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Abstract
While biological distributions are not static and change/evolve through space and 
time, nonstationarity of climatic and land-use conditions is frequently neglected in 
species distribution models. Even recent techniques accounting for spatiotemporal 
variation of species occurrence basically consider the environmental predictors as 
static; specifically, in most studies using species distribution models, predictor values 
are averaged over a 50- or 30-year time period. This could lead to a strong bias due 
to monthly/annual variation between the climatic conditions in which species' loca-
tions were recorded and those used to develop species distribution models or even 
a complete mismatch if locations have been recorded more recently. Moreover, the 
impact of land-use change has only recently begun to be fully explored in species 
distribution models, but again without considering year-specific values. Excluding 
dynamic climate and land-use predictors could provide misleading estimation of spe-
cies distribution. In recent years, however, open-access spatially explicit databases 
that provide high-resolution monthly and annual variation in climate (for the period 
1901–2016) and land-use (for the period 1992–2015) conditions at a global scale have 
become available. Combining species locations collected in a given month of a given 
year with the relative climatic and land-use predictors derived from these datasets 
would thus lead to the development of true dynamic species distribution models 
(D-SDMs), improving predictive accuracy and avoiding mismatch between species 
locations and predictor variables. Thus, we strongly encourage modelers to develop 
D-SDMs using month- and year-specific climatic data as well as year-specific land-use 
data that match the period in which species data were collected.
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In the last decades, species distribution models (SDMs), which re-
late species occurrence locations with environmental predictors 
to estimate the probability of species occurrence to unsurveyed 
sites or to unsurveyed times (e.g., to predict response to climate 
change), experienced vigorous development at the intersection 
of ecology, biogeography, applied statistics, and computer sci-
ence (e.g., Guillera-Aroita, 2017; Kéry, 2011). SDMs work under 
the assumption that species are in equilibrium with their environ-
ment; however, it is increasingly accepted that this is unrealistic 
in many cases, leading to the emergence of “temporal ecology” to 
complement the more established study of “spatial ecology” (Ryo, 
Aguilar-Trigueros, Pinek, Muller, & Rillig, 2019). This recognizes 
that the distributions of wild species are not static, but change/
evolve through time and space (as do the environmental condi-
tions in which they occur), in a hierarchical way, with longer-term 
interannual dynamics overlaying shorter-term intraannual dynam-
ics. Recently developed approaches, such as spatiotemporal ex-
ploratory models (STEM; Fink et al., 2010) and dynamic occupancy 
models (also known as multi-season occupancy models; Kéry & 
Chandler, 2012), have accounted for this spatiotemporal varia-
tion of species occurrence. Specifically, STEM is based on an en-
semble or a mixture of static SDMs applied at a spatiotemporally 
restricted extent and then averaged over the whole extent (to ac-
count for local spatial and temporal patterns, reducing misleading 
extrapolation to distant regions), while dynamic occupancy mod-
els describe the occurrence at each site and the colonization and 
extinction probabilities from the previous time step.

However, even in these recent techniques, as well as in the 
more traditional static SDMs, the environmental predictors con-
sidered to estimate species occurrence are basically static. For 
instance, most of the studies applying SDMs attempt to predict 
species' distribution under future climate change scenarios (Titeux 
et al., 2016), but through static climatic predictors; specifically, 
most of these studies use climatic data that are averaged over a 
50- (1950–2000, Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) 
or 30-year period (1970–2000; Fick & Hijmans, 2017). Thus, there 
could be a strong bias due to monthly/annual variation between 
the climatic conditions in which mobile species' locations were re-
corded and those used to develop SDMs, or even a complete mis-
match in case of species locations collected after the year 2000. 
This problem becomes more acute with the increasing prevalence 
of climatic extremes (e.g., the summer of 2003 in Europe; Jentsch 
& Beierkuhnlein, 2008), either models using averaged baseline 
data are increasingly unrepresentative, or, if such events are in-
cluded in the baseline, the mean values may be unduly skewed (or 
at least the variability about them, which is often unaccounted for, 
is increased).

Currently, there is wide consensus that both climate and land-
use change are among the most important threats to biodiversity 
and ecosystem services worldwide (IPBES, 2018, 2019; Maxwell, 
Fuller, Brooks, & Watson, 2016; Scheffers et al., 2016), and often 
interact (Oliver & Morecroft, 2014). However, the impact of land-use 
change has rarely been explored in SDMs to date (Titeux et al., 2016) 

and the few studies (Milanesi, Breiner, Puopolo, & Holderegger, 
2017; Newbold et al., 2015; Radinger et al., 2016) that have con-
sidered it have used static predictors (e.g., neglecting the effect of 
the destruction and modification of natural habitats). Actually, while 
the use of climate change projections is a commonplace, land-use 
change projections have more rarely been used in species fore-
casting (Bateman et al., 2013). This may be because they are not as 
widely available as climatic predictions are; incorporating these will 
be of critical importance since the interactions among multiple driv-
ers of global change have recently been identified as a major cause 
of uncertainty in climate change attribution projection (Oliver & 
Morecroft, 2014; Parmesan et al., 2013), in part because multiple 
environmental pressures may have a greater joint impact than when 
operating in isolation (Ostberg, Schaphoff, Lucht, & Gerten, 2015). 
Thus, in the absence of integrative multi-driver approaches, limited 
understanding of how interactions among drivers affect species dis-
tribution will be likely to hamper reliable projections (Titeux et al., 
2016).

Although in some cases the distribution and/or diversity of spe-
cies in different seasons may be better explained by a single pre-
dictor rather than multiple seasonally specific ones (e.g., Lennon, 
Greenwood, & Turner, 2000), SDMs that do not account for non-
stationarity of climatic and land-use predictors may suffer from at 
least three problems: (a) The probability of species' occurrence at 
particular locations could be inaccurate due to the (temporally) av-
eraged values in the predictors; (b) estimated slopes of predictor 
relationships could be biased; (c) some predictors may be wrongly 
identified as determinants of species' occurrence and/or may mask 
the real determinants, resulting, for example, in misleading inference 
or the wrong identification of areas of conservation importance. For 
example, species distribution may be negatively related to summer 
temperatures, but positively related to those in winter (Kawamura, 
Yamaura, Senzaki, Ueta, & Nakamura, 2019), patterns that would be 
masked by simply using annual values.

Treating the environment as static has, in part, been enforced 
by a lack of relevant data; however, researchers have recently de-
veloped open-access spatially explicit databases providing monthly 
and annual variation of climate and land-use conditions at global 
scale. For example, Karger et al. (2018) produced CHELSAcruts, 
a monthly climate (e.g., precipitation, maximum, and minimum 
temperature) global dataset at ~1  km spatial resolution for the 
period 1901–2016 (http://chelsa-clima​te.org/chels​acrut​s/), while 
Abatzoglou, Dobrowski, Parks, and Hegewisch (2018) produced 
TerraClimate, a monthly climate (e.g., precipitation, temperature, 
and wind speed) and climatic water balance (e.g., actual and po-
tential evapotranspiration, soil moisture) global dataset at ~4 km 
spatial resolution for the period 1958–2015 (currently updated to 
the year 2017; https​://clima​te.north​westk​nowle​dge.net/TERRA​
CLIMA​TE/index_direc​tDown​loads.php). On the other side, the 
European Space Agency (ESA – European Space Agency, 2017) 
have recently developed annual global land cover time series from 
1992 to 2015 (at ~0.3 km resolution), including two levels of de-
tails and a total of 37 land-use category (e.g., different types of 

http://chelsa-climate.org/chelsacruts/
https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php
https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php
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croplands, forests, shrublands, and grasslands as well as urban 
areas, water bodies, and glaciers, etc.; https​://www.esa-landc​
over-cci.org/?q=node/175).

These datasets have the potential to provide important in-
puts for ecological studies requiring high spatial resolution and 
time-varying climate and land-use data, at both local and global 
scales. Specifically, considering occurrences of a species (sensitive 
to both climate and land-use change), collected during the period 
1992–2015, it is currently possible to model its distribution relat-
ing species' locations collected in a given month of a given year, 
matching climatic and land-use conditions. These dynamic spe-
cies distribution models (D-SDMs) would be especially useful to 
model the occurrence of species displaying different patterns of 
distribution through seasons (e.g., migratory birds, insects, plants, 
etc.) and/or years (e.g., any species undergoing changes in its 
distribution).

To demonstrate how predicted patterns of species occurrence could 
vary between static and dynamic distribution models, we simulated a 
set of species recording locations (n = 3,000) in central Europe (5°–11° 
E; 45°–48° N) such as might be obtained from a citizen science survey. 
We used the ensemble predictions of four algorithms, namely boosted 
regression trees (BRT; Friedman, 2001), generalized additive models 
(GAM; Hastie & Tibshirani, 1990), generalized linear models (GLM; 
McCullagh & Nelder, 1989), and random forests (RF; Breiman, 2001) 
in R (R Development Core Team, 2013) although D-SDMs could be 

developed using any appropriate algorithm. Similarly, while one can use 
any of the widely used validation statistics (Lecocq, Harpke, Rasmont, 
& Schweiger, 2019), to compare the predictive accuracy of both static 
and D-SDMs, in our simulations we considered the area under the re-
ceiver operating characteristic curve (AUC) and the true skills statistic 
(TSS). AUC ranges between 0 and 1 (worse than a random model and 
best discriminating model, respectively) while TSS varies between −1 
and 1 (higher values indicate a good predictive accuracy, while 0 indi-
cates random prediction). By using a random subsample of 90% of the 
locations to calibrate the models and the remaining 10% to evaluate 
them (Thuiller, Lafourcade, Engler, & Araújo, 2009), we carried out 10-
fold cross-validations to test the predictive accuracy of both static and 
D-SDMs (see average values below).

In this example, pooling virtual species locations (e.g., collected 
in the period 2010–2015) and ignoring the temporal mismatch be-
tween them and the predictor variables (from the WorldClim 2 da-
tabase; Fick & Hijmans, 2017) leads to biased estimation of species 
distribution (overestimated in this case; AUC = 0.893; TSS = 0.809). 
On the other side, we developed D-SDMs splitting virtual species 
locations and accounting for year-specific predictors (from the 
CHELSAcruts database; Karger et al., 2018) which showed, together 
with interannual fluctuations, a relatively limited average species 
distribution (Figure 1; AUC = 0.968; TSS = 0.898). One of the main 
drawbacks of this approach is that for each time period (i.e., year in 
our example) the number of species locations could be much lower 

F I G U R E  1   Differences between static and dynamic species distribution models. Predictor variables (in this case Bio 3—Isothermality, Bio 
10—Mean temperature of the warmest quarter, and Bio 17—Precipitation of the driest quarter) came from WorldClim 2 database (Average 
1970–2000; left) and CHELSAcruts (annually for 2010–2015, right), together with relative virtual species locations (black dots) collected in 
the period 2010–2015, are shown on the first line. Resulting maps of dynamic (annual) species distribution models are shown on the second 
line while those of static and averaged dynamic species distribution models are shown on the third line. Red-gray scale indicates high–low 
probability of occurrence

https://www.esa-landcover-cci.org/?q=node/175
https://www.esa-landcover-cci.org/?q=node/175
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than those of static SDMs (which pool data) leading, potentially, to 
a higher influence of unusual observations (which may be diluted 
by pooling) and possible model overfitting (i.e., model fits the cali-
bration data too closely, in environmental space, but fails to predict 
independent evaluation data accurately; Radosavljevic & Anderson, 
2014). To overcome this, we pooled virtual species locations but as-
sociated each location to its relative year-specific predictor values 
and thus developed a single SDM to predict virtual species distribu-
tion under different year-specific conditions, which again showed a 
more restricted average species distribution of D-SDMs compared 
with the static SDMs (Figure 2; AUC = 0.943; TSS = 0.871). As well as 
reducing the likelihood overfitting, this approach also has the bene-
fit of accounting for interannual variation (e.g., species adaptability 
to climatic variations) in the prediction of species distribution under 
different year-specific conditions and thus also improves estima-
tion during climatic anomalies (which have become larger and more 
frequent in the last decade due to climate change; Ummenhofer & 
Meehl, 2017). The recently developed “ensemble of small models” 
approach (Breiner, Guisan, Bergamini, Nobis, & Anderson, 2015) 
provides an alternative way to reduce overfitting.

Thus, D-SDMs can show higher predictive accuracy compared 
with static SDMs and could also improve the outcomes of STEM and 
dynamic occupancy models, providing more robust trends of spe-
cies occurrence. For these reasons, we strongly encourage modelers 
to develop D-SDMs in order to provide more accurate estimates of 
species distribution. Such approaches are likely to be particularly 
valuable in more climatically variable regions and habitats (e.g., 

Reside, Wal, Kutt, & Perkins, 2010) and may become more important 
as climatic variability is predicted to increase (Kharin, Zwiers, Zhang, 
& Hegerl, 2007). However, species data quality (i.e., availability of 
information about the year and month in which species locations 
were collected), as well as the lack of open-access databases for 
nonterrestrial environments (e.g., pH concentration for freshwater 
biotopes), can strongly limit the application of D-SDMs and thus 
further improvements of both species data quality and accessibility 
of additional spatiotemporal environmental data are needed (e.g., 
Wetzel et al., 2018).

Finally, we urge researchers to make use of newly available data-
sets coming online to include both climate and land-use dynamic pre-
dictors, as the strength of impacts on biodiversity will likely depend 
on the interaction between these (Oliver & Morecroft, 2014). This 
will ensure, perhaps in combination with recently developed methods 
for generating high-resolution climate projections (Maclean, 2019), 
that future decision-making, such as prioritizing areas for conserva-
tion (e.g., Jones, Watson, Possingham, & Klein, 2016), more robustly 
anticipates the response of biodiversity to future climate and land-
use changes.
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