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Abstract

Background & Aims

Liver fibrosis is a multifactorial disease that can affect the development of cerebral small

vessel diseases (SVDs) including cerebral microbleeds (CMBs), leukoaraiosis, and silent

infarctions. Transient elastography can accurately assess the degree of liver fibrosis by

measuring liver stiffness (LS). In the present study, we investigated the association

between SVDs and LS values.

Methods

We recruited 300 participants (mean age 56 years, 170 men) who underwent a comprehen-

sive medical health check-up between January 2011 and December 2012. Transient elasto-

graphy was taken on the right lobe of the liver through intercostal space with patients lying

in the dorsal decubitus position with the right arm in maximal abduction. Mild and significant

fibrosis were defined as LS values >5.6 and >8.0 kPa, respectively. The presence of each

SVD was determined using the FLAIR, GRE MR imaging as well as T1-, T2-weighted MR

images. We tested whether the presence and burden of each type of SVD were different by

LS values.

Results

Of the different types of SVDs, only the presence (p = 0.001) and number of CMBs

(p<0.001) were positively associated with LS values. Multivariate analysis revealed that sig-

nificant fibrosis (>8.0 kPa) was an independent predictor of CMBs (odds ratio 6.079, 95%

confidence interval 1.489–24.819, p = 0.012). However, leukoaraiosis and silent infarctions

were not associated with LS values (all p>0.05).
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Conclusions

The degree of liver fibrosis, as assessed using transient elastography, was independently

associated with the presence and burden of CMBs in healthy, asymptomatic participants.

Understanding the link between the brain and liver may advance future research on the

pathomechanisms of CMBs.

Introduction
Cerebral small vessel disease (SVD) commonly occurs in the general population, especially in
individuals over 60 years of age [1, 2]. Different types of SVD include leukoaraiosis, silent
infarctions, and cerebral microbleeds (CMBs); leukoaraiosis refers to the rarefaction of white
matter, silent infarction refers to ischemic damage in perforating territory without clinical
stroke, and CMBs refer to previous extravasation of blood. All types of SVD are believed to be
associated with clinical stroke, cognitive dysfunction, or vascular dementia [1, 3, 4]. In particu-
lar, the presence and burden of CMBs is strongly associated with the development of intracra-
nial hemorrhage (ICH) [5, 6]. Furthermore, recent studies suggest a positive association
between the burden of CMBs and other organ diseases such as pulmonary or renal diseases [7,
8]. Thus, it is of paramount importance to reveal potential links between cerebral SVD and the
condition of other major organs.

Liver fibrosis is a multifactorial disease associated with systemic inflammation, insulin resis-
tance, and arterial stiffness [9, 10], all of which can affect cerebral small vessels. Thus, a signifi-
cant correlation may exist between the severity of cerebral SVD and liver fibrosis. To date, liver
biopsy has been the gold standard for assessing the severity of liver fibrosis with acceptable
safety [11]. However, liver biopsy can cause discomfort and involves rare but potentially life-
threatening complications and sampling errors [12, 13]. Recently, the measurement of liver
stiffness (LS) using transient elastography (TE; FibroScan

1

; EchoSens, Paris, France) has been
introduced as a promising noninvasive approach for assessing the degree of liver fibrosis with
considerable accuracy and reproducibility [14, 15].

The aim of this study was to determine whether the severity of cerebral SVD depends on the
degree of liver fibrosis, as reflected by LS values using TE, in healthy, asymptomatic individuals
undergoing a comprehensive medical health check-up.

Patients and Methods

Participants
We recruited 350 participants who underwent a comprehensive medical health check-up
between January 2011 and December 2012 at Severance Check-up Severance Hospital, Yonsei
University College of Medicine, Seoul, Korea. Exclusion criteria were as follows: (1) LS mea-
surement failure (i.e., no valid shots); (2) invalid LS measurement; (3) no available brain mag-
netic resonance imaging (MRI) data; (4) chronic viral hepatitis; (5) heavy alcohol ingestion in
excess of 40 g/day for more than 5 years, (6) right-sided heart failure; (7) pregnancy; and (8)
other insufficient clinical, laboratory, and imaging data. Based on these exclusion criteria, 50
participants were excluded; data from the remaining 300 participants were included in the final
statistical analysis. This study was approved by the Institutional Review Board of Severance
Hospital, Yonsei University Health System. Informed consents were not required for this retro-
spective study.
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During admission for check-up, complete medical examinations, laboratory tests, and imag-
ing were performed as screening evaluations. Demographic and anthropometric data such as
age, gender, history of hypertension, diabetes, hypercholesterolemia, alcohol consumption
(g/week), body mass index, waist-hip ratio, and vital signs were collected. Laboratory tests
included serological tests for hepatitis B virus surface antigen and hepatitis C virus antibody, a
complete blood cell count, fasting glucose, aspartate aminotransferase, alanine aminotransfer-
ase, total bilirubin, alkaline phosphatase, international normalized ratio, activated prothrombin
time, and lipid profiles (total cholesterol, triglyceride, high-density lipoprotein, and low-den-
sity lipoprotein cholesterol). Data for concomitant medications were also collected.

LS Measurement Using TE
All participants underwent TE using an M probe. TE was performed on the right lobe of the
liver through the intercostal space with the participant lying in the dorsal decubitus position
with his or her right arm in maximal abduction. A single experienced technician blind to the
participants’ clinical information performed all TE examinations. TE results were expressed as
kilopascals (kPa) for LS. The interquartile range (IQR) was defined as the intrinsic variability
of LS values corresponding to the interval of LS results containing 50% of the valid measure-
ments between the 25th and 75th percentiles. The median value of the successful measure-
ments was selected as representative of LS values for a given participant. As an indicator of
variability, the ratio of the IQR to the median (IQR/M) of LS values was calculated. LS mea-
surement failure was recorded when no value was obtained after at least 10 shots (i.e., valid
shots = 0). A reliable LS value was defined by the following three criteria: (1) at least 10 valid
shots; (2) a success rate (i.e., the ratio of valid shots to the total number of shots) of at least
60%; and (3) an IQR less than 30% of the median LS value (IQR/M<30%) [16, 17].

Determination of LS Cutoff Values
The upper cutoff for normal LS values was considered 5.6 kPa based on a previous Korean
study reporting a normal range of 3.3–5.6 kPa for healthy individuals without significant varia-
tion with age [18]. According to a previous study [19], we considered 8.0 kPa as the cutoff
value representing the presence of significant liver fibrosis. Finally, we categorized LS values
into three groups:<5.6 kPa for no fibrosis, 5.6–8.0 kPa for mild fibrosis,>8.0 kPa for signifi-
cant fibrosis.

Determination of SVD
The presence of SVD such as CMBs, leukoaraiosis, silent infarction was determined using the
baseline MRI. All MRI examinations were performed using a 3.0T MRI system (Achieva 3.0T,
Philips Medical Systems, Best, Netherlands or MAGNETOM 3.0T, Trio A Tim System, Sie-
mens, Germany). Brain MRI images were obtained parallel to the orbitomeatal line using the
following parameters: TR/TE 9000/120 ms, pixel spacing 0.449 mm/0.449 mm, FOV 230×230
mm, and slice thickness 5 mm for fluid-attenuated inversion recovery (FLAIR); TR/TE 9000/
100 ms, pixel spacing 0.240 mm/0.240 mm, FOV 230×230 mm, and slice thickness 5 mm for
T2 weighted images (T2); and TR/TE 600/16 ms, pixel spacing 0.449 mm/0.449 mm, FOV
250×250 mm, and slice thickness 5 mm for gradient recalled echo (GRE) imaging.

CMBs were defined as punctuate hypointense lesions<10 mm in size and located in lobar
(cortex, subcortex, and white matter), deep (basal ganglia and thalamus), or infratentorial
(brain stem and cerebellum) regions on GREMRI images, based on previously reported meth-
ods [1]. Hypointense lesions on GREMRI images located in cerebral vessels, calcifications, air-
bone interfaces, and partial volume artifacts at the edges of the cerebellum were excluded.
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Small hypointense lesions on GRE MRI images<3 mm in size were also excluded because
these lesions could be dilated perivascular spaces, demyelination areas, or gliosis.

We also determined the severity of leukoaraiosis and silent infarction in our study sample.
The extent of leukoaraiosis was investigated on FLAIR images of periventricular white matter
or deep white matter according to the Fazekas scoring system [20]. Leukoaraiosis in periventri-
cular white matter was categorized as: grade 0, absent; grade 1, caps or pencil-thin lining; grade
2, smooth halo; or grade 3, irregular periventricular hemorrhage extending into deep white
matter. Leukoaraiosis in deep white matter was categorized as: grade 0, absent; grade 1, punctu-
ate foci; grade 2, beginning confluence of foci; or grade 3, large confluent areas. Silent infarc-
tions were defined as high signal intensity on FLAIR or T2-weighted images and iso- or low
signal intensity on T1-weighted images in participants without previous clinical stroke, based
on a previous report [21]. Lesions with<3 mm diameter were not considered as silent infarc-
tions because of the risk of misdiagnosis with dilatation of the perivascular space, demyelin-
ation, or gliosis.

The presence of CMBs, leukoaraiosis, and silent infarctions on MRI images was investigated
by two neurologists (Y.D.K. and D.S.) blind to participant clinical information. Final classifica-
tions were made by consensus between the two neurologists.

Statistical Analysis
Statistical analyses were performed using the Windows SPSS software package (version 21.0,
Chicago, IL, USA). To determine statistically significant differences in continuous variables
between participants with and without SVD, independent samples t-tests or Mann-Whitney
tests were used, whereas differences in categorical variables were evaluated using chi-square
tests or Fisher’s exact tests, as appropriate. Increases in the degree of SVD (either CMBs, leu-
koaraiosis, or silent infarctions) depending on LS values were assessed using linear-by-linear
tests. Differences in mean LS values depending on the number of CMBs were investigated
using analysis of variance (ANOVA) with Scheffe post-hoc tests. To identify independent pre-
dictors of the presence of different types of SVD, multivariate logistic regression analysis was
performed including variables with p<0.1 in univariate analysis (model 1). We also performed
an exploratory multivariate analysis entering all cardiovascular risk factors and all variables
with p<0.1 in univariate analysis (model 2) as well as age and sex. A p value of<0.05 was con-
sidered statistically significant.

Results

Baseline Characteristics
Baseline characteristics of the study sample are shown in Table 1. The mean age of participants
was 56.0 ± 11.2 years, and 170 (56.7%) were male. Among vascular risk factors, smoking was
the most common (37.0%), followed by hypertension (30.7%) and diabetes (12.7%). The
antithrombotics were used in 58 (19.3%) patients (antiplatelet agent on 56 (18.7%) patients,
oral anticoagulation on 2 (0.7%) patients). Mean aspartate and alanine aminotransferase values
were 0.4±0.2 μkat/L and 0.4±0.2 μkat/L, respectively. The mean LS value was 4.8±2.3 kPa.
According to the predetermined definition of fibrotic burden, 45 (15.0%) participants had mild
fibrosis, and 12 (4.0%) participants had significant fibrosis.

SVD Status
Of the study participants, 64 (21.3%) had CMBs in any location. Of these, most participants
had a single CMB (n = 55, 18.3%), whereas six (2.0%) and three (1.0%) participants had two
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and three CMBs, respectively. CMBs in non-lobar areas were observed in 41 (13.7%) partici-
pants [subcortex: n = 29 (9.7%); infratentorial area: n = 14 (4.7%)], and lobar CMBs were
observed in 23 (7.7%) participants. Leukoaraiosis was detected in 200 (66.7%) participants. Of

Table 1. Baseline characteristics.

Variables Total population (n = 300) CMB (-) (n = 236) CMB (+) (n = 64) p value

Age 56.0 ± 11.2 54.9 ± 11.0 60.3 ± 11.2 0.001

Male sex 170 (56.7) 126 (53.4) 44 (68.8) 0.028

Hypertension 92 (30.7) 71 (30.1) 21 (32.8) 0.675

Diabetes 38 (12.7) 28 (11.9) 10 (15.6) 0.422

Hyperlipidemia 30 (10.0) 24 (10.2) 6 (9.4) 0.851

Smoking 111 (37.0) 88 (37.3) 23 (35.9) 0.843

Atrial fibrillation 5 (1.7) 3 (1.3) 2 (3.1) 0.304

Previous ischemic heart disease 22 (7.3) 14 (5.9) 8 (12.5) 0.074

Medication

Antihypertensive medication 76 (25.3) 60 (25.4) 16 (25.0) 0.945

Antidiabetic medication 35 (11.7) 24 (10.2) 11 (17.2) 0.121

Statin 65 (21.7) 42 (17.8) 23 (35.9) 0.002

Antithrombotics 58 (19.3) 38 (16.1) 20 (31.2) 0.006

Alcohol consumption (g/week) 131.1 ± 296.5 121.3 ± 260.5 168.1 ± 405.2 0.271

Initial systolic blood pressure, mmHg 122.7 ± 15.8 121.8 ± 15.1 126.0 ± 18.0 0.062

Initial diastolic blood pressure, mmHg 79.8 ± 13.4 79.5 ± 13.8 80.8 ± 12.3 0.493

Body mass index 24 ± 3.2 24.1 ± 3.2 23.8 ± 3.0 0.503

Waist-hip ratio 0.9 ± 0 0.9 ± 0 0.9 ± 0 0.373

White blood cell, x109/L 5.6 ± 1.6 5.6 ± 1.6 5.6 ± 1.7 0.886

Hemoglobin, g/L 141.7 ± 15.6 141.7 ± 15.8 142.0 ± 14.7 0.864

Fasting glucose, mmol/L 5.7 ± 3.2 5.5 ± 1.2 6.6 ± 6.6 0.172

Blood urea nitrogen, mmol/L 5.6 ± 2.7 5.4 ± 2.8 6.0 ± 2.3 0.101

Serum creatinine, μmol/L 74.6 ± 49.2 69.3 ± 15.3 94.2 ± 100.6 0.053

Alkaline phosphatase, μkat/L 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 0.943

Aspartate aminotransferase, μkat/L 0.4 ± 0.2 0.4 ± 0.1 0.4 ± 0.2 0.204

Alanine aminotransferase, μkat/L 0.4 ± 0.2 0.4 ± 0.2 0.4 ± 0.3 0.182

Total bilirubin, μmol/L 14.6 ± 19 15.0 ± 21.2 13.1 ± 5.9 0.489

Serum albumin, g/L 42.6 ± 2.5 42.7 ± 2.5 42.0 ± 2.7 0.072

Total cholesterol, mmol/L 4.9 ± 1.0 4.9 ± 1.0 4.8 ± 1.1 0.394

Triglyceride, mmol/L 1.3 ± 0.7 1.3 ± 0.7 1.4 ± 0.6 0.676

High density lipoprotein, mmol/L 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 0.3 0.426

Low density lipoprotein, mmol/L 3.0 ± 0.9 3.0 ± 0.8 2.9 ± 1.0 0.369

Glycosylated hemoglobin, % 6.0 ± 0.9 6.0 ± 0.8 6.2 ± 1.2 0.092

International normalized ratio 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.237

Activated promthrombin time, s 31.7 ± 4.1 31.8 ± 4.0 31.4 ± 4.3 0.454

Liver stiffness values (kPa) 4.8 ± 2.3 4.5 ± 1.5 5.8 ± 4.0 0.009

Degree of liver fibrosis 0.001

No fibrosis (<5.6 kPa) 243 (81.0) 198 (83.9) 45 (70.3)

Mild fibrosis (5.6–8.0 kPa) 45 (15.0) 34 (14.4) 11 (17.2)

Significant fibrosis (>8.0 kPa) 12 (4.0) 4 (1.7) 8 (12.5)

Variables are expressed as mean ± SD or n (%).

CMBs indicates cerebral microbleeds; kPa, kilopascal.

doi:10.1371/journal.pone.0139227.t001

Cerebral Microbleeds and Liver Stiffness

PLOS ONE | DOI:10.1371/journal.pone.0139227 September 30, 2015 5 / 11



those with periventricular white matter lesions, 122 (40.7%) were grade 1, 29 (9.7%) were grade
2, and 11 (3.7%) were grade 3. Of those with deep white matter lesions, 162 (54.0%) were grade
1, 10 (3.3%) were grade 2, and 7 (2.3%) were grade 3. Silent infarctions were observed in 26
(8.7%) participants.

Association between Degree of Liver Fibrosis and Types of SVD
The presence of leukoaraiosis and silent infarctions were not significantly associated with LS
values or the degree of liver fibrosis (all p>0.05, Tables A and B in S1 File). By contrast, partic-
ipants with higher numbers of CMBs had significantly higher LS values (p<0.001); participants
with 0, 1, 2, and 3 CMBs showed mean LS values of 4.5 ± 1.5, 5.0 ± 2.5, 6.5 ± 3.7, and
12.4 ± 10.7, respectively.

Comparison between Participants with and without CMBs
Differences in baseline characteristics between participants with and without CMBs are shown
in Table 1. Participants with CMBs were more likely to be older and of male gender, use statins
or antithrombotics, and have higher LS values and degree of liver fibrosis (all p<0.05). Partici-
pants with previous ischemic heart disease, higher systolic blood pressure, and elevated levels
of creatinine, serum albumin, or glycosylated hemoglobin tended to be more likely to have
CMBs (p<0.1). Differences in other variables were not statistically significant (all p>0.1).

When we divided the study sample into three groups using pre-defined cutoff LS values, we
found a significant positive association between the degree of liver fibrosis and the presence of
CMBs (p = 0.001) regardless of their location (lobar, p = 0.015; non-lobar, p = 0.030). In terms
of the burden of CMBs, we found a positive association between the degree of liver fibrosis and
the number of CMBs (p<0.001) regardless of their location (lobar, p = 0.002; non-lobar,
p = 0.001) (Fig 1A and 1B).

Independent Predictors of the Presence of CMBs
Multivariate analysis demonstrated that significant fibrosis was an independent positive pre-
dictor of the presence of CMBs (odd ratio [OR] 6.165, 95% confidence interval [CI] 1.530–
24.839, p = 0.011) after adjusting for variables with p<0.1 in univariate analysis (model 1),
along with age (OR 1.033, 95% CI 1.000–1.066, p = 0.048) (Table 2). When cardiovascular risk
factors were further adjusted, significant fibrosis remained an independent predictor of CMBs
(OR 5.701, 95% CI 1.370–23.721, p = 0. 017) (model 2), along with male gender (OR 2.611,
95% CI 1.120–6.088, p = 0.026), and statin use (OR 2.195, 95% CI 1.060–4.542, p = 0.034).

Sub-Group Analysis According to Age
Because CMBs are commonly found in individuals over 60 years of age [2], we further investi-
gated potential differences in the relationship between CMBs and the degree of liver fibrosis in
participants aged�60 years (n = 104, 45.7%) or<60 years (n = 196, 65.3%). The degree of
liver fibrosis was positively associated with the presence of CMBs in participants aged�60
years (p = 0.008) and in those aged<60 years (p = 0.075). Multivariate analysis adjusting for
all cardiovascular risk factors and significant variables with p<0.1 in univariate analysis also
show a positive association between significant fibrosis and the presence of CMBs both in par-
ticipants<60 years of age (p = 0.011) and in those�60 years of age (p = 0.055) (Table 3).
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Discussion
We found that the prevalence of mild and significant liver fibrosis was 15.0% and 4.0%, respec-
tively, and that greater liver fibrosis, as reflected by higher LS values, was independently associ-
ated with the presence and burden of CMBs in healthy, asymptomatic individuals undergoing
a comprehensive medical health check-up. Leukoaraiosis or silent infarctions, which are

Fig 1. Increasing number of CMBs in lobar (A) and non-lobar (B) areas with higher LS values.

doi:10.1371/journal.pone.0139227.g001

Table 2. Independent predictors of the presence of CMBs.

Variables Model 1* Model 2†

Odd ratio (95% CI) p value Odd ratio (95% CI) p value

Age 1.033 (1.000–1.066) 0.048 1.033 (0.999–1.067) 0.055

Male sex 1.886 (0.916–3.881) 0.085 2.611 (1.120–6.088) 0.026

Hypertension - 0.505 (0.233–1.094) 0.083

Diabetes - 0.454 (0.122–1.694) 0.240

Hypercholesterolemia - 1.468 (0.516–4.172) 0.471

Smoking - 0.564 (0.261–1.218) 0.145

Atrial fibrillation - 1.568 (0.213–11.549) 0.659

Previous ischemic heart disease 0.942 (0.308–2.876) 0.916 0.922 (0.296–2.874) 0.889

Statin use 1.814 (0.912–3.609) 0.090 2.195 (1.060–4.542) 0.034

Antithrombotics use 1.165 (0.524–2.592) 0.708 1.613 (0.68–3.824) 0.278

Systolic blood pressure, per 1 mmHg 1.000 (0.980–1.021) 0.984 1.000 (0.975–1.025) 0.977

Diastolic blood pressure, per 1 mmHg - 1.007 (0.981–1.035) 0.601

Serum creatinine, per 1 μmol/L 1.007 (0.995–1.018) 0.245 1.008 (0.997–1.019) 0.141

Serum albumin, per 1g/L 0.944 (0.832–1.071) 0.369 0.940 (0.825–1.070) 0.348

Glycosylated hemoglobin, per 1% 0.917 (0.646–1.301) 0.627 1.125 (0.706–1.792) 0.620

Degree of liver fibrosis

No fibrosis (<5.6 kPa) 1 1

Mild fibrosis (5.6–8.0 kPa) 1.214 (0.534–2.760) 0.643 1.326 (0.565–3.112) 0.516

Significant fibrosis (>8.0 kPa) 6.165 (1.530–24.839) 0.011 5.701 (1.370–23.721) 0.017

* Adjusted for age, sex, and the variables with p<0.1 in univariate analysis.
† Adjusted for age, sex, the variables with p<0.1 in univariate analysis, and cardiovascular risk factors.

CMBs indicates cerebral microbleeds; CI, confidence interval; kPa, kilopascal.

doi:10.1371/journal.pone.0139227.t002
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ischemic types of cerebral SVD, were not associated with the degree of liver fibrosis. To the
best of our knowledge, this is the first report showing a positive association between the degree
of liver fibrosis and the burden of CMBs.

Although the exact mechanism is unclear, one possible explanation for the relationship
between liver fibrosis and CMBs is that liver and brain may share common risk factors. Indeed,
because cardiovascular risk factors and metabolic syndromes are the major driving forces for
liver fibrosis and cerebral SVD [2, 22], liver fibrosis and cerebral SVD can exist simultaneously.
However, we found that the association between CMBs and fibrotic burden was maintained
even after adjusting for cardiovascular risk factors. Furthermore, previous studies show that
chronic liver diseases such as non-alcoholic fatty liver diseases with a potential to progress to
liver cirrhosis are independently associated with arterial stiffness, inflammation, and endothe-
lial dysfunction in other organs which are also related to the development of CMBs [22–26].
These findings indicate that liver fibrosis may be a significant risk factor for the development
of CMBs and that a direct link may exist between the liver and the brain.

In our study, leukoaraiosis and silent infarctions were not associated with the degree of liver
fibrosis. However, previous studies suggest a close relationship between liver dysfunction and
leukoaraiosis. For example, liver transplantation can reduce white matter lesion volume and
lessen cognitive impairment [27, 28]. However, white matter lesions associated with liver cir-
rhosis are more widespread in later stages of the illness and might be caused by edematous
changes rather than arteriosclerosis [29]. Thus, our results suggest that the subclinical stage of
liver fibrosis has no impact on ischemic types of cerebral SVD. However, because the sample
size of our study was relatively small, future large-scale studies are required to resolve this
issue.

Interestingly, in terms of the location of CMBs, the degree of liver fibrosis was associated
with the burden of not only non-lobar CMBs but also lobar CMBs, which may be a marker of
cerebral amyloid angiopathy. Liver cirrhosis may be a risk factor for ICH due to coagulation
abnormalities, thrombocytopenia, and low serum cholesterol, but these abnormalities are not
sufficient for fully explaining the development of ICH in liver dysfunction [30]. Although there
are no reports showing the association between the location of CMBs and liver dysfunction,
previous reports show that the incidence of lobar ICH is more common than subcortical region
in patients with liver cirrhosis [31, 32]. However, further studies are required to determine the
association between the degree of liver fibrosis and lobar CMBs.

Together with the degree of liver fibrosis, statin use remained an independent predictor of
CMBs within our study sample. Previous studies show that statin use may increase the risk of

Table 3. Multivariate analysis of the presence of CMBs according to participant age.

Age <60* (n = 196, 65.3%) Age �60† (n = 104, 45.7%)

Odd ratio (95% CI) p value Odd ratio (95% CI) p value

Degree of liver fibrosis

No fibrosis (<5.6 kPa) 1 1

Mild fibrosis (5.6–8.0 kPa) 0.708 (0.184–2.729) 0.616 1.690 (0.445–6.413) 0.441

Significant fibrosis (>8.0 kPa) 10.686 (1.716–66.541) 0.011 8.696 (0.953–79.337) 0.055

* Adjusted for age, sex, all cardiovascular risk factors and significant variables with p<0.1 in univariate analysis (statin use).
† Adjusted for age, sex, all cardiovascular risk and significant variables with p<0.1 in univariate analysis (statin use and blood urea nitrogen).

CMBs indicates cerebral microbleeds; CI, confidence interval; kPa, kilopascal.

doi:10.1371/journal.pone.0139227.t003
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ICH [33]. Considering that CMBs are a prerequisite for ICH, the relationship between statin
use and ICH suggests that statin use may be associated with CMBs before clinical ICH occurs.

Several issues in the present study remain unresolved. Although we consecutively enrolled
participants, our study was a retrospective analysis and therefore may involve selection bias.
Also, because most participants included in our study were healthy, asymptomatic individuals,
thus resulting in a low rate of detection of high grade types of SVD such as leukoaraiosis, our
results should be interpreted cautiously. However, using this study sample, we were able to
investigate early connections between brain and liver pathology during the preclinical stage.
Furthermore, although TE is an accurate tool for assessing the degree of liver fibrosis, histologi-
cal information was not available in this study. Because all participants in our study were
asymptomatic, it was not feasible to perform liver biopsy.

In conclusion, we demonstrated that harder livers are associated with a higher burden of
CMBs. Understanding the link between the brain and the liver may advance research on the
pathomechanism of CMBs and help establish optimal screening and treatment strategies.
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