible solution to this issue. The analysis can be split into two stages. In the first stage, each

study reports all variant pairs below some p-value threshold. A reduced set of candidate variant

pairs are then created by taking the union of the significant pairs over all studies. In the second

stage, all studies perform a second analysis of the reduced set of variant pairs. Finally, meta-

analysis is performed on the result from the second stage. This effectively limits the storage

space required, but may miss variant pairs with intermediate effects in all studies.

Relating different GLMs. In this section, we demonstrate some aspects of how interac-

tion models can be related to each other within the GLM framework.

Linear reparameterizations of saturated models are equivalent. We first show that a certain

class of parameterizations are equivalent with respect to the Wald test, providing some insight

to when two parameterizations are identical in terms of the inference of epistasis.

We start by demonstrating an important property of the Wald test; if two parameterizations

with interaction parameters δ and δ0, respectively, are linear transformations of each other, i.e.

δ0 = Bδ, then the corresponding Wald tests are equivalent,

Wðδ0Þ ¼ δ0C� 1
d0
δ0 ¼ BTδðBTCdBÞ

� 1Bδ ¼ δC� 1
d
δ ¼WðδÞ:

We observe that an important corollary of this is that a joint test, i.e. testing all interaction

parameters simultaneously, for the G × G and AD × AD parameterizations is equivalent. In

general, any joint test of interaction for saturated reparameterizations, will have identical

results. However, this is not true if parameterizations are non-linear transformations of each

other, i.e. if they use different link functions.

Of note, the degrees of freedom can be reduced if some of the genotypes contains very few

samples. We can then avoid estimating the interaction parameters for these cells and adjust the

degrees of freedom accordingly. This could, however, cause the GLMs to be non-equivalent in

terms of the joint likelihood, and an interaction in one parameterization may not be reflected

in another.

Relating parameter estimates. We show above that two saturated full GLM reparameteriza-

tions are equivalent in terms of the joint Wald test. However, different saturated full parame-

terizations may emphasize different interaction components, which potentially reflect

different biological mechanisms. We now investigate this further.

The relationship between two saturated full parameterizations Pβ and Qβ0 is

β ¼ P� 1Qβ0

Importantly, the interaction parameters of β are a function solely of the interaction parameters

of β0. This is in contrast to the main effect parameters of β, which may depend on both main

effect and interaction parameters of β0. The relationship between the interaction parameters of

G × G and AD × AD is,

d
G�G
11

¼ d
AD�AD
11

þ d
AD�AD
12

þ d
AD�AD
21

þ d
AD�AD
22

d
G�G
12

¼ 2d
AD�AD
11

þ 2d
AD�AD
21

d
G�G
21

¼ 2d
AD�AD
11

þ 2d
AD�AD
12

d
G�G
22

¼ 4d
AD�AD
11

;
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and

d
AD�AD
11

¼ 1=4 � d
G�G
22

d
AD�AD
12

¼ 1=2 � d
G�G
22
� 1=4 � d

G�G
21

d
AD�AD
21

¼ 1=2 � d
G�G
22
� 1=4 � d

G�G
12

d
AD�AD
22

¼ d
G�G
11
� 1=2 � d

G�G
12
� 1=2 � d

G�G
21
þ 1=4 � d

G�G
22

:

We observe that the two parameterizations distribute the total interaction effect differently

over the interaction parameters. For example, a single double homozygote interaction is

apparent in G × G: δG×G = {0, 0, 0, 1}, but not in AD × AD: δAD×AD = {0.25, 0.5, 0.5, 0.25}. Con-

versely, a single additive-additive interaction is apparent in AD × AD: δAD×AD = {1, 0, 0, 0}, but

not in G × G: δG×G = {1, 2, 2, 4}. We note that, for certain questions, exploring multiple param-

eterizations would be beneficial to allow the formulation of most-parsimonious constrained

parameterizations, or to provide hypotheses on possible biological mechanisms for inferred

interactions.

When performing the corresponding investigation of parameter relations of a non-satu-

rated full parameterization, Pβ, to another parameterization, Qβ0, we find that the interaction

parameters of β are no longer guaranteed to be a function of the β0 interaction parameters

alone, but can depend on its main effects as well. More generally, constrained/non-saturated

models reduce the number of interaction parameters (and sometimes also the main effect

parameters) of saturated full parameterizations, either by constraining some parameters to be

zero or to be functions of other parameters; some examples of the relation between the G × G
parameterization and selected constrained or unsaturated parameterizations are given in

Table 1.

The link function determines how fast the phenotype mean, μ, changes with the genotype.

The choice among major classes of link function is further discussed, below, in Section Relat-

ing different GLMs and we will here focus on understanding the effect of a small change in the

link function has on the parameters β. If the link function g(μ) is perturbed to g(μ) + � (while

keeping the design matrix P constant), we have the following approximate relationship

between the parameters in the two models,

β � β0 þ P� 1diagð�Þrmgðg � 1ðPβ0ÞÞ

whererx f(x) denotes the gradient of f(x) with respect to x. This means that the incorrect link

function will introduce a bias in the parameter estimates, and the magnitude of that bias will

depend on the rate of change of the inverse of the link function, as well as on the design matrix

(some examples are given in S1 Table).

Finally, the dispersion distribution models the variation around the phenotype mean μ
(given by the link function and the parameterization). However, for a given data set, the

Table 1. Relation between G ×G interaction parameters and those of selected constrained or unsatu-

rated models.

Model G × G parameters

δ11 δ12 δ21 δ22

A × A δ 2δ 2δ 4δ
R × R 0 0 0 δ
D × D δ δ δ δ
R × D 0 0 δ δ
H × H δ 0 0 0

https://doi.org/10.1371/journal.pcbi.1005556.t001
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dispersion distribution is seldom varied because different dispersion distributions are often

tightly connected to specific types of phenotypes (see examples in S2 Table). In particular, if,

for a given dispersion distribution, f, with (shape) parameter θ, there exists a link function g(μ)

such that θ = μ, then g(μ) is called the canonical link function of f (S2 Table).

Examining the effect of different link functions. In the previous sections, we observed that a

small perturbation of the link function may bias the parameter estimates, and, for general

changes in the link function the corresponding Wald tests may not be equivalent. This suggests

that some interactions may not be consistent between link functions. In fact, it is well-known

that, under some circumstances, interactions inferred with one link function might be absent

when another link function [25, 26] is used. Loftus [25] referred to these interactions as “unin-

terpretable”, because although they represent an interaction we cannot be sure unless we know

the true underlying link function. However, Loftus also defined a class of “interpretable” inter-

actions whose inference is invariant of the link function.

To make a robust statement of the existence of a particular interaction, we must therefore

determine whether the interaction seems to be invariant of the link function. One previously

proposed link function test investigates systematic bias in the residuals [24]. The test is called a

goodness-of-link test and is constructed by first fitting GLM with the canonical link, to obtain

a first estimate of μ̂, and then fitting the same GLM with gðμ̂Þ2 as an additional covariate to

investigate non-linearity. However, for saturated GLMs, the goodness-of-link test becomes

over-parameterized, and therefore meaningless, because there are no degrees of freedom left

after fitting parameters to accommodate gðμ̂Þ2 (it does work in the special case of unsaturated

GLMs).

We will instead use another approach that tests interaction over multiple link functions in a

family of link functions, parameterized by some parameter λ [22, 23]; we will refer to this test

as the link family test. Many such families have been suggested, but the most important prop-

erty is to be able to model functions increasing either faster or slower than the canonical link

function. For simplicity we have selected the following families for the Normal and Binomial

dispersion distributions, respectively:

gðmÞ ¼

logðmÞ l ¼ 0

ml � 1

l
l � 1

1þ mð2 � lÞð Þ
1=ð2� lÞ

l > 1

em l ¼ 2

8
>>>>>>>>><

>>>>>>>>>:

gðmÞ ¼

log
m

1 � m

� �

l ¼ 0

m

1 � m

� �l

� 1

l
otherwise

8
>>>>>><

>>>>>>:

The first one is a symmetric version of the Box-Cox family of power transforms that lies

between the log-link (λ = 0) and the exp-link (λ = 2). It also contains the identity link as a spe-

cial case λ = 1. The second family, the Pregibon family, was suggested for studies of link func-

tions for Binomial outcomes which contains the logit-link (λ = 0) as a special case [24]. These

families are by no means a complete representation of all possible links, but serve as an attempt

to broaden the family of null models.

Evaluation of link function invariance is a computer-intensive approach as it requires re-

analyses while stepping through different values of λ to identify any critical link function. In

practice, we therefore apply this test on significant pairs, only, as an a posteriori measure of

link appropriateness.

In the following sections we investigate how the false positive rate and statistical power is

affected by different assumptions on the genetic effects. In both cases, we evaluate the following
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parameterizations: the G × G joint, AD × AD joint, G × G separate, A × A, and R/D × R/D tests

(described below). We then apply the G × G joint test to two biological data sets to demonstrate

the efficacy and plausibility of our method. In the following sections, we will (unless it is clear

from context) discriminate between a generative model referring to the model from which data

is generated and a test model, which is used in the statistical test. For details on data generation,

please see Materials and methods.

Evaluated strategies for testing interactions

We will now introduce five different strategies for testing interactions. We will use these strate-

gies together with the Wald test described in Section Fast estimation and testing of interaction

in generalized linear models, above, in our investigations of statistical power and false positive

rate.

The first three are based on two different saturated parameterizations: G × G and AD × AD
(Fig 1). The G × G test models is the standard approach for regression on discrete variables in

the GLM literature, the AD × AD test model corresponds to the F1model discussed by [17]

(the careful reader will notice that, compared to [17], we have changed the coding of the

second column of AD from (0, −1, 1) to (0, 1, 2) to allow for easy comparison with G). A

parameterization that features multiple interaction parameters can be tested either jointly or

separately. Let the interaction parameter vector be denoted by δ = {δ11, δ21, δ12, δ22, }. A joint
test evaluates the hypothesis that all interaction parameters are zero δ = 0 and a separate test

evaluates the hypothesis that one or more interaction parameters are zero [h{δh = 0}; notice

for the separate test that, while each test has a lower degree of freedom, the multiple testing

burden will increase by a factor of 4. In our first two strategies, the interaction parameters are

tested by a joint test and we will refer to these tests as G × G joint and AD × AD joint, respec-

tively, while the third strategy is based on a separate test and the G × G parameterization,

which we refer to as G × G separate.
For the next strategy, we introduce a non-saturated parameterization that assumes that the

genotypic effect is completely additive in the number of minor alleles, and thereby ignores pos-

sible deviations. This corresponds to the Kronecker product of two additive-encoded uni-vari-

ant GLMs (A
 A). This model is often written

gðmabÞ ¼ aþ ab1 þ bg1 þ abd11

This is a much more restricted test model and the interaction is now represented by a single

parameter δ11 instead of four as in the previous models. We refer to this test as the A × A test.

The last strategy, which has been applied in multiple studies of interactions [9, 27], is to first

encode the genotypes into binary variables according to dominance or recessiveness. These

binary variables are then analyzed separately in an interaction test. This encoding corresponds

to the (saturated) parameterizations D ×D, R × D,D × R and R × R:

gðmabÞ ¼ aþ Iða � 1Þbþ Iðb � 1Þgþ Iða � 1ÞIðb � 1Þd

gðmabÞ ¼ aþ Iða � 1Þbþ Iðb ¼ 2Þgþ Iða � 1ÞIðb ¼ 2Þd

gðmabÞ ¼ aþ Iða ¼ 2Þbþ Iðb � 1Þgþ Iða ¼ 2ÞIðb � 1Þd

gðmabÞ ¼ aþ Iða ¼ 2Þbþ Iðb ¼ 2Þgþ Iða ¼ 2ÞIðb ¼ 2Þd

In each GLM, interaction is measured by a single parameter δ. In analogy with separate testing,

we evaluate if δ in any of the test models deviate from zero, and the multiple testing burden

will increase by a factor of 4. We refer to this family of tests as R/D × R/D.
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Error rates under model-misspecification

We performed two experiments to investigate how potential model misspecifications affect the

false positive rate (FPR) for the interaction tests described previously. In the first experiment

we generated synthetic data from (null) models with no interaction, but where some assump-

tions of the evaluated tests fail (specifically, the presence of recessive and dominance for the

A × A test and the presence of an additive component for the R/D × R/D test); we also tested

whether linkage disequilibrium (LD) affects the FPR. The results in Fig 2 show that all tests

Fig 2. The estimated false positive rate for each test under six different generative models. Data was generated with all

interaction parameters set to zero in this plot. For each subplot, the y-axis indicates the estimated false positive rate and the x-

axis indicates the dispersion distribution. The rows correspond to null generative models under three different parameterizations:

A × A, R × A and R ×D. The columns correspond to two cases, no LD and an LD of 0.8 measured with Lewontin’s D. The colored

bars refer to different interaction tests used, as indicated by the legend next to the plots.

https://doi.org/10.1371/journal.pcbi.1005556.g002
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controlled the error rate when there is no LD for a Normal dispersion distribution. However,

for the Binomial dispersion distribution, the error rate of the A × A and R/D × R/D tests was

inflated by the presence of dominant and recessive inheritance patterns. A second source of

errors is LD, and the A × A test had a strongly inflated error rate when data was generated

from R × A and R ×D under both dispersion distributions. Moreover, also the R/D × R/D
parameterization had an inflated error rate for all generative models under LD. The error rate

was highest for data generated from R × A and a Binomial dispersion distribution. In general,

the G × G joint, G × G separate and AD × AD joint tests are safe to use in the presence of LD,

whereas the other tests must be treated with caution.

In the second experiment, we investigated the impact of link function misspecification on

the FPR. As discussed in Section Relating different GLMs, it is known that interactions

inferred with one link function might be absent when another link function [25, 26] is used,

and vice versa. Here we test how often link misspecification introduce “false interactions”. We

generated data from the A × Amodel with the log link function, whereas we performed each

test using the identity link function. We measured the FPR as a function of the main effect of

the second variant, while the main effect of the first variant is constant. Notice that when the

second main effect is zero, the phenotype depends only on the first variant and, thus, no infla-

tion of “false interactions” is expected. The results (Fig 3) show that all tests were affected simi-

larly by link misspecification, and the false positive rate quickly increased with the second

Fig 3. The estimated false positive rate under link function misspecification as a function of the second main effect. The x-axis indicates the

effect size of the second main effect under a A × A generative model, while the y-axis indicates the estimated false positive rate. The colored lines

correspond to the estimated false positive rate using different interaction tests, as indicated by the legend next to the plots. The black line is the

desired 0.05 level. The data was simulated using the log link function, and tested using an identity link.

https://doi.org/10.1371/journal.pcbi.1005556.g003
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main effect’s deviation from zero; this effect was slightly more pronounced for the A × A test.

The effect became more pronounced as the sample size increased. This demonstrates, as previ-

ously predicted [25], that use of an erroneous link function may lead to false inference of

interaction.

Statistical power

Designing a convincing and realistic experiment for measuring the expected statistical power

is challenging. Ideally, we want to generate data from a biologically relevant model. However,

neither the effect sizes, nor the structure of such a model are known. In addition, there is a

large number of possible interaction models, even for single pair interactions where we have

nine model parameters and two allele frequencies. In an attempt to balance efficiency and

exhaustive exploration of this parameter space, we, perform two separate experiments. The

first considers data generated from a small set of common interaction models, and a second,

that considers data generated from a larger set of models, to give an overall picture of how dif-

ferent tests perform in relation to each other.

In the first experiment, we estimated the statistical power on data generated from the

A × A, A × Afailed, D ×D,D × Dfailed,H ×H, and R ×DGLMs. The A × Afailed and D ×Dfailed

are AD × AD generative models that were designed to violate the assumptions of the A × A and

D ×Dmodels, respectively (see further Section Materials and methods). The results in Fig 4

Fig 4. The statistical power of different testing strategies. The y-axes is the estimated statistical power, while the x-axis represents the effect

size specific to each generative model: δ11 for the A × A model, δ11 = δ12 = δ21 = δ22 for the AD × AD, δ11 = δ12 = δ21 = δ22 for the D × D model, δ11 =

δ22 = −δ12 = −δ21 for the D ×D failed model, δ11 for the heterozygote model, and δ12 = δ22 for the R ×D model. The sample size was 4000 and the

minor allele frequency for both variants was 0.3. Notice that the line for the AD × AD joint test in all plots coincide with, and is hidden by, the line for

the G × G joint test.

https://doi.org/10.1371/journal.pcbi.1005556.g004
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shows that, for data generated from these specific models, there is no universal winning test

strategy. However, both the G × G joint and AD × AD joint are generally among the best test

under each generative model. Surprisingly, and in contrast to a single variant association test

[28], the A × A test generally has a large loss of power when the generative model underlying

the data is not A × A. Separate testing of parameters in the G × G separate or R/D × R/D tests

sometimes incur a small loss of power compared to the joint tests. This can be expected

because the application of Bonferroni correction in the separate test implicitly assumes inde-

pendence of the individual interaction parameters, while the joint test accounts for any corre-

lation among them; this will, overall, result in a small power advantage for the joint test.

In the second experiment, we investigate the statistical power for the same tests over a large

number of randomly sampled generative models. The results in Fig 5 reinforce those from the

first power experiment. The joint tests, G × G joint and AD × AD joint, consistently perform

best, followed by the G × G separate and R/D × R/D tests (where each parameter is tested sepa-

rately), whereas the A × A test has on average 20% lower power. There is, as expected, no dif-

ference between the G × G joint and AD × AD joint tests. Despite the increased number of

parameters of the joint tests these results holds also for lower sample sizes, see S3 Fig. However,

we can not exclude that when many additional covariates are required, the tests with fewer

parameter might gain statistical power.

Fig 5. The exceedence distribution of power over all possible interaction generative models with a specific heritability. For each plot, the x-

axis shows a threshold, t, for power to detect an interaction among 1012 variant pairs, and the corresponding y-axis shows the fraction of generative

models, for which the analysis have a power greater than or equal to t. The rows correspond to the sample size. The columns correspond to the minor

allele frequency of both variants in the pair. The line for the AD × AD joint test is often obscured by the line for the G × G joint test.

https://doi.org/10.1371/journal.pcbi.1005556.g005
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Biological data analysis

We applied the G × G joint test in two different association analyses aimed at the quantitative

outcome blood concentration of Lp(a) lipo-protein particles [29] and a case-control outcome

for myocardial infarction (MI), respectively. Our results, above, show that joint tests using sat-

urated models has the best power. Moreover, joint tests using the G × G and AD × AD parame-

terizations are equivalent; our choice to use the G × G is arbitrary, but perhaps it is more easy

to directly relate to the actual genotypes.

The link family test was used to test for link function invariance. As this test is quite com-

puter-intensive, we apply the following strategy for each association analysis: We first perform

the large-scale discovery analysis using the canonical link function in the respective analysis.

The significant interactions from the discovery are then re-analyzed including the full test for

link function invariance. The full link function invariance test is also applied in the replication

analysis.

Lipoprotein(a). We performed a classic discovery-replication analysis using quantita-

tive data for circulating Lp(a). Lp(a) is an LDL-like lipoprotein particle also containing apoli-

poprotein [30], circulating in the blood. The concentration of circulating Lp(a) has been

associated to coronary heart disease [31] and has attracted attention as a possible target for

lipid-lowering therapies [32]. For the discovery we used the PROCARDIS cohort [33], com-

prising in total 8,112 individuals genotyped for 566,865 variants, while replication was done

in the SCARF-SHEEP cohort [34, 35], comprising 2,345 individuals and 116,540 variants.

A full chip-wide analysis, testing all possible pairs from L, the set of variants in approximate

linkage equilibrium (�1010 pairs), resulted in no variant pair passing the very severe Bonfer-

roni-corrected significance level (p< 10−12).

We therefore investigated a variance heterogeneity-based genome-wide association study

(vGWAS) [36] approach as an a priori selection procedure for single variant interaction candi-

dates The vGWAS analysis is claimed to be independent of, and not biasing ensuing interac-

tion analysis; in fact a theoretical proof is provided [36]. In a vGWAS, each variant is first

tested with a heterogeneity test (in this case the Brown-Forsythe test [37]). Variants that dis-

play sufficient variance heterogeneity comprise the set V. We used a liberal p-value threshold

of 10−4. The final interaction analysis was performed on all pairs between V and L. A single

variant pair (rs13209686-rs1884480) was significant from this analysis (adjusted p = 0.0306;

Table 2).

Because the variant pairs in the first analysis were first pruned for LD, we fine-mapped the

association signal. For each of the variants i 2 (1, 2) of the significant variant pair from the dis-

covery analysis, we defined the set Fi of all variants in close proximity of i, and then analyzed

all pairs of variants from F1 and F2. The top three pairs in the region are shown in Table 2.

Only one of these variant pairs, comprising rs3103353 and rs9458157, was available for replica-

tion in our replication cohort SCARF-SHEEP. The replication result (Table 3) suggests that

the discovery signal indeed replicates (p = 4.7378e − 07); the value of λ is consistent between

discovery and replication and indicates that link should increase faster than linearly. Lastly, we

performed a fixed-effect meta-analysis of the PROCARDIS and SCARF-SHEEP results for the

Table 2. Association results for the discovery and fine-mapping analyses.

Analysis SNP 1 SNP 2 df N Pcan Adjusted Pcan Plinkinv λ Closest gene 1 Closest gene 2

Discovery rs13209686 rs1884480 1 3677 2.42 � 10−09 0.0306 2.05 � 10−07 2 SLC22A1 AGPAT4

Fine-map rs3103353 rs9458157 3 3688 1.26 � 10−09 NA 5.96 � 10−09 0 SLC22A2 AGPAT4

Fine-map rs3103352 rs9458157 3 3673 1.05 � 10−09 NA 4.85 � 10−09 0 SLC22A2 AGPAT4

https://doi.org/10.1371/journal.pcbi.1005556.t002
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rs3103353-rs9458157 pair. This resulted in a substantially stronger signal (p = 1.06 � 10−12;

Table 3), indicating consistent effects in the two cohorts. This is also strengthened by the con-

sistency of the estimated models for the two cohorts (S2 Fig), showing markedly lower

expected Lp(a) levels for the double minor homozygote.

Both rs3103353 and rs9458157 are located in the proximity of the previously associated

LPA locus [29], but are not in LD (r2 = 0.0219008 and D0 = 0.186003). Functional annotation

analysis using HaploReg [38](S3 Table) showed that there is previous evidence that rs3103352

is an eQTL for SLC22A2 [39], while rs9458157 is situated in an intron of AGPAT4. Both vari-

ants are situated in regions with histone or methylation patterns associated with enhancer

activity—in adipose tissue and in blood or cardiovascular tissue, respectively. Gene Ontology

analysis [40](S4 Table) indicated that SLC22A2 is a membrane transporter of organic cations,

including histamine, choline and dopamine, while AGPAT4 is involved in metabolic processes

related to triglyceride and phospholipid metabolism.

Because of the proximity to the LPA locus, it is of interest to investigate the relation of this

interaction to other single SNP associations in LPA, in particular those identified in previous

studies (e.g., rs3798220 and rs10455872 [29] and rs41272114 [41]). We performed an addi-

tional analysis in the replication cohort, where we first identified all single variants associated

to Lp(a), and then included each of these variants in turn as a covariate in the interaction anal-

ysis of the rs3103353-rs9458157 pair. The result (Supplementary table S10 Table) showed that

the interaction association is not diminished by the additional covariate variants, suggesting

that the identified interaction and neither of the associated single variants are proxies for the

same association. However, the previously published associated variants rs10455872 and

rs41272114 were not genotyped in our cohorts. Thus, we cannot test the possibility that the

discovered interaction reflects the same association as one of these two variants or, for that

matter, of any unsampled variant associated to Lp(a) in our cohort (i.e., either the interaction

being a proxy for the single-variant [42] or vice versa [43]). We therefore performed a simula-

tion study where we, using the PROCARDIS genotype data for chromosome 6, generated a

continuous phenotype from a randomly picked single variant and then applied the same inter-

action analysis as for the biological data, but with different combinations of LD-pruning and

vGWAS selection of variants; this was repeated 200 times (for details see S2 Text). The results

(S8 Fig) shows that, while both approaches involving no pruning or LD-pruning controls the

family-wise error rate (FWER), vGWAS does indeed inflate the FWER substantially. This con-

tradicts the claim by [36] that vGWAS does not affect ensuing interaction analysis, this is likely

caused by LD between tested variants which is assumed to be absent in the theoretical proof of

Pare et al. [36]. To conclude, we cannot exclude the possibility of the existence of unsampled

variants that display the same association as the discovered interaction between rs3103353 and

rs9458157.

Myocardial infarction. MI is one of the common endpoints of coronary artery disease

(CAD). Typically for complex diseases, such as CAD (and MI), very large sample sizes are

needed for GWAS. Major collaborative efforts aimed at genetic analyses of CAD are therefore

being performed, typically in large-scale meta-analyses driven by international consortia. As a

Table 3. Replication analysis of LP(a).

Cohort SNP 1 SNP 2 N P λ
PROCARDIS rs3103353 rs9458157 3688 5.96 � 10−09 0

SCARF-SHEEP rs3103353 rs9458157 2343 6.97 � 10−07 0

Combined rs3103353 rs9458157 6031 1.06 � 10−12 NA

https://doi.org/10.1371/journal.pcbi.1005556.t003
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proof-of-concept, we performed a two-cohort meta-analysis of gene-gene interactions associ-

ated to myocardial infarction (MI).

The first cohort was obtained by augmenting the PROCARDIS MI case-control data with

control data from the WTCCC [44] (resulting in a total of 10,139 samples for analysis), the sec-

ond cohort was the MIGEN cohort [45] (6,042 samples). This analysis only included variants

that were genotyped in both cohorts (132,181 variants). We tested for interaction between all

pairs among variants (� 8.74 � 109 pairs) using a fixed effect meta-analysis, as described above

in Section Fast estimation and testing of interaction in generalized linear models. No variant

pair was declared significant using the Bonferroni correction (p< 5.72 � 10−12), the top five

variant pairs (best p-value p = 1.91 � 10−10) are shown in S9 Table.

Discussion

Our major contribution is computationally efficient tests for the complete family of GLMs,

applicable to any combination of parameterization and link function. Our tests can be used for

case-control studies as well as studies of quantitative traits. We have also shown how this meth-

odology facilitates computationally efficient meta-analyses.

The G × G and AD × AD tests clearly had the overall best power to detect interaction. How-

ever, for certain data sets generated from specific interaction models, the G × G separate test

and the R/D × R/D test performed comparable to the joint saturated full GLMs. Interestingly,

the commonly used additive test had the overall worst power performance among the evalu-

ated tests. It had strikingly poor power in several experiments. Nevertheless, for low minor

allele frequencies the difference in power was less pronounced. In conclusion, our empirical

results together with the equivalence of full saturated models, suggest that tests using saturated

full GLMs are superior for interaction studies in general.

It is important that high power does not come at the expense of control of the false positive

rate (FPR). Our simulations show that, under certain circumstances, incorrect parameteriza-

tion in unsaturated or constrained GLMs may lead to incorrect interaction inferences. Specifi-

cally, when the data includes LD, tests using the constrained R/D × RD or the unsaturated

A × AGLMs failed to control FPR, while it was still controlled by the tests using saturated full

GLMs. Moreover, also for data generated without LD, but then only when generated with a

Binomial dispersion distribution, incorrect parameterization caused the A × A test to display

substantial FPR inflation.

We demonstrate the applicability of our method on experimental data aimed at Lp(a).

Levels of circulating Lp(a) have an inverse association with coronary heart and are predomi-

nantly regulated by genetic variation in proximity of the LPA gene [29]. Although the mecha-

nism remains elusive, it has been hypothesized that the association between Lp(a) levels and

CVD is indeed causal, in part because a number of genetic polymorphisms have effects on

both LP(a) levels and risk of cardiovascular events. We discovered a new genome-wide signif-

icant interaction between two variants in proximity to the LPA locus. This could potentially

reflect an interaction between AGPAT2, involved in triglyceride metabolism, and SLC22A2, a

transmembrane transporter, which previously has been indicated as involved in lipoprotein

metabolism [46]. However, as often is the case, we cannot exclude the possibility that the dis-

covered interaction may be a proxy for an unsampled, either single variant or another inter-

action, association.

We demonstrated the applicability of our meta-analysis method by analyzing two MI case-

control cohorts. The genetic architecture of MI is known to be complex and single variant

analysis has so far explained only a small fraction of its heritability. This motivated us to inves-

tigate the potential impact of interactions on MI. Our meta-analysis did not result in any
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interactions of genome-wide significance, which require passing the severe Bonferroni-cor-

rected threshold p� 5.72 � 10−12.

The link function, a.k.a. the “scale”, is a crucial component of GLMs that relates the linear

predictors to the phenotype mean. Because the link function used in a test can have a consider-

able impact on the resulting FPR, it is of interest whether the interaction is invariant of the

scale, and a few tests for this have been devised. We applied the link family test, which evalu-

ates invariance across a family of link functions [22, 23]. This test is unfortunately computa-

tionally demanding and can be restrictive for large-scale analyses. To circumvent this, we used

the so-called canonical link function in the large-scale discovery phase, and performed the test

for link function invariance only on those interactions that passed the discovery phase.

Alvarez-Castro and Carlborg [18] derived conditions for when the parameterization is

orthogonal in a linear model. Parameterization orthogonality facilitates decomposition of the

variance into components corresponding to main and interaction effects. For a GLM the con-

cept of orthogonality is complicated by the link function and the genotypic dependence of the

variance (see S1 Text). Nevertheless, our tests are applicable to both orthogonal and non-

orthogonal parameterizations alike.

Our test is currently limited to discrete genotype data, i.e., directly genotyped or hard-called

imputed data [47]. Meta-analysis of cohorts with non-overlapping genotype data requires

imputed data. However, with currently available algorithms for incorporating imputation

uncertainty in interaction tests, this would substantially compromise computational efficiency.

Similarly, in the present implementation it is not obvious how to include covariates in the

analysis. A solution that we are currently working on could be to use the GLM weights to

model both imputation uncertainty and covariate adjustment. Ideally, this will retain the

computational efficiency at the cost of statistical efficiency. However, for the time being, the

simplest solution to the covariate issue is a two-step strategy, which, a posteriori to the initial

analysis, fits a standard GLM including relevant covariates for the identified interactions and

checks that the results still hold (this approach was used in the Lp(a) replication analysis).

If this causes too many pairs to be identified, an alternative that is commonly applied in uni-

variate meta-analyses is to first regress out relevant covariates and then model the residuals.

Because residuals are expected to be normally distributed for all GLM models this can be gen-

erally applied; however, some interpretation is lost.

Materials and methods

False positive rate

We first considered two scenarios that may produce false positives: submodels in which one or

more assumptions fails to hold, and tests where the incorrect link function is used. In both

experiments, we evaluated the following five different tests: the G × G joint, AD × AD joint, G ×
G separate, A × A and R/D × R/D tests.

In the first experiment we investigated FPR where the data violates two model assumptions,

erroneous parameterization and presence of linkage disequilibrium (LD). LD was measured

by Lewontin’s D (LD) and we used two cases, high linkage (LD = 0) and low linkage

(LD = 0.8). The genotypes were generated according to the following probability distribution
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where

p00 p01
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 !
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and q is the minor allele frequency of the first variant, and r is the minor allele frequency of

the second variant. The parameter D = LD � Dmin where Dmin = min(1 − qr, 1 − (1 − q)(1 − r),
q(1 − r), (1 − q)r). The minor allele frequency was set to q = r = 0.3 and the sample size to

4,000. For each genotype, continuous phenotypes were then generated using six different null

GLMs, obtained as the combinations of (i) a linear predictor from either of the A × A, R × A
and R ×D parameterizations, (ii) the identity link function, and (iii) either a Binomial and nor-

mal dispersal distribution (parameters can be seen in S5 Table). For each parameter combina-

tion we generated 1,000 data sets and estimated the false positive rate as the average number of

incorrectly identified pairs.

In the second experiment, we investigated the false positive rate when the link function is

misspecified. Specifically, we generated the phenotype using a log link function, while the tests

were performed using the identity link function. The genotypes were generated under Hardy-

Weinberg equilibrium with a minor allele frequency of 0.3 for both variants. We used a GLM

with the A × A linear predictor, the identity link function and a normal dispersion distribution

to generate phenotype from each genotype; we varied the size of the second variant’s main

effect between −0.4 and 0.4 and the sample size over 2000, 3000 and 4000 (parameters are

shown in S6 Table). For each parameter combination, we generated 1000 data sets and esti-

mated the false positive rate as described above.

Statistical power

We performed two different simulation experiments for statistical power; one smaller com-

prising a set of specific GLMs and one larger comprising a wide range of interaction models.

In both experiments we generated a continuous phenotype from a Normal dispersion distribu-

tion using the identity link function. We evaluated the same tests as in the FPR experiments,

described above.

In the small power experiment we generated data from six different parameterizations,

A × A, A × Afailed, R ×D,D ×D,H ×H, and D ×Dfailed. The A × Afailed and D ×Dfailed are

AD × ADmodels designed to violate the assumptions of the A × A and D ×D, respectively,

that is, in the A × Afailed, the values of the interaction parameters are switched with respect to

those in a A × A, while in the D ×Dfailed, half of the interaction parameters are in the opposite

and wrong direction compared to D ×D. We generated genotypes for 4000 individuals under

Hardy-Weinberg equilibrium with a minor allele frequency 0.3 for both variants. For each

genotype, we then generated phenotypes from each GLM. We varied the effect size between

-1.0 to 1.0; depending on the selected parameterization, this required modification either of a

single or multiple parameters in β (parameters can be seen in S7 Table). For each effect size,

we generated 1000 data sets and estimated the statistical power of each test as the average num-

ber of correctly identified pairs under Bonferroni correction assuming 1012 variant pairs.

In the large power experiment, we focused on different G × G parameterizations from a

range of parameter combinations that can be found in S8 Table—notice that, since this is a sat-

urated full parameterization, this approach will cover a large number of other, unsaturated

and saturated, constrained and full, parameterizations. The genotypes were generated under

Hardy-Weinberg equilibrium and we varied the allele frequency between 0.2, 0.3 and 0.4

(for both variants), and the sample size between 2000, 3000 and 4000. For each genotype a
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phenotype was generated using a linear predictor from the G × G parameterizations described

above, the identity link function and the Normal dispersion distribution. For each parameter

combination we generated 1000 data sets and estimated the statistical power as described

above (using a Bonferroni correction assuming 1012 variant pairs).

Ethics statement

The PROCARDIS study was approved by the Regional Ethics Review Board at Karolinska

Institutet, Stockholm in Sweden (approval number 98-482 and 03-491) and by the Institutional

Review Boards of the Mario Negri Institute, Milano in Italy, the University of Munster, Mun-

ster, in Germany, and the University of Oxford, Oxford, United Kingdom. The PROCARDIS

study was supplemented with controls from the WTCCC study, UK. The WTCCC was

approved by the relevant research ethics committees. All study participants provided their

written informed consent to participate in the study, which was conducted in accordance with

the Helsinki Declaration.

The SCARF and SHEEP studies were approved by the local ethics committees at Karolinska

Hospital, Stockholm (approval number 95-397 and 02-091), and Karolinska Insitutet, Stock-

holm (approval number 01-097), respectively.

The MIGEN data was accessed from dbGAP (access.nr. phs000294.v1.p1) [45]; all partici-

pants in the MIGEN studies gave written informed consent in accordance with the guidelines

of local ethical committees.

Biological data

The PROCARDIS multicentre study was designed to investigate early onset CAD. Cases with a

documented CAD event before the age of 66 years were collected from Sweden, the UK, Ger-

many and Italy. The full PROCARDIS cohort comprise 8410 cases and 5188 matched controls

free from CAD. Here we have used a subset of the PROCARDIS cohort previously genotyped

with the Illumina Human1M Quad chip and the Illumina Human610K chip [33]. We only

included unrelated individuals genotyped on these chips. The intersection of these chips con-

tain 566,865 variants. The subset of PROCARDIS used in this study depends on the pheno-

type. Lp(a) plasma levels were measured in 3,741 individuals. For the meta-analysis aimed at

MI, the PROCARDIS cohort was extended with 5,667 control samples from the Wellcome

Trust Consortium (WTCCC) [44]. This resulted in a total of 2,809 cases and 7,330 controls for

the MI disease phenotype.

The SCARF [35] and SHEEP [34] cohorts included unrelated MI cases from the Stockholm

region of Sweden, with age and sex-matched controls collected from the general population of

the same region. The comparable design and demographics of the 2 cohorts means that they

can be combined as one cohort. The SCARF-SHEEP cohort was previously genotyped with

the CardioMetabo chip, a custom Illumina iSelect genotyping array that targets genetic vari-

ants likely to be involved in metabolic and cardiovascular disorders [48]. The chip contains

116,540 variants. Lp(a) levels were measured in 2,345 individuals.

The MIGEN cohort is a case-control study aimed at investigating the genetic basis of MI

[45]. The cohort contains samples from 6 collection sites: Boston, MA (Masschusetts General

Hospital Premature Coronary Artery Disease Study), Seattle, WA (Heart Attack Risk in Puget

Sound), Helsinki, Finland (FINRISK), Malmö, Sweden (Malmö Diet and Cancer Study), Bar-

celona, Spain (REGICOR), and Milan, Italy (Italian Atherosclerosis Thrombosis and Vascular

Biology Working Group). The MIGEN cohort was previously genotyped with the Affymetrix

Genome-wide Human SNP Array 6.0. The data was approved by and downloaded from

dbGAP with accession phs000294.v1.p1. This data contains 3,068 cases and 2,957 controls.

Fast interaction tests for GWAS

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005556 June 6, 2017 22 / 29

https://doi.org/10.1371/journal.pcbi.1005556


QC and analysis of biological data

We performed multiple experiments on biological data: exhaustive interaction scan in Lp(a),

vGWAS scan in Lp(a), and a exhaustive meta analysis of CAD. All interaction tests was per-

formed using the G × G joint test. In the discovery phase, a canonical link function and the

appropriate dispersion distribution was used in an initial analysis. The significant pairs was

then tested using the same G × G joint test, but using the link family test to step through a fam-

ily of link functions; the latter approach was also used in the replication phase. For the continu-

ous Lp(a) phenotype, the Normal dispersion distribution was used first with the canonical

identity link and then with the symmetric Box-Cox family. For the binary MI case-control

data, the Binomial dispersion distribution was used first with the logit link and then with Preg-

ibon link family.

The Lp(a) phenotype was log-transformed and outliers were removed in both PROCARDIS

and SCARF-SHEEP. For the exhaustive interaction scan we applied the following QC filters:

minor allele frequency 0.05, genotyping rate 0.1. We then removed variants in linkage disequi-

librium using the Plink “–indep-pairwise” option, using a window size of 100, step size of 5

and a LD threshold of r2 < 0.5 (we additionally check D0 for any significant interaction discov-

eries). This resulted in 180,947 variants, and we tested for interaction between all possible

pairs of these.

For the vGWAS scan, we applied the same QC filters as above; the resulting set of SNPs is

called L. We then tested for variance heterogeneity of each variant with a Brown-Forsythe test

[37]. The set of variants with p-value less than 10−4 is called V. We constructed all pairs of one

variant from V and one variant from L (1.26 � 107 pairs) and tested these for interaction.

In the meta-analysis, we only considered variants that was genotyped both in MIGEN and

PROCARDIS, this resulted in 132,181 variants. We applied the following QC filters: minor

allele frequency > 0.05, genotyping rate> 0.1. We only tested pairs for which all genotypes

had at least five samples in both cases and controls (8.17 � 109 pairs).

For each analyzed cohort and phenotype combination we checked for potential p-value

inflation (genomic inflation) due to population stratification. In all cases genomic inflation

was low (see S4, S5, S6 and S7 Figs). The QQ-plots for the two Lp(a) cohorts (S6 and S7 Figs)

showed a surprisingly large deviatin from the diagonal line, expected under the null mode.

After investigation, it became clear that this inflation was due to substantial LD at the previ-

ously identified strongly associated Lp(a) locus on chromosome 6 [29].

Software availability

A c++ implementation of the software can be accessed at https://github.com/mfranberg/besiq.

Supporting information

S1 Text. This text contains mathematical proofs of statements made in the main text. The

text contains four sections: derivation of closed-form estimation of saturated full parameteriza-

tions, proof of that the fast estimation of unsaturated models is consistent, description of

orthogonality for GLMs, and derivation of the fixed effect meta-analysis for Wald statistics.

(PDF)

S2 Text. This text describes how the supporting experiments were set up, i.e., the impact of

potentially associated sampled and unsampled variants on discovered associations of

interaction pairs.

(PDF)
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S1 Fig. Speed comparison between the likelihood ratio (LR) test and the closed-form Wald

test (Wald). The left and right subplots are for binary and continuous phenotypes respectively.

The x-axis is the total sample size, for the binary phenotype this value is cases plus controls.

The y-axis is the average time required to compute the p-value per variant pair on a log-scale.

The colors represent the algorithm used to compute the test statistics, “Plink” refer to the –

epistasis-test in the Plink 1.90 Beta software, “Wald” refer to the Wald test, and “IRLS” refer to

the likelihood ratio test implemented using the iteratively reweighed least squares algorithm.

(TIFF)

S2 Fig. Comparison between the interaction model estimated in the discovery (left) and

replication cohort (right). The x-axis is the number of minor alleles of the first variant. The

y-axis is the expected value of the phenotype. The colors correspond to the number of minor

alleles of the second variant.

(TIFF)

S3 Fig. The exceedence distribution of power over all possible interaction generative mod-

els with a specific heritability—Smaller sample sizes. For each plot, the x-axis shows a

threshold, t, for power to detect an interaction among 1012 variant pairs, and the correspond-

ing y-axis shows the fraction of generative models, for which the analysis have a power greater

than or equal to t. The rows correspond to the sample size. The columns correspond to the

minor allele frequency of both variants in the pair. The line for the AD × AD joint test is often

obscured by the line for the G × G joint test.

(TIFF)

S4 Fig. Single variant QQ-plot for MI in PROCARDIS. The x-axis is the expected log p-val-

ues and the y-axis is the observed log p-values. There is little deviation from the diagonal line

and genomic inflation is low (λ = 1.102).

(TIFF)

S5 Fig. Single variant QQ-plot for MI in MIGEN. The x-axis is the expected log p-values and

the y-axis is the observed log p-values. There is little deviation from the diagonal line and

genomic inflation is low (λ = 1.100).

(TIFF)

S6 Fig. Single variant QQ-plot for LP(a) in PROCARDIS. The x-axis is the expected log p-

values and the y-axis is the observed log p-values. There is substantial deviation from the diag-

onal line; however, genomic inflation is low (λ = 1.109).

(TIFF)

S7 Fig. Single variant QQ-plot for LP(a) in SCARF-SHEEP. The x-axis is the expected log p-

values and the y-axis is the observed log p-values. There is substantial deviation from the diag-

onal line; however, genomic inflation is low (λ = 1.047).

(TIFF)

S8 Fig. Family-wise error rates for different filtering strategies. The x-axis is the total herita-

bility of the generated variants. The y-axis is the estimated family-wise error rate. The colors

correspond to the number of causal variants. The dashed line is the 0.05 FWER threshold. The

error bar of each point is the 95% confidence interval of the corresponding FWER estimate.

Each subplot corresponds to 4 different pruning strategies: no pruning, only ld-pruning, only

vGWAS pruning, and both ld-pruning and vGWAS pruning.

(TIFF)
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S1 Table. Misspecification bias for three common link functions. The first column is the

name of the link function. The second column is the form of the link function. The third col-

umn is the bias when the link function is misspecified by a small perturbation ϵ using parame-

terization matrix P. Here diag(x) denotes the diagonal matrix with the vector x as the diagonal.

(PDF)

S2 Table. Description of common dispersion distributions used for different phenotype

types. The first column is the type of phenotype. The second column is the name of the dis-

persal distribution commonly used for the corresponding phenotype type. The third column is

the canonical link function.

(PDF)

S3 Table. Summary of HaploReg analysis for the LP(a) and MI interaction association

results. The abbreviation ‘Enh’ stands for Enhancer and ‘Pro’ for Promoter, see the Roadmap

epigenomics project for further details.

(PDF)

S4 Table. Summary of gene ontology analysis for the LP(a) and MI interaction association

results. Gene symbols for the closest genes (Tables 2 and 4) were used as search terms on the

gene ontology website. Searches were limited to GO terms relating to Homo Sapiens and bio-

logical processes.

(XLSX)

S5 Table. Parameters that underlie the first FPR experiment. The first column is the model,

the second the LD of the model, the rest of the columns are the model parameters used in the

simulation (described in the context of a saturated GLM; σ is the variance of the Normal dis-

persion distribution).

(PDF)

S6 Table. Parameters that underlie the second FPR experiment. The first column is the

effect size used on the x-axis in the plot. The rest of the columns are the normal model parame-

ters (described in the context of a saturated GLM; σ is the variance of the Normal dispersion

distribution).

(PDF)

S7 Table. Parameters that underlie the small power experiment. The first column is the

model, the second column is the effect size used on the x-axis of the corresponding plot, the

rest of the columns are the parameters used in the simulation (described in the context of a sat-

urated GLM; σ is the variance of the Normal dispersion distribution).

(PDF)

S8 Table. Parameters that underlie the large power experiment. The first column is the vari-

ance of the normal distribution, the second column the intercept, column four to eight are the

main effects. The last column denotes the sum of the interaction effect sizes, these were used to

generate all possible interaction models where the mean of the non-zero effect sizes equaled

this number.

(PDF)

S9 Table. Results for the meta-analysis on myocardial infarction. For each variant pair, the

p-value and sample size are given for the meta-analysis and the analyses of individual the

MIGEN and the PROCARDIS cohorts.

(PDF)
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S10 Table. Results for the interaction test between rs3103353 and rs9458157 in SCARF-

SHEEP when adjusting for genome-wide significant variant. For each genome-wide signifi-

cant (p< 5 � 10−8) variant v, this table shows the likelihood ratio (LR), the p-value (p) and the

sample size (N) for the test of association of the rs3103353-rs9458157 interaction pair, when

adjusting for v.
(XLSX)
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