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Abstract

Diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT) is a

newly developed technique that combines MR-based measurements of magnetic flux den-

sity with diffusion tensor MRI (DT-MRI) data to reconstruct electrical conductivity tensor dis-

tributions. DT-MREIT techniques normally require injection of two independent current

patterns for unique reconstruction of conductivity characteristics. In this paper, we demon-

strate an algorithm that can be used to reconstruct the position dependent scale factor relat-

ing conductivity and diffusion tensors, using flux density data measured from only one

current injection. We demonstrate how these images can also be used to reconstruct elec-

tric field and current density distributions. Reconstructions were performed using a mimetic

algorithm and simulations of magnetic flux density from complementary electrode mon-

tages, combined with a small-scale machine learning approach. In a biological tissue phan-

tom, we found that the method reduced relative errors between single-current and two-

current DT-MREIT results to around 10%. For in vivo human experimental data the error

was about 15%. These results suggest that incorporation of machine learning may make it

easier to recover electrical conductivity tensors and electric field images during neuromodu-

lation therapy without the need for multiple current administrations.

Introduction

Magnetic resonance based methods have recently been used to image parameters characteriz-

ing low-frequency electrical current flow in the human body, including current density and

conductivity tensors [1]. These methods proceed from the observation that magnetic flux den-

sity components caused by externally applied current flow can be recovered from MR phase

images [2, 3]. Because only one component of magnetic flux density, Bz, the component along

the longitudinal axis of an MRI system, can be measured conveniently, specialized techniques

have been developed to recover conductivity information from these data [1]. These magnetic
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resonance electrical impedance tomography (MREIT) approaches have included J-substitution

[4], sensitivity-based methods [5], and the Harmonic Bz method [6, 7]. More recently, addi-

tional information provided from diffusion tensor (DT) images have been combined with Bz
measurements to allow in vivo imaging of conductivity tensors in the human brain [8]. This

DT-MREIT technique involves reconstruction of a position-dependent scale factor that is then

multiplied with diffusion tensor images to produce conductivity tensor information [9, 10].

The aim of the present study was to develop a data processing method to enable quantitative

visualization of electromagnetic field and property distribution during transcranial electrical

current stimulation (tES) therapy. To generate therapeutic electromagnetic fields, a stimula-

tion current of around 1–2 mA is injected via pairs of surface electrodes located over target

brain structures [11, 12]. Electromagnetic models of the human body are of great use in plan-

ning tES treatments, and MREIT methods provide a means of directly measuring tES current

paths. Measurement of accurate, subject-specific conductivity volumes could increase model

specificity and therefore planning efficacy. The Harmonic Bz method and DT-MREIT typically

require two independent current administrations to reconstruct unique conductivity distribu-

tions. However, in many situations, including experimental tES, or in deep brain stimulation

(DBS), it is not usual or often possible to use two current administrations. Therefore, it is of

great interest to establish methods that can work within existing stimulation frameworks.

Previous MREIT studies reconstructing tES current density or conductivity distributions in

human subjects have used two current pairs that were located approximately in a single trans-

verse plane [8, 13]. This is advantageous for MREIT since the majority of the current flow

information is contained in Bz data (i.e. Jz is small). Most tES montages do not use electrodes

in a single plane. Further, depending on where the electrodes are located on the head, current

flow may still involve a non-negligible Jz component. An example of this montage is the F3-F4

montage that has been used to test cognitive and memory tasks [14]. While the electrodes are

nominally in the same plane of the head, its shape results in a Jz component amplitudes similar

to either Jx or Jy. Accuracy of existing techniques depends directly on the relative magnitude of

Jz [15, 16]. There is therefore a need to develop alternative and more flexible methods for

leveraging the availability of Bz images where there may be only data from a single or multiple

electrode pairs involving significant Jz. This study therefore represents a first step towards tack-

ling the problem of how current density and conductivity distributions may be obtained using

incomplete data.

Kwon et al. [17] proposed an iterative method for obtaining tES current density distribu-

tions by minimizing the difference between current densities estimated from the measured z-
component of the magnetic flux density with model-predicted current densities. However, it

was not possible to obtain the reconstructed ‘apparent’ conductivity tensor and electric field

distribution for tES currents in [17], mainly due to the lack of stable methods for reconstruct-

ing the DT-MREIT scale factor from a single current injection. The problem of conductivity

reconstruction using single-current-administration Bz data is generally ill-posed [1]. Fortu-

nately, it has been proven in [15] it is possible to reconstruct the internal conductivity distribu-

tion (and also the scale-factor distribution in DT-MREIT) uniquely from single-current Bz
data if the conductivity at the boundary surface is known. Lee et al. [18] proposed an iterative

method that extended the original diffusion weighted (DW) J-substitution algorithm [19] to

image electrical conductivity distributions during tES. However, this method depended on the

initial choice of scale factor value to ensure its convergence [20].

Machine learning methods are presently being adopted for nonlinear ill-posed inverse

problems in medical imaging such as reconstruction of MR images from partial data [21, 22],

electrical impedance tomography [23–25] and magnetic resonance electrical properties

tomography [26, 27], either for direct reconstruction from raw data, or in method
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postprocessing, mainly because of its ability to approximate non-linear functions from finite

input-output data sets. However, these approaches have not yet been explored in DT-MREIT

reconstruction.

In transcranial electrical stimulation, montages do not generally involve administration of

multiple linearly independent currents, and most often use only one pair of large electrodes

located over target brain structures [12]. Generally, tES protocols involve alternating or direct

current applied with amplitudes of up to 4 mA [28]. The use of neuromodulation therapies

also provides a unique opportunity to image conductivity distributions, which may be of use

in constructing subject-specific computational models used for treatment planning, whereas

conventional models have used conductivities for brain tissues derived from literature values

[29].

In this work, we extend tES-based approaches to finding electromagnetic parameters, using

Bz data to demonstrate an ability to reconstruct conductivity tensors from only one current

injection. In addition to using aÂ priori information from diffusion tensor imaging, we used

elementary machine learning, simulations of additional data obtained from computational

models, and mimetic algorithm approaches to obtain estimates of conductivity, electric field

and current density distributions. We compare these single-current results to those obtained

using standard two-current reconstructions. Feasibility of the method is demonstrated using

phantom and in vivo human results and in-plane electrode locations. It is anticipated that

extension of the methods employed here may be useful in measuring electric fields and con-

ductivity distributions during tES therapy using arbitrary electrode locations.

Theory

Key theory involved in machine-learning-aided DT-MREIT reconstructions performed in this

paper is described in the sections below. The assumed relation between diffusion tensor and

conductivity tensors is shown, followed by a description of how the scaling factor may be

reconstructed using a mimetic method based on the Kirchhoff voltage law. Finally, training

and correction of reconstructions using an artificial neural network is outlined.

Relation between water diffusion and conductivity tensors

The effective water diffusion tensor D measured within a voxel using pulsed-gradient-spin

echo sequences [30] can be written as a 3 × 3 positive definite symmetric matrix:

D ¼ SDLDS
T
D with LD ¼

lD;1 0 0

0 lD;2 0

0 0 lD;3

0

B
B
B
@

1

C
C
C
A

ð1Þ

where the column vectors forming SD = {s1, s2, s3} are the eigenvectors of D, the superscript T
denotes transpose and λD,k for k = 1,2,3 are the corresponding eigenvalues. There is no known

relationship between water diffusion and electrical conductivity in a free electrolyte solution.

However, since the water, ions and other charged particles coexist in the same microscopic

environment, Tuch et al. [31] suggested the eigenvalues λC,k at low frequency (<1 kHz) con-

ductivity tensor C were related to diffusion coefficients as

lC;k ¼
Ce

de
lD;k

di
3de
þ 1

� �

þ l
2

D;k
di

3d2
e

�
2

3
di

� �

þOðd2

i Þ: k ¼ 1; 2; 3 ð2Þ
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Here, C e is the extra-cellular conductivity, di and de are the intra- and extracellular diffu-

sion coefficients, respectively, and Oðd2
i Þ is bounded as d2

i tends to infinity. By neglecting

intracellular diffusion in relation (2), as in [8–10, 19, 32, 33] the effective conductivity tensor

may be expressed as

C ¼ SD LCS
T
D ¼ ZD with LC ¼

lC;1 0 0

0 lC;2 0

0 0 lC;3

0

B
B
B
@

1

C
C
C
A

ð3Þ

where the position dependent scale factor η can be determined by measuring magnetic flux

density induced due to an externally injected current [9, 10].

Reconstruction of scale factor η using discretization of Faraday’s law

We represent the imaged domain O as a stack of axial slices Ot arranged perpendicular to the

z-axis such that O ¼
S

t2ð� H0 ;H0Þ
Ot where Ot ¼ fO

T
fðx; y; zÞ 2 R3

jz¼tg and the entire slice

package covers a region of total thickness 2H0. The divergence-free property of electrical cur-

rent density, J = −Cru = −ηDru, combined with an externally-injected current density g
applied to the domain boundary leads to the following elliptic partial differential equation

(
r � J ¼ r � ð� ZDruÞ ¼ 0 in O

J � n ¼ � ZDru � n ¼ g on @O
ð4Þ

where u is a voltage distribution, and n = (nx, ny, nz) is the outward-normal unit vector defined

at the boundary @O of the domain O.

The Kirchhoff voltage law (KVL) is a low-frequency corollary of Faraday’s law which states

that sum of the voltage drops or electric field components around a closed path is zero. In this

work, we used the KVL to reconstruct scale factors, η, within each slice of a three-dimensional

domain using estimated current densities and diffusion tensor data. To use the KVL we discre-

tized each slice Ot as a rectangular grid Ot ¼
SNx ;Ny

i¼1;j¼1 Oij (Fig 1). Since J = −Cru = −ηDru, the

quantity D� 1J
Z

has the dimensions of the electric field, and via the KVL we have that

ðD� 1JÞxðpij;1Þ
Zðpij;1Þ

þ
ðD� 1JÞyðpij;2Þ
Zðpij;2Þ

�
ðD� 1JÞxðpij;3Þ
Zðpij;3Þ

�
ðD� 1JÞyðpij;4Þ
Zðpij;4Þ

¼ 0 ð5Þ

where pij,1, pij,2, pij,3, and pij,4 are points at the center of the closed loop defining the rectangular

region Oij located at coordinates (xi−1, yj−1), (xi, yj−1), (xi, yj), (xi−1, yj) respectively, as shown in

Fig 1. It is also possible to design another loop, O
0

ij, such that

ðD� 1JÞxðp
0

ij;1Þ

Zðp0ij;1Þ
þ
ðD� 1JÞyðp

0

ij;2Þ

Zðp0ij;2Þ
�
ðD� 1JÞxðp

0

ij;3Þ

Zðp0ij;3Þ
�
ðD� 1JÞyðp

0

ij;4Þ

Zðp0ij;4Þ
¼ 0 ð6Þ

where p0ij;1 ¼ xi;
yj� 1þyj

2

� �
, p0ij;2 ¼

xiþxiþ1

2
; yj

� �
p0ij;3 ¼ xi;

yjþyjþ1

2

� �
, and p0ij;4 ¼

xi� 1þxi
2

; yj
� �

are the

loop vertices (Fig 1).

Note that the dual loop network is designed such a way that x, y-components of (D−1 J) vec-

tors at the points p0ij;1; and pij;2 are used simultaneously to determine η values at that position

[34].
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The representative scale factor in overlapping loops can than be found by combining the

identities (5) and (6) to form a dual-loop network i.e.

ðD� 1JÞxðpij;1Þ
Zðxi; yj� 1Þ

þ
ðD� 1JÞyðpij;2Þ
Zðxi; yjÞ

�
ðD� 1JÞxðpij;3Þ
Zðxi; yjÞ

�
ðD� 1JÞyðpij;4Þ
Zðxi� 1; yjÞ

¼ 0 ð7aÞ

ðD� 1JÞxðp
0

ij;1Þ

Zðxi; yjÞ
þ
ðD� 1JÞyðp

0

ij;2Þ

Zðxiþ1; yjÞ
�
ðD� 1JÞxðp

0

ij;3Þ

Zðxi; yjþ1Þ
�
ðD� 1JÞyðp

0

ij;4Þ

Zðxi; yjÞ
¼ 0 ð7bÞ

With the further assumption that η values are known on the boundary, the dual-loop network

defines an overdetermined system containing a total of 2(Nx − 2)(Ny − 2) equations over 2(Nx

− 2)(Ny − 2) loops or cells and (Nx − 2)(Ny − 2) internal nodes, for each Ot.

Using linear interpolation of (D−1 J) vectors at the center of the nodes shown in Fig 1, the

right hand side of Eq (8) contains known boundary voltage differences, Bp or Bs estimated

from known boundary η and (D−1 J) values around the loop perimeter.

An expression describing the combined primary and secondary loops may be written

Ap

As

 !

X ¼
Bp

Bs

 !

ð8Þ

where the vector X contains inverse scale factor η values at each node, and elements of the stiff

matrices Ap (primary) and As (secondary) on the left hand side of Eq (8) contain the numera-

tor terms from Eqs (7a) and (7b) respectively.

Solutions for x were found using regularization via a least squares method

X ¼ ðATAþ lIÞ� 1ATB: ð9Þ

Here, λ represents a regularization parameter, I is an identity matrix, and T denotes matrix

transpose. The matrix A ¼ ðAp AsÞ
T

and B ¼ ðBp BsÞ
T
.

Fig 1. Schematic of the dual-loop network. The primary loop is shaded in blue and the secondary (primed) loop is

shaded in red.

https://doi.org/10.1371/journal.pone.0254690.g001
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Correction of dual-loop η reconstructions using artificial neural network

methods

The reliability of reconstructed η values using the dual-loop method with one current injection

is limited, due to noise propagating along equipotential lines [34, 35]. Therefore, an artificial

neural network (ANN) approach was used to overcome these limitations. ANN methods use a

number of sample input-output pairs D ¼ fU;Vg to create a regressor model of a non-linear

artifact function f mapping the input to the output. In our application, the function mapped

dual-loop output to artifact-free images as

f : fX 2 RP�1
! Y 2 RP�1

g ð10Þ

where X and Y are vectorized images of the uncorrected input Ẑ and the corrected output η,

respectively (Fig 2) and P denotes the number of non-zero voxels in each image. The data set

U 2 RP�M
inD is the result of M dual-loop-network calculations, each of which is denoted η�

or Uk; k ¼ 1; 2; 3; . . . M, and V 2 RP�M consists of M artifact-free η images, each denoted

Fig 2. Flow diagram of the proposed method demonstrated for a head-shaped domain.

https://doi.org/10.1371/journal.pone.0254690.g002
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~Z� or Vk. Training data are identified using the notation ()�, thus a row of V may also be identi-

fied as the image ~Z� .

We used a generalized regression neural network (GRNN) [36] to construct the functional

relationship f in (10). The probabilistic GRNN architecture consisted of four layers: an input

unit, a pattern unit consisting of Gaussian neurons, a summation unit and an output layer (Fig

2) [36]. For an uncorrected input X, the output of the GRNN Y (the conditional mean) may be

expressed as [36]

YðXÞ ¼

PM
k¼1

Vk exp �
D2

k

2a2

� �

PM
k¼1

exp �
D2

k

2a2

� � : ð11Þ

In (11), the spread-constant of the Gaussian neurons is denoted by α, Vk is the k-th artifact-

free vectorized image ~Z� and the total number of neurons (samples) in the pattern unit is M
[36]. The functionDk [36]

D2

k ¼ ðX � UkÞ
T
ðX � UkÞ; ð12Þ

measures the distance between the input X and the k-th training vector, Uk k ¼ 1; 2; 3; . . . M.

Eq (11) can be interpreted as relating an expression for the expected output Y to a given input

data vector X, which is the weighted sum of the artifact-free training data sets Vk, where for a

chosen α the weighting-factors are determined by the Euclidian distance between input and

the training datasets Uk (Eq (12)). Therefore, a particular neuron will produce more weight in

the output if it is close to the input data-vector, and vice versa. The spread constant α controls

the degree of smoothness of the GRNN output.

As noted in [36], the predicted output of the GRNN-neural network in Eq (11) is associated

with the underlying joint probability distribution function (pdf). When the distribution func-

tion is not known, Specht [36] suggested using a nonparametric estimate of the joint-pdf

which depends on the spread constant and the number of samples in the data sets (as well as

the number of neurons in the pattern unit). While there is no general rule that predicts the

number of samples M required in the pattern unit with a specified degree of accuracy, good

prediction results are often obtained with a modest number of samples [37]. Additionally, it

has been shown that for a fixed number of data-points P the spread-constant of the joint-pdf

gradually decreases as sample size increases [36, 37]. However, with large training data sets,

Specht [36] suggests a simple clustering technique to reduce the number of neurons in the pat-

tern unit and avoid unnecessary computational burden in the GRNN network. Cluster centers

are estimated by averaging the data samples present in the cluster, which eventually improves

the underlying noise characteristics of the center-vector of the Gaussian neurons (Eq 12). In

this study all training data sets were used in the pattern unit (Fig 2) to predict η.

In the GRNN, the spread-constant α is the only parameter which needs to be determined

by the training process. In this paper, we determined an optimum α by minimizing the mean-

squared error (MSE) error cost function. For a given α, the mean-squared error for the k-th

sample data, MSEk, is defined as

MSEkðaÞ ¼
1

P

XP

j¼1

ðVðjÞk � ŶðjÞk Þ
2
; ð13Þ

where Ŷk is the predicted output of the GRNN for the input Uk.
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In [36] an optimum spread-constant, â was determined from the training data setsD using

a holdout method. In the holdout method, for a chosen α, a GRNN network is constructed

using the data sets, DnDk; k ¼ 1; 2; 3; . . . M and the mean-squared error (13) is calculated by

comparing the network prediction using true data Dk ¼ fUk;Vkg. This process was then

repeated for other samples in the data sets to determine the mean MSE value for each α. In the

final network, the optimum spread-constant â value was set to the value producing the small-

est MSE. In this work, we used the constrained optimization function ‘fminbnd’, imple-

mented in the MatLab optimization toolbox (The MathWorks, Inc., Natick, Massachusetts,

United States) to determine the â value in the range 10−3 < α< 103. This value was used in the

final network to predict an artifact-free Y at a given X in (11).

Methods

Specific techniques used to extract scaling factors from single current applications are

described in this section, including assumptions and calculations involved in simulating mag-

netic flux density data and current density to generate training data and methods used to

reconstruct quantities such as current density and electric fields.

Formation of Bm
z from MR phase images

In MREIT, the z-component of the current induced magnetic flux density Bz is measured

using an MRI scanner. The accumulated phase due to the external current injection depends

on the induced Bz and current injection duration Tc. The complex MR signal density devel-

oped using a spin-echo MR pulse sequence can be represented in the spatial domain as

S�ðrÞ ¼ rðrÞeidðrÞe�igBmz ðrÞTc ð14Þ

where ρ(r) is the MR magnitude image, δ(r) represents a systematic phase artifact at position r,

γ is the proton gyromagnetic ratio, and the superscript on Bz represents the experimentally

measured data. From Eq (14), the magnetic flux densities generated by positive and negative

current injections I± can be recovered using

Bm
z ðrÞ ¼

1

2gTc
arg

SþðrÞ
S� ðrÞ

� �

: ð15Þ

From the analysis of [3, 38], the noise standard deviation sdBmz in Bm
z depends on the signal-

to-noise ratio (SNR) of the MR magnitude image Yρ and the current injection duration Tc as

sdBmz /
1

gTcϒr

: ð16Þ

Phantom data for this work were gathered using spin echo MREIT imaging sequences.

However, these sequences involve long acquisition times [39] and are inconvenient for human

subjects. A faster multi-gradient-echo imaging sequence [40] was used to obtain MREIT data

in the human subject. To minimize the noise standard deviation in multi-echo MR images,

l = 1, 2, . . ., NE measured Bz data were calculated as a weighted sum of individual echoes

Bm
z;l; l ¼ 1; 2; . . . ;NE, where NE represents the total number of echoes, via

Bm
z ¼

XNE

l¼1

WlB
m
z;l ð17Þ
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The weighting factorsWl were computed using [40]

Wl ¼
ðrlTc;lÞ

2

PNE
k¼1
ðrkTc;kÞ

2
ð18Þ

where ρl is the MR magnitude image of the lth echo.

Reconstruction of current density from measured magnetic flux density

Inside O, the current density J = (Jx, Jy, Jz) and magnetic flux density B = (Bx, By, Bz) are related

by Ampere’s law

J ¼
1

m0

r� B: ð19Þ

Direct calculation of J using Ampere’s law requires knowledge of all three components of

B. Instead of measuring the full magnetic flux density vector, we instead estimated the pro-

jected current density JP from Bm
z alone, with reference to a computational model of the whole

domain, O constructed using structural T1-weighted images. The model was assigned a uni-

form conductivity and used to generate a predicted current density distribution J0, including

an estimate of the z-component of the current density. The projected current density was then

calculated via [15]

JP ¼ J0 þ
@c

@y
; �

@c

@x
; 0

� �

ð20Þ

where ψ was estimated from the measured Bz via [15]

(
r2

xyc ¼
1

m0

r2Bm
z in Ot

c ¼ 0 on @Ot:

ð21Þ

In (21),r2
xy≔ @2

@x2 þ
@2

@y2

� �
is the two-dimensional Laplacian operator. Uniform-conductivity

numerical models used to compute J0 data were constructed using the shape and dimensions

of the object found from structural MRI images. These models were then used to solve the

Laplace equation, subject to the same boundary conditions g as in experiments, using the

COMSOL-MATLAB interface (MLI, COMSOL Inc, Burlington, MA, USA) using

(
r � ðC0ru0Þ ¼ 0 in O

� C0ru0 � n ¼ g on @O:
ð22Þ

where u0 is the voltage distribution caused by the external current injection g, and C0 repre-

sents an homogeneous and isotropic conductivity distribution.

In the human body, the measured magnetic flux density data suffers because of weak MR

signals recovered from bone and skin regions, mainly due to their rapid T2 decay. Inclusion of

such regions cause severe artifacts in reconstructed scale factor images [41]. In the human

head studies used in this paper, we therefore reconstructed the regional projected current den-

sity, JPRt
only inside the brain region, Rt � Ot (Fig 4 (b)) using the expression

JPRt
¼ J0jRt

þ
@cRt

@y
; �

@cRt

@x
; 0

� �

ð23Þ
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where J0jRt
denotes the solution of the Laplace equation in (22), restricted to Rt, and the quan-

tity cRt
was estimated from the measured Bm

z and simulated Bz,0 via [41]

r2
xycRt

¼
1

m0

r2Bm
z in Rt

cRt
¼

1

m0

Bm
z � Bz;0

� �
on @Rt:

8
>>><

>>>:

ð24Þ

Note that comparing the equation in (21) with (24) only differs in boundary which stems

from the fact that for a simply connected local region the normal component of the current

density is continuous [41].

Simulation of current density and magnetic flux density data

In calculating training data from computational models of segmented MR magnitude data, it

is necessary to determine both the predicted current density and the z-component of the mag-

netic flux density, Bz, caused by the current flow in O at any position r in three dimensional

space. Current density data were calculated using COMSOL via the methods described for

determining J above, but with the conductivity distribution determined using standard seg-

mentation of brain tissues and literature-estimated conductivity values. The magnetic flux

density distribution was then computed from simulated J data using the Biot-Savart law

BzðrÞ ¼
m0

4p

Z

O

ðy � y0 ÞJxðr
0

Þ � ðx � x0 ÞJyðr
0

Þ

jr � r0 j3
dr0 ð25Þ

where μ0 is the magnetic permeability of free space. A fast Fourier transform implementation

of (25) was used to improve calculation speeds [42]. The Biot-Savart law was used to calculate

B�z and ~Bz images required for training data sets (Fig 2). Magnetic flux density data derived

from uniform models (Bz,0) were also employed for reconstructions of current density in (24)

used in estimations of projected current densities used for generating both training and input

data for the GRNN.

Reconstruction of diffusion tensor data

Diffusion tensor volumes were reconstructed following Basser et al. [30], by comparing the dif-

fusion weighted signal, Sjb with the non-diffusion weighted signal S0 to estimate

ðgjÞTDgj ¼ �
1

b
ln

Sjb
S0

� �

ð26Þ

where, gj ¼ ½gjx; g
j
y; g

j
z�
T
, j = 1, 2, . . ., Nd are the normalized magnetic field gradient vectors of

diffusion gradients applied in the sequence. Before estimating the diffusion tensor, any suscep-

tibility-related geometric distortion caused by the EPI diffusion weighted imaging sequence

was corrected [8, 43]. Six gradient directions were used in measuring phantom diffusion data,

and 15 directions were employed in measuring diffusion properties of the human subject.

Generation of training data sets

To generate the training data sets U and V, we constructed models containing piecewise-con-

stant η values for each distinct tissue, and solved a total of M forward models with different

discrete combinations of η values using the experimental montage Em. This process produced

M sets of simulated Bz data, denoted B�z , using the methods described above.
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We additionally simulated results from a complementary montage, Ec (shown in Fig 2) to

generate a second set of M Bz data sets, ~Bz, using the same current injection amplitude as in

experiments. The complementary montage model in each case differed only in the position of

the two electrodes. These complementary positions were chosen to ensure current flow was

not collinear with that caused by Em, so that a unique conductivity reconstruction could be

produced with the two-current DT-MREIT algorithm [6]. Noise was added independently to

both B�z and ~Bz, depending on the noise levels measured in experimental data Bm
z for each

imaging experiment. A common isotropic η distribution, designated ~Z�, was reconstructed

from noisy B�z and ~Bz to obtain V 2 RP�M artifact free data using the two-current injection

DT-MREIT algorithm [9, 10, 19, 33].

Two independent current densities J� and ~J were calculated using Eqs (20) (or (23)) for the

experimental Em and complementary Ec electrode montages, respectively.

The curl-free property of the electric field leads to the following equation [9, 10, 19, 33]

r ln ð~Z�Þ � ðD� 1JÞ ¼ r � ðD� 1JÞ: ð27Þ

This equation can be re-expressed in matrix form as

~Ae ¼ ~b ð28Þ

where e ¼ @ ln ð~Z�Þ
@x ;

@ ln ð~Z�Þ
@y

h iT
, ln quantities were calculated relative to 1 S � sec/mm3, and the

matrices ~A and ~b are

~A ¼

w1ðD
� 1J�Þyðx1; y1Þ � w1ðD

� 1J�Þxðx1; y1Þ

w1ðD
� 1~JÞyðx1; y1Þ � w1ðD

� 1~JÞxðx1; y1Þ

..

. ..
.

wNðD
� 1J�ÞyðxN ; yNÞ � wNðD

� 1J�ÞxðxN ; yNÞ

wNðD
� 1~JÞyðxN ; yNÞ � wNðD

� 1~JÞxðxN ; yNÞ

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

and

~b ¼

w1

@ðD� 1J�Þy
@x

�
@ðD� 1J�Þx

@y

 !

ðx1; y1Þ

w1

@ðD� 1~JÞy
@x

�
@ðD� 1~JÞx

@y

 !

ðx1; y1Þ

..

.

wN

@ðD� 1J�Þy
@x

�
@ðD� 1J�Þx

@y

 !

ðxN ; yNÞ

wN

@ðD� 1~JÞy
@x

�
@ðD� 1~JÞx

@y

 !

ðxN ; yNÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: ð29Þ
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The weights wi in Eq (29) relate to the MR-magnitude ρ and the noise level h associated

with the measured noise (Fig 2) [33] as

wi ¼
e� hjjrðxi ;yiÞ� rðx;yÞjj

PN
J¼1

e� hjjrðxj;yjÞ� rðx;yÞjj
: ð30Þ

In all reconstructions, a 3 × 3 window was used to determine the stiff matrix ~A and load

vector ~b (29). Singular value decomposition was then used to decompose the 2N × 2 stiff

matrix ~A into USVT, where the two singular values of ~A are entries in S = diag(s1, s2) and

b̂ ¼ UT~b.

The distribution e was solved for by minimizing the generalized cross-validation (GCV)

function [32]

GCVðzÞ ¼

P2

i¼1

b̂2
i

s2i þz

� �2

P2

i¼1
1

s2i þz

� �2
: ð31Þ

Here, z is a regularization constant estimated from the region N ðx;yÞ ¼

fðxi; yiÞ 2 1; 2; 3; . . .Ng around the voxel position (x, y).

Finally, the ~Z� images were obtained from e values by solving the two-dimensional Poisson

Eq (32) assuming a known boundary value ~Z�
@O

[10, 20, 33]

(
r2

xy ln ð~Z
�Þ ¼ rxy � e in Ot

ln ð~Z�Þ ¼ ln ð~Z�
@O
Þ on @Ot:

ð32Þ

Next, we reconstructed η� from simulated noisy Em data B�z alone, using the dual-loop net-

work, to create an input data set U 2 RP�M
. The two RP�M

data sets U and V were then used

to build the network using the ‘newgrnn’ function implemented in the MATLAB Neural

Network Toolbox. After generating the training data sets for each projection, one thousand

hidden neurons were used to perform ANN correction, both for phantom and human experi-

ments. We found that the training time for data used in this paper averaged around 30 minutes

ysing a MacPro computer with an Intel(R) Xenon(R) (E5–2697 v2, 2.70 GHz) 12 core CPU

and 64.0 GB RAM.

Phantom image training data. To calculate B�z and ~Bz distributions used to reconstruct

phantom experiment data, we segmented tissue masks into three different ROIs, shown in Fig

3(c) for the center slice. Each of the three distinct tissues (agar, chicken, potato) were simulated

at ten linearly spaced η values, resulting in a total of M ¼ 10� 10� 10 ¼ 1000 models. Agar

was simulated with η between 0.1 and 1 S �s/mm3, chicken between 0.2 and 1.25 S � s/mm3

and potato between 0.01 and 0.3 S � s/mm3. Noise was added to B�z and ~Bz data independently,

based on the SNR determined in the agar region of phantom magnitude images. From 16 we

estimated the standard deviation of measured Bz data in phantom experiments was about 0.18

nT.

Human image training data. In simulating scaling factors for the human experiment, we

segmented tissue masks into five different ROIs, as shown in Fig 4(e) for the center slice. We

assumed skin and bone regions had isotropic conductivity values of 0.43 S/m [29] and 0.015

S/m [44] respectively. The brain region, consisting of gray matter (GM), white matter (WM)

and CSF was modeled by scaling the measured diffusion tensor [31, 45]. A total of M ¼

10� 10� 10 ¼ 1000 sets of numerical model data were generated by independently varying

model scale factor values for GM between 0.210 and 0.736 S � s/mm3 [46], for WM between
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0.210 and 0.736 S � s/mm3 [46], and for CSF between 0.700 and 0.844 S � s/mm3 [31, 45] respec-

tively. Table 1 summarizes the range of effective isotropic conductivity values calculated from

the conductivity tensor used to generate numerical model data. As for phantom data noise was

added to B�z and ~Bz data. The SNR determined in the white matter region of magnitude images

was used to estimate noise levels for human data. Noise standard deviations of 0.21 nT were

added to Bz data for the human imaging experiment.

Electric field reconstruction

In some cases, electric field images were constructed from reconstructed current density and

conductivity tensor data. Using the reconstructed projected current density, JP;E or JP;ERt
and

estimated conductivity tensor C, electric field vectors at locations r within images were recon-

structed as

EEðrÞ ¼ C� 1ðrÞJP;EðrÞ ð33aÞ

EE
Rt
ðrÞ ¼ C� 1ðrÞJP;ERt

ðrÞ ð33bÞ

Verification of reconstruction performance

To evaluate the proposed one-current reconstruction method, a common isotropic scale factor

distribution, designated ~Z, was also reconstructed from experimentally measured projected

Fig 3. Phantom experiment setup. (a) Phantom design, (b) MR magnitude image from spin-echo pulse sequence

during MREIT experiment, (c) Segmented ROIs for volume conductor model. The ROIs were segmented using the

unsupervised data partitioning method implemented in the MATLAB command kmeans. (d) Bm;E
z ; E ¼

1 ðverticalÞ and 2 ðhorizontalÞ images induced due to the 10 mA current injection, (e) Mean diffusivity map

obtained from six direction diffusion data sets with b-value 1000 sec/mm2. Images in (b)-(e) cropped to 100 × 100

pixels2 to show detail.

https://doi.org/10.1371/journal.pone.0254690.g003
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current density (JP;E ; E ¼ 1; 2) data, by solving Eqs (31) and (32) using the known boundary

scaling factor ~Z@O [20].

Dual-loop results corrected by the ANN were verified against DT-MREIT reconstructions

and also against known conductivity values, where available. Dual-loop and DT-MREIT

reconstructions were compared using a relative L2 measure, where, for any reference or true

data x and reconstructed data y, the relative L2-difference or error RE defined as

RE ¼
k x � y k
k x k

: ð34Þ

Here, k�k represents the Euclidean distance.

Fig 4. Human experiment set-up. (a) Sagittal view of computer model of human subject with attached electrodes (Fpz, Oz,

T7, T8). The corresponding lead wire trajectories are marked as LFpz, LOz, LT7, LT8. (b) High resolution T1-weighted image

corresponding to the MREIT slice shown in (e). Locations of six ROIs used for evaluation of reconstructed conductivity

values shown in Table 5. (c) Segmented tissues in volume conductor model. Tissue segmentation was performed using the

method described in Huang et al. [50]. (d) Colour-coded fractional anisotropy map obtained from fifteen-direction diffusion

data sets with b-value 1000 sec/mm2. (e) MR magnitude image from multi-gradient multi-echo pulse sequence during

MREIT acquisition. (f) Brain ROI (Rt), mask used in electromagnetic field reconstruction. (c) Echo-combined Bm;E
z ; E ¼

1 ðFpz � OzÞ; and 2 ðT7 � T8Þ images induced due to the 1.5 mA current injection. Calculated stray magnetic fields were

subtracted from individual echo images before further processing. Images in (b)-(c) are cropped to 175 × 210 and those in

(d), (f)-(g) are cropped to 85 × 100.

https://doi.org/10.1371/journal.pone.0254690.g004

Table 1. Range of isotropic conductivity values used to generate numerical model data. Isotropic conductivities were estimated using
ffiffiffiffiffiffiffiffiffi
ClCt

p
[29], where Cl = λC,1 and

Ct = (λC,2 + λC,3)/2 are the longitudinal and tranversal components of the conductivity, respectively and λC,1� λC,2� λC,3.

Model Tissues Isotropic conductivity [S/m] Model Tissues Isotropic conductivity [S/m]

Phantom Chicken 0.18–2.67 Human GM 0.02–1.32

Potato 0.02–0.60 WM 0.01–3.27

Agar 0.10–2.13 CSF 0.71–3.75

https://doi.org/10.1371/journal.pone.0254690.t001
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We also measured the structural similarity (SSIM) of reconstructions [47]. The structural

similarity measures the similarity between a true or reference image x and an input or recon-

structed image y by comparing the luminance, contrast and their structures

SSIMðx; yÞ ¼
ð2mxmy þ C1Þð2sxy þ C2Þ

ðm2
x þ m

2
y þ C1Þðs

2
x þ s

2
y þ C2Þ

ð35Þ

Here, mx, my, sx, and sy are the local mean and standard deviations of the image x and y
respectively and C1 and C2 are two regularization constants chosen to avoid instability when

the denominator of the expression is close to zero [47]. A 5 × 5 window was used to calculate

means and standard deviations and C1 and C2 values were set to be 1 × 10−4 and 9 × 10−4

respectively. The mean SSIM value was then computed as

MSSIM ¼
1

Ps

XPs

j¼1

SSIMjðx; yÞ ð36Þ

where Ps is the total number of non-zero voxels in the image slice.

Phantom experiment description

A phantom experiment was conducted to test the proposed method. The cylindrical phantom

had a 55 mm diameter and was 50 mm high. Two opposing pairs of 10 × 10 mm2 carbon elec-

trodes (Hurev Co. Ltd., South Korea) were attached to the perimeter as shown in Fig 3(a).

Three cubes of chicken muscle (�15 × 15 × 15 mm3) oriented in x (left), y (right), z-directions

(top) shown in were placed inside the phantom, centered on the electrode plane. A small cube

of potato (�8 × 8 × 15 mm3), assumed isotropic, was also placed inside the phantom. The

background of the phantom was filled with a 1.0 S/m conductive gel made with agarose.

All data were measured using a single-channel RF volume coil in a 7.0 T Bruker scanner

(Bruker Biospin MRI, Billerica, MA, USA) located at the Barrow Neurological Institute (Phoe-

nix, Arizona, USA). A custom-designed constant current source [48] was used to deliver 10

mA current synchronously with spin-echo MREIT acquisitions with a total current injection

time Tc, of 20 ms in each TR. Two sets of Bm;E
z E ¼ 1; 2 data were collected over five slices,

with an image matrix size of 128 × 128. Other imaging parameters were, TR/TE = 1000/20 ms,

field-of-view, FOV = 80 × 80 mm2, slice thickness, 3 mm (no slice gap), number of excitation,

NEX = 8, and number of echoes, NE = 1. Bz images were calculated using Eq (15). Fig 3(b) and

3(d) shows the acquired MR magnitude and Bm;E
z ; E ¼ 1 ð`vertical0Þ and 2 ð`horizontal0Þ

images respectively for the center slice.

Diffusion tensor data of the same five slices were then collected using a single-shot spin-

echo echo planar imaging (SSSE-EPI) pulse sequence with b of 1000 sec/mm2 and a total of six

diffusion directions. Data were acquired with TR/TE = 2500/32.67 ms. Other parameters were

the same as for MREIT image sequences. One reference data set with b = 0 sec/mm2 was also

collected. The diffusion tensor distribution was reconstructed using (26). The condition num-

ber of the DTI scheme was 4.7. Therefore, prior to reconstruction the diffusion weighted data

set was denoised by taking local features of the diffusion weighted images into account, using

an adaptive Wiener filter [49] implemented in MATLAB (https://www.mathworks.com/

matlabcentral/fileexchange/43992).

Human experiment description

Human experimental protocols were approved by the Arizona State University institutional

review board and all procedures were carried out in accordance with these protocols after
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obtaining informed consent from participants. Data obtained from a 58-year old volunteer

male human subject were used to demonstrate the performance of the proposed method. Data

were acquired using a 32-channel RF head coil and a 3.0T Phillips scanner (Phillips, Ingenia,

Netherlands) located at the Barrow Neurological Institute (Phoenix, Arizona, USA). A transcra-

nial electrical stimulator (DC-STIMULATOR MR, neuroConn, Ilmenau, Germany) was used

to deliver 1.5 mA currents using both Fpz-Oz and T8-T7 electrode montages. Sets of Bm;E
z E ¼

1; 2 data were measured over three axial slices using a multi-echo-gradient-echo pulse sequence

and an image matrix size of 128 × 128. Other imaging parameters were, TR/TE/ES = 50/7/3 ms,

field-of-view, FOV = 224 × 224 mm2, slice thickness, 5 mm (no slice gap), number of excitations

NEX = 24, and number of echoes, NE = 10. The current injection time Tc in each TR was 32 ms.

Bz images of each echo were calculated using Eq (15). Individual echo images were then com-

bined using (17) to improve the SNR of the acquired Bz signals. Prior to echo combination,

stray magnetic field corrections were applied to each echo image [51]. Fig 4(e) and 4(g) show

acquired MR magnitude and Bm;E
z ; E ¼ 1 ð`Fpz � Oz0Þ; and 2 ð`T7 � T80Þ images respec-

tively for the center slice.

Diffusion-weighted images of the three MREIT slices were also acquired, using a single-

shot, spin-echo-echo-planar (SE-EPI) imaging sequence, with b = 1000 sec/mm2 and a total

of fifteen diffusion directions. The condition number of the DTI scheme was 1.3. Data were

acquired with TR/TE = 2000/139 ms and NEX = 2. The acquisition matrix size was 64 × 64,

with the same FOV as in MREIT sequences. The data were then interpolated to 128 × 128

matrix to match the MREIT data. One reference data set with b = 0 sec/mm2 was also

collected.

Parameters used in both phantom and human experiments are summarized in Table 2. For

each experiment, diffusion data were co-registered with T1 weighted MR-images, and diffu-

sion tensors were reconstructed using Eq (26). ure Fig 3(e) shows the mean diffusivity map

(
DxxþDyyþDzz

3
) estimated from the denoised diffusion weighted images for the phantom, and Fig

4(d) shows the colour-coded fractional anisotropy map estimated from the diffusion weighted

images for the human subject. In the human experiment, Bz data were corrected to take into

account any stray magnetic field [51, 52] created by lead wires that may have affected phase

images. For the phantom experiment, we estimated JP (Eq (20)) using the Laplacian (r2) of

the measured Bm
z data (Eq (21)). Therefore, it was not necessary to consider wire-related stray

magnetic fields in the phantom data becauser2Bz;LðrÞ ¼ 0 in r 2 O [6]. However, for the

human experiment, the regional projected current density in Eq (23) [41] was estimated using

the local boundary condition (24). In this case the stray magnetic field must be accounted for.

Therefore, a numerical model of the wires in the human experiment was constructed from 1

mm3-resolution T1-weighted images in order to estimate these stray magnetic fields via the

Biot-Savart law (see S1 File).

Table 2. Experimental image parameters.

Experiment Pulse sequence Resolution (mm3) FOV (mm3) TR/TE/ES (ms) NE/NAS
MREIT(phantom-1) SE (7T Bruker), 10mA current 0.625 × 0.625 × 3 80 × 80 × 15 1000/20 1/8

MREIT(in vivo human) mffe (3T Phillips), 1.5 mA current 1.75 × 1.75 × 5 224 × 224 × 15 50/7/3 10/24

MREIT(phantom-2) SE (7T Bruker), 10 mA current 1 × 1 × 4 64 × 64 × 28 1000/20 1/2

DWI(phantom-1) SS-SE-EPI(7T Bruker b = 1000 s/mm2, 6 directions) 0.625 × 0.625 × 3 80 × 80 × 15 2500/32.67 1/2

DWI(in vivo human) SS-SE-EPI(3T Phillips b = 1000 s/mm2, 15 directions) 3.5 × 3.5 × 5 224 × 224 × 15 2000/139 1/2

DWI(phantom-2) SS-SE-EPI(7T Bruker b = 1000 s/mm2, 6 directions) 1 × 1 × 4 64 × 64 × 28 2300/27 1/2

https://doi.org/10.1371/journal.pone.0254690.t002
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Results

Phantom experiment results

ure Fig 5(a) and 5(b) shows reconstructed projected current density magnitudes in the biologi-

cal tissue phantom. Images were calculated using Eq (20).

Reconstructed scale factor images solving Eq (9) estimated from measured current density

and diffusion tensor data are displayed as Ẑv and Ẑh in Fig 5(c) and 5(d) for vertical and hori-

zontal currents, respectively. Images labeled ηv and ηh in Fig 5(a) and 5(b) show ANN-cor-

rected scale factor images obtained from the trained neural network. The optimum spread-

constant values were found to be 0.75 for both vertical- (E ¼ 1) and horizontal- (E ¼ 2) cur-

rent networks. ure Fig 5(e) shows the reconstructed scale factor images (~Z) using the two-

current injection DT-MREIT algorithm. We also computed the relative L2-differences and

measured the similarity index [47] of these reconstructed scale factor images. For the vertical

projection, relative L2-differences were found to be 0.11, 0.12 and 0.12 for the second, third

and fourth slices, respectively, after ANN correction. Similarly, using the single-current dual

loop estimation for the horizontal current injection, relative L2-differences were calculated to

be 0.11, 0.12 and 0.12. Similarity indices for vertical current injections were found to be 0.94 in

Fig 5. Model-predicted current density images for the central slice (slice 3) of the phantom obtained from a

homogeneous (I, III) numerical model and estimated current density images found using Eq (20) (II, IV) for (a)

vertical and (b) horizontal current injection. Normalized arrow plots overlaid on images show current flow

directions. Parts (c) and (d) illustrate reconstructed scale factor images of the three central slices (2, 3, 4) of the

phantom object for vertical (c) and horizontal (d) currents. Ẑ images in parts (c) and (d) are solutions of the dual-loop

matrix system (9). ηv,h images show ANN-corrected scale factors. Part (e) (~Z) shows scale factor images recovered from

data measured using two current injections. Images cropped to 95 × 95.

https://doi.org/10.1371/journal.pone.0254690.g005
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each of the second, third and fourth slice positions after ANN correction. For the single-cur-

rent dual loop estimation from horizontal current injection, similarity indices for these three

slices were also found to be 0.94.

Reconstructed scale factors were multiplied with diffusion tensors to produce conductivity

tensors as in (3). Results for the center (third) slice are shown in Fig 6(a). Fig 6(a) shows recon-

structed diagonal components of the conductivity tensor found using the ANN-corrected sin-

gle-current injection for vertical (Cv) and horizontal (Ch) projections, respectively, and Fig

6(a) also displays the conductivity tensor ~C found using the two-current DT-MREIT for the

center slice. Actual reconstructed conductivity values and anisotropic ratio, AR ¼ 2lC;1
lC;2þlC;3

,

where λC,k k = 1, 2, 3 are the three eigenvalues of the reconstructed conductivity tensor, are

summarized in Table 3. Note that due to the scaled relationship of the conductivity and water

diffusion tensors, anisotropic ratios in reconstructed conductivity tensors were the same as in

water diffusion tensors. Therefore, these values are identical for all three reconstructions com-

pared in Table 3. The proposed one-current injection method showed good agreement with

the two-current DT-MREIT reconstructions. However, the anisotropic ratio, which was

directly derived from diffusion weighted data sets, was small for all five ROIs, especially for the

top (z-oriented) chicken muscle tissue sample, where the Czz conductivity component was

expected to be largest, along with the anisotropic ratio.

For comparison purposes, we also measured biological tissue conductivities at 100 Hz using

an impedance analyzer and a four-probe method. These values showed good agreement with

the reconstructed conductivity (Table 4). For example, the conductivity of the potato sample at

100 Hz was found to 0.18±0.006 S/m, an approximate 0.73% relative L2 error. Similarly, for the

chicken breast muscle the measured impedances indicated a conductivity of 0.86±0.01, and

Fig 6. Reconstructed conductivity tensor and electric field comparisons for central slice. Part (a) compares of

reconstructed conductivity tensor using proposed one-current injection method with the two-current injection

DT-MREIT algorithm [33] using vertical injection (Cv) and horizontal injection (Ch) only or (~C) using the two-current

injection method. (b) Electric field maps derived from reconstructed conductivity tensors of the central phantom slice.

Images labeled Ev and Eh show electric field magnitudes estimated from reconstructed conductivity tensors Cv and Ch

respectively. Images ~Ev and ~Eh show estimated electric field distributions for horizontal and vertical current injection,

respectively, from conductivity tensor reconstructed from two-injection current injection ~C. The normalized arrow plots

overlaid on (b) show E field directions. Images cropped to 95 × 95.

https://doi.org/10.1371/journal.pone.0254690.g006
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0.73±0.008 S/m along and across the fiber directions, respectively. For all three tissue samples

the average conductivity value along the fibers was found to be (Table 4) 0.82 S/m, while

those across fibers were 0.71 S/m, an approximate 2–4% error. For the agar background the

relative L2 error was found to be 1.60% with respect to impedance analyzer conductivity

measurements.

Fig 6(b) compares magnitudes of estimated vertical or horizontal electric fields found using

Eq (33). The relative L2-differences between single-current injection and DT-MREIT recon-

structed electric fields for vertical projection data were found to be 0.16, and 0.12 for the hori-

zontal projection in the center slice shown in Fig 6(b).

Human experiment results

Fig 7(a) and 7(b) shows the magnitude of the reconstructed current density for Fpz-Oz and

T8-T7 current injections respectively. Reconstructed scale factor images Ẑ solving Eq (9) esti-

mated from measured current density and diffusion tensor data are displayed in Fig 7(c) and

7(d) for Fpz-Oz and T8-T7 currents respectively. Images labeled η in Fig 7 show ANN-cor-

rected scale factor images obtained from the trained neural network. The â values were found

1.85 for Fpz-Oz and 1.03 for the T7-T8 electrode montage, respectively.

Fig 7(e) shows a reconstructed scale factor image found using the two-current-injection

DT-MREIT algorithm. We computed relative L2-differences and similarity indices for scale

Table 3. Reconstructed diagonal components of the conductivity tensor (S/m) and anisotropic ratio AR for biological tissue phantom images in Fig 6. Underlined

entries show tensor components along tissue orientation directions.

Agar Left tissue Right tissue Top tissue Bottom tissue

Vertical one-current Cxx 1.06 ± 0.03 0.85 ± 0.04 0.75 ± 0.03 0.75 ± 0.03 0.19 ± 0.01

Cyy 1.02 ± 0.03 0.74 ± 0.05 0.80 ± 0.03 0.72 ± 0.04 0.19 ± 0.01

Czz 0.92 ± 0.03 0.68 ± 0.05 0.65 ± 0.03 0.73 ± 0.03 0.17 ± 0.01

Horizontal one-current Cxx 1.06 ± 0.03 0.85 ± 0.04 0.75 ± 0.03 0.75 ± 0.03 0.19 ± 0.01

Cyy 1.02 ± 0.03 0.74 ± 0.05 0.80 ± 0.03 0.72 ± 0.04 0.19 ± 0.01

Czz 0.92 ± 0.03 0.68 ± 0.05 0.65 ± 0.03 0.73 ± 0.03 0.17 ± 0.01

DT-MREIT two-current Cxx 1.06 ± 0.03 0.89 ± 0.04 0.77 ± 0.03 0.77 ± 0.04 0.17 ± 0.02

Cyy 1.02 ± 0.03 0.75 ± 0.03 0.83 ± 0.03 0.75 ± 0.04 0.17 ± 0.02

Czz 0.92 ± 0.03 0.67 ± 0.03 0.66 ± 0.03 0.76 ± 0.03 0.15 ± 0.02

AR 1.11 ± 0.01 1.21 ± 0.06 1.15 ± 0.03 1.07 ± 0.03 1.11 ± 0.02

https://doi.org/10.1371/journal.pone.0254690.t003

Table 4. Comparison of tissue conductivities measured (S/m) by an impedance analyzer using a four-probe method and conductivity values averaged over phantom

regions of interest for chicken, potato or agar materials from the image shown in Fig 6, using the proposed method and the two-current injection DT-MREIT algo-

rithm [33]. The longitudinal and transverse components of the conductivity, Cl = λC,1 and Ct = (λC,2+λC,3)/2 were calculated from the eigenvalues (λC,1�λC,2�λC,3) of the

reconstructed conductivity tensor. Effective isotropic conductivities of potato and agar backgrounds were calculated using the relation, Ci ¼
ffiffiffiffiffiffiffiffiffi
ClCt

p
[29] for potato and

agar regions for comparison with impedance analyzer measurements.

Method Type Chicken Potato Agar

Impedance analyzer - Cl = 0.86 ± 0.010 Ci = 0.18 ± 0.006 Ci = 1.00 ± 0.018

Ct = 0.73 ± 0.008

Proposed Vertical Cl = 0.81 ± 0.003 Ci = 0.19 ± 0.009 Ci = 1.02 ± 0.031

Ct = 0.71 ± 0.010

Horizontal Cl = 0.81 ± 0.003 Ci = 0.19 ± 0.009 Ci = 1.02 ± 0.031

Ct = 0.71 ± 0.010

DTMREIT two current - Cl = 0.84 ± 0.003 Ci = 0.17 ± 0.020 Ci = 1.02 ± 0.033

Ct = 0.72 ± 0.002

https://doi.org/10.1371/journal.pone.0254690.t004
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factor images reconstructed the two methods. For the Fpz-Oz and T7-T8 electrode montages,

relative L2-differences and similarity indices were found to be 0.14 and 0.93, respectively after

ANN correction.

Reconstructed scale factors were multiplied with diffusion tensors to produce conductiv-

ity tensors as in (3). Results for the center slice are shown in Fig 8(a). The top and middle

rows of Fig 8(a) show reconstructed diagonal components of the conductivity tensor using

ANN-corrected single-current injection for Fpz-Oz and T8-T7 projections, respectively, and

the bottom row displays the conductivity tensor components found using the two-current

DT-MREIT for the center slice. Fig 8(b) compares the reconstructed conductivity tensors

within the selected ROI. Values for diagonal components of reconstructed conductivity ten-

sors are summarized in Table 5. Fig 8(c) compares magnitudes of estimated Fpz-Oz or

T8-T7 electric fields found using Eq (20). Relative L2 errors and MSSIM results for all phan-

tom and human data slices are summarized in Table 6. The relative L2 difference between

single-current injection and DT-MREIT reconstructed electric fields for the human subject

Fpz-Oz projection data was found to be 0.13 for the center slice shown in Fig 8(c). For the

same slice and T7-T8 data, the relative L2 difference in electric field was 0.09. Structural simi-

larities to corresponding two-current-measured data for these electric field images were 0.94

and 0.98 respectively.

Fig 7. Model-predicted current density in a central slice of human head data J0jRt
(I, III) obtained from Eq (22) and estimated current density images found using Eq

(23) (II, IV) are shown for (a) Fpz-Oz and (b) T8-T7 electrode montages. Normalized arrow plots overlaid on images show current flow directions. Reconstructed scale

factor images of the central slice of in-vivo human subject are shown in parts (c) and (d) for Fpz-Oz or T8-T7 current injections respectively. Images in (c) and (d)

labeled Ẑ show solutions of the dual-loop matrix system in (9). Images labeled η show ANN-corrected scale factors. Part (e) shows a scale factor image ~Z recovered

from data measured from both current injections. Images cropped to 75 × 100.

https://doi.org/10.1371/journal.pone.0254690.g007
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Discussion

Relationship between MREIT and DT-MREIT

We first note properties of the DT-MREIT reconstruction problem that are distinct from

purely electromagnetic approaches. Without loss of generality, consider a three dimensional

conductive domain O consisting of a background region OnR containing one anomaly R.

The conductivity of the background is denoted Cb and the anomaly conductivity is defined as

C = C b + δ C. From fundamental electromagnetic principles [53], any point on the anomaly

Fig 8. Reconstructed conductivity tensor and electric field comparisons for in-vivo human experiment. (a)

Comparison of reconstructed conductivity tensor using proposed one-current injection method with the two-current

injection DT-MREIT algorithm [33] using Fpz-Oz injection (C Fpz−Oz) and T8-T7 injection only (C T7−T8) or using the

two-current injection method (~C). Part (b) shows tensor plots of the reconstructed conductivity images in (a). The

ROI is marked in the inset T1-weighted image. The size of each ellipsoid in (b) is proportional to the tensor eigenvalues

at that location, and its color and orientation represent principal eigenvectors. Part (c) shows electric field maps

derived from reconstructed conductivity tensors of the central slice, with the Fpz-Oz image at left and T8-T7 montage

at right. Images labeled E denote electric field magnitudes estimated from reconstructed conductivity tensors shown in

(a). Images labeled ~E are estimated electric field distributions for were found from conductivity tensors reconstructed

from the two-injection current injection shown in (a). Normalized arrow plots overlaid on (c) show E field directions.

Reconstructed images cropped to 75 × 100.

https://doi.org/10.1371/journal.pone.0254690.g008
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subdomain boundary, x 2 @R satisfies the relations

� CbruþðxÞ � n ¼ � ðCb þ dCÞru� ðxÞ � n

ruþðxÞ � t ¼ ru� ðxÞ � t

)

on x 2 @R ð37Þ

where ν and τ are normal and tangential unit vectors on @R respectively, and the voltage dis-

tributions u+ and u− are defined as

uþ ¼ uj OnR and u� ¼ ujR: ð38Þ

Decomposing the current density vector J into normal and tangential part at the subdomain

interface, J(ξ) = (J(ξ) � ν)ν + (J(ξ) � τ)τ, and using Eq (37) we have [34]

JþðxÞ � J� ðxÞ ¼ ðdCru� ðxÞ � tÞt ð39Þ

where the current density vectors J+ and J− are defined in the background and anomaly

regions respectively in a similar manner to u+ and u−. However, in DT-MREIT the relationship

D−1 J = −ηru at the subdomain interface satisfies [18]

ðD� 1

OnRJ
þÞðxÞ � n ¼ ð� ZþruþÞðxÞ � n 6¼ ðD� 1

R J� ÞðxÞ � n ¼ ð� Z� ru� ÞðxÞ � n: ð40Þ

Eqs (39) and (40) show the fundamental differences between MREIT and DT-MREIT. Eq

(39) implies that it is nearly impossible to have any distinguishable contrast along an anomaly

Table 5. Reconstructed diagonal components of the conductivity tensor (S/m) for in-vivo human experiment shown in Fig 8. The ROIs are displayed in Fig 4(d).

ROI#1 ROI#2 ROI#3 ROI#4 ROI#5 ROI#6

Fpz-Oz Cxx 1.15±0.10 0.53±0.11 0.48±0.10 0.61±0.05 0.23±0.02 0.17±0.05

Cyy 1.14±0.10 0.55±0.09 0.48±0.10 0.26±0.06 0.55±0.03 0.22±0.08

Czz 1.14±0.12 0.54±0.08 0.47±0.09 0.22±0.05 0.27±0.05 0.55±0.09

T8-T7 Cxx 1.18±0.12 0.53±0.10 0.48±0.10 0.59±0.06 0.22±0.02 0.16±0.04

Cyy 1.18±0.11 0.54±0.07 0.48±0.10 0.25±0.06 0.53±0.05 0.21±0.10

Czz 1.19±0.13 0.53±0.06 0.47±0.09 0.21±0.05 0.26±0.04 0.52±0.10

Fpz-Oz/T8-T7 Cxx 1.20±0.11 0.58±0.11 0.40±0.08 0.55±0.06 0.22±0.02 0.21±0.03

Cyy 1.20±0.10 0.60±0.09 0.40±0.09 0.24±0.06 0.53±0.05 0.27±0.11

Czz 1.23±0.11 0.59±0.07 0.39±0.08 0.20±0.05 0.26±0.05 0.73±0.09

https://doi.org/10.1371/journal.pone.0254690.t005

Table 6. Relative L2-diferences (34) and mean structural similarity MSSIM indices (36) of reconstructed scale factor and E fields for proposed single-current and

two-current injection DT-MREIT algorithms [33].

Study Slice# Current administration Scale factor E-field

Dual-loop only Dual-loop with ANN

correction

Dual-loop with ANN

correction

RE MSSIM RE MSSIM RE MSSIM
Phantom 2 Vertical 0.32 0.67 0.11 0.94 0.13 0.89

Horizontal 0.29 0.75 0.11 0.94 0.11 0.93

3 Vertical 0.29 0.72 0.12 0.94 0.16 0.92

Horizontal 0.29 0.75 0.12 0.94 0.12 0.94

4 Vertical 0.37 0.69 0.12 0.94 0.16 0.90

Horizontal 0.27 0.77 0.12 0.94 0.15 0.93

Human 2 Fpz-Oz 0.35 0.62 0.14 0.93 0.13 0.94

T7-T8 0.41 0.57 0.14 0.93 0.09 0.98

https://doi.org/10.1371/journal.pone.0254690.t006
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boundary if current flow is orthogonal to its tangent vector. In addition, Park et al. [15] show

that it is possible to determine the conductivity uniquely if the conductivity value is known at

the boundary. To avoid the ambiguity caused by (39), most MREIT algorithms use two inde-

pendent currents to reconstruct unique isotropic conductivity distributions. On the other

hand, (40) implies that a distinguishable contrast at tissue edges can obtained using measured

diffusion tensors D, if diffusion values are different in the two regions. These assumptions are

physically distinct, because diffusion coefficients are principally determined by the medium

viscosity. Hence, incorporation of D allows the possibility of using only one current injection

to reconstruct position dependent conductivity scale factors. However, from (.27) ifrln(η) is

parallel to (D−1 J) vectors it is not possible to obtain any distinguishable boundary information

using DT-MREIT.

Fig 9(f) shows an example of the condition described above, where some tissue boundaries

are not visible in single current injection MREIT data. However, because of the discontinuity

at the tissue interface, DT-MREIT can distinguish the tissue boundary even with the single

current injection shown in Fig 9(e). The interested reader may find details of this imaging

experiment in S2 File.

Fig 9. Example illustrating distinct MREIT and DT-MREIT properties. (a) Phantom design. (b)-(c) MR and corresponding Bm;E
z E ¼ 1; 2 images. (d) Mean diffusivity

map showing muscle directions. (e) Scale factor images reconstructed using dual-loop method for (I) horizontal, (II) vertical injection only. Part III shows the scale factor

image obtained using two-current DT-MREIT method. (f) IV-V show equivalent isotropic conductivities from one current injection, and VI is isotropic conductivity

found using two-current injections and the J-substitution algorithm [4]. Parts (g)-(h) show diagonal components of the reconstructed conductivity tensor using one-

(horizontal) and two-current injection methods respectively. Images cropped to 40 × 40.

https://doi.org/10.1371/journal.pone.0254690.g009
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Phantom results

Single-current L2 differences were around 10% different from two-current DT-MREIT recon-

structions. We found that the lowest longitudinal conductivities in the muscle samples were

measured in the ‘top’ sample, where the tissue was oriented along the z-direction. This could

have been related to the particular sample or limitations in the diffusion data. Overall, the

anisotropic ratios of the ‘left’ (x-oriented) and ‘right’ (y-oriented) muscle samples measured in

the diffusion tensor images were lower than expected (around 1.2). The top (z-oriented) sam-

ple had the lowest anisotropic ratio of 1.05, lower than that reconstructed for agar or potato

samples in the same phantom. It is possible that anisotropic properties were not sampled ade-

quately at 0.625 millimeter resolution. It may also be the case that there was little anisotropic

property remaining in the muscle tissue samples.

Assumption of boundary scaling factor values

Implementation of the dual-loop method requires an assumption of conductivity at the object

boundary. We therefore specified the boundary scale factor as Z@O ¼
Ce
de

� �
¼ 0:50 S � sec=mm3

based on the ratio of the known conductivity of the agar gel background (1 S/m) and the

apparent diffusion tensor map measured in the agar gel background region. However, for the

human data we assigned the scale factor value on the boundary to be η@O = 0.40 S � sec/mm3

[33]. This may have been responsible for some of the L2 differences observed in the phantom

and human experimental results.

Study limitations and future work

As noted in Lee et al. [34] and Sajib et al. [35], noise propagation along equipotential lines lim-

its the performance of the dual-loop method. The degree of noise propagation depends on the

condition number of the stiff matrix in Eq (9) [34, 35]. However, application of a total varia-

tion denoising technique, as in [35], to input data sets before performing dual-loop calcula-

tions may improve the condition number and reconstruction performance, but may not

greatly reduce streaking artifacts, or reconstruction fidelity because of oversmoothing. It is

also possible to reconstruct the scale factor using a single-loop method. However, one-loop

reconstructions are strongly influenced by local changes of current flow, noise and reconstruc-

tion path [34].

In these studies, ANN methods were able to reconstruct the scale factors shown in Fig 5(c)

and 5(d) for phantom data; or reconstruct human data, as in the η images of Fig 7 with reason-

able accuracy using 1000 training data sets (S3 File), by employing the prior information pro-

vided by dual-loop estimations. While the agreement between standard two-current and

single-current dual-loop reconstructions in these preliminary tests was encouraging, further

improvements in machine learning algorithms may produce better overall performance. For

example, one of the limitations in this study was that we used a general regression neural net-

work (GRNN) to find the regressor function f in Eq (10). Because the centers and the weights

in the pattern and summation unit of a GRNN network are determined from subject-specific

training data sets, it cannot be generally extended to predict any artifact-free scale-factor

image. To avoid this, in future studies we plan to use more diverse training data in conjunction

with a deep learning model that is expected to improve reconstruction performance by taking

into account local image features.

In future work, we intend to test these techniques in vivo in human heads for other tES elec-

trode montages. In human tES studies it is rare to use in-plane (transverse) electrode mon-

tages, and electrode locations are instead chosen close to a presumed cortical target [11]. As
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noted previously, the difference between projected current density and true current density

estimates depends on the out of plane current component Jz [15, 16]. For transverse currents,

nearly all current density information is encoded in Bz data, and Jz data is negligible. The qual-

ity of projected current density data is key to both dual-loop (9) and DT-MREIT reconstruc-

tions (27). Therefore, we expect that the single-current data reconstructions used here will

become less accurate as Jz increases. Deep learning methods are also anticipated to be of poten-

tial benefit for these more general situations. Training data for deep learning could be gener-

ated using partial dual-loop-reconstructed data from off-plane montages or computed

predictions of these data with arbitrary electrode locations.

Conclusion

We tested a novel approach to reconstructing apparent conductivity tensor and corresponding

electric field distributions in magnetic resonance electrical impedance tomography applica-

tions using an artificial neural network, with training data informed by mimetic algorithm

data. Use of these methods may be useful in obtaining conductivity, current density and

electric field measurements where it is only possible to measure magnetic flux density data

resulting from a single current administration. We believe that the method will be useful for

monitoring electromagnetic field distributions and optimizing stimulation protocols used in

human tES studies [54, 55].
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