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Abstract. Idiopathic pulmonary fibrosis (IPF) is a worldwide
disease characterized by the chronic and irreversible decline of
lung function. Currently, there is no drug to successfully treat
the disease except for lung transplantation. Numerous studies
have been devoted to the study of the fibrotic process of IPF and
findings showed that transforming growth factor-f1 (TGF-f1)
plays a central role in the development of IPF. TGF-31 promotes
the fibrotic process of IPF through various signaling pathways,
including the Smad, MAPK, and ERK signaling pathways.
There are intersections between these signaling pathways,
which provide new targets for researchers to study new drugs.
In addition, TGF-f1 can affect the fibrosis process of IPF by
affecting oxidative stress, epigenetics and other aspects. Most
of the processes involved in TGF-f1 promote IPF, but TGF-f1
can also inhibit it. This review discusses the role of TGF-p1
in IPF.
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1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal and
irreversible disease, which is characterized by fibroblast
proliferation and excessive deposition of extracellular matrix
in the lung (1,2). It was reported that the overall survival of the
patients who were diagnosed with IPF was 3-5 years (3). The
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annual incidence of IPF is between 0.22 and 7.4 per 100,000
individuals in Europe and North America, but is lower in East
Asia and South American (4). The incidence and prevalence of
IPF increase with age and are higher in men (Tables I and II),
which have been on the increase in recent years (1,5,6).
Smoking, silica, and lampblack may be high risk factors for
IPF (7). IPF can cause many symptoms such as dyspneal
breathlessness, and chest discomfort, which does great harm
to human and induces tremendous economic burden (8).

At present, many studies have focused on the pathogenesis
mechanisms, which mainly include the Smad, MAPK, and
ERK signaling pathways (9). Of these mechanisms TGF-f1
is of critical significance (10). Researchers have conducted
pharmacological studies on TGF-p1 in IPF, and some
new drugs targeting TGF-f1-relevant signaling pathways
have been developed. Such drugs include Nimbolide (11),
Tanshinone ITA (Tan ITA) (12), methylsulfonylmethane (13)
and Isoliquiritigenin (ISL) (14). However, since none of these
medicines can successfully treat IPF, lung transplantation
remains the primary method of treatment (15).

Both basic research and clinical research have proven that
TGF-f1 plays an important role in the pathogenesis of IPF
(Table III). However, no review systematically summarizing
and discussing the role of TGF-f1 and relevant pathways in IPF
has currently been published. The aim of the present review
was to summarize the studies concerning the role of TGF-f1
in the development of IPF in recent decades (16) (Fig. 1). The
findings may help researchers to grasp the latest progress in
the pathogenesis of IPF related to TGF-f1 and to provide
novel targets and a theoretical basis for the development of
IPF clinical drugs.

2. TGF-p1-involved pathway in IPF

Canonical TGF-B1/Smad signaling pathway. The Smads
family comprises three subfamilies, including five
receptor-activated Smads (R-Smads), one common mediator
Smad (Co-Smad) and two inhibitory Smads (I-Smads). Smad6
and Smad7 are the third type of Smads known as ‘inhibitory
Smads’ or ‘anti-Smads’. They are structurally different from
other members of the family, and have been proven to be
inhibitors of the Smad signaling pathway by disturbing the
activation of R-Smads (17). Usually, TGF-p1 activates Smads
through the transmembrane receptor serine/threonine kinase,
successively regulating the transcription of target genes (18).
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When TGF-f type I receptor kinase was activated by TGF-f1
signal, R-Smads (Smad2 and Smad3) were phosphorylated;
of note is that Smad3 is more sensitive to TGF-f1 than
Smad?2 (19). Activated Smad2 and Smad3 form a complex,
which combines with the Co-Smad (Smad4) and transfers
into the nucleus to regulate the expression of target genes (20).
The contribution of TGF-f1/Smad signaling pathway to
IPF is mainly dependent on the following three processes:
Myofibroblast differentiation, EMT/EndMT, and fibrogenesis.

TGF-pl-involved myofibroblast differentiation. TGF-p1 regu-
lates the terminal differentiation of human lung fibroblasts
(HLF) and promotes the synthesis of fibroblast extracellular
matrix (21). Additionally, TGF-1/Smad3 is the chief signaling
pathway that regulates fibroblast differentiation (22,23).
Transcription of a-smooth muscle actin (a-SMA), a target of
myofibroblasts, was stimulated by TGF-f1 via a Smad3-, but not
Smad2, dependent manner, resulting in the increased expression
of a-SMA protein in human fetal lung fibroblasts (HFLF) (22).
However, Deng et al (24) demonstrated that although Smad3
can be activated by TGF-B1 in HLF, the former did not affect
the expression of collagen I or a-SMA. Treating fibroblasts with
TGF-B1 could increase the expression of galectin-1 (Gal-1),
which phosphorylated Smad2 and enhanced the nuclear retention
of Smad2, promoting myofibroblast differentiation and acceler-
ating fibrosis (25). TGF-f1 induced upregulation of miR-424
through the Smad3-denpendent signaling pathway, which inhib-
ited the expression of Slit2, an inhibitory protein on TGF-p1
profibrogenic signaling. As a result, miR-424 acts as a positive
feedback regulator of the TGF-f1 signaling pathway, promoting
the myofibroblast differentiation of HLF (26). Interestingly, with
the treatment of miR-424 inhibitor, Smad3 phosphorylation by
TGF-p1 was reduced in HLFs, indicating miR-424 as a posi-
tive feedback regulator of TGF-f31/Smad3 synergistically (26).
Previous findings demonstrated TGF-f1/Smad3-induced
NADPH oxidase 4 (NOX4) mediated the production of H,0,,
which was necessary for myofibroblast differentiation of lung
mesenchymal cells, providing novel insight into the therapeutic
targeting in IPF (27,28). In addition, TGF-f1 was reported to
accelerate lung fibrosis by stimulating the production of ROS
depending on NOX-4, and the produced ROS promoted the
nuclear export of histone deacetylase 4 (HDAC4) and formation
of a-SMA fiber in normal human lung fibroblasts (NHLFs) (29).
Furthermore, following exposure to ROS, the expression of
miR-9-5p, which inhibits the transformation from mesothelial
cells to myofibroblast and reduces fibrogenesis via targeting
TGF-p receptor type II (TGFBR2) and NOX4, was also
upregulated, demonstrating that there may be a self-limiting
homeostatic mechanism (28). Moreover, TGF-$1 can upregulate
the level of Sirtuin 6 (SIRT6) protein in HFLF. The overex-
pression of SIRT6 inhibits TGF-p1-induced myofibroblast
differentiation by suppressing TGF-1/Smad2 and NF-xB
signaling pathways (30). Inhibition of TGF-p1/Smad signal
downregulated the expression of Rockl, RhoC and RhoA,
demonstrating Rho kinase was a key mediator in myofibroblast
differentiation induced by TGF-f31/Smad (31).

TGF-fl-involved EMT/EndMT. 1t was also reported that
TGF-p1 stimulated primary human bronchial epithelial
cells (HBEC) to the status of EMT in vitro mainly through

Smad2/3-dependent mechanism (32). TGF-B1 induces
alveolar epithelial cells (AEC) to EMT in a time- and
concentration-dependent manner through Smad?2 activation,
and this event induced by TGF-f1 was not relevant to the
ERK1/2 signaling pathway (33). In addition, TGF-1/Smad2/3
signaling mediated the EMT induced by the high mobility
group box 1 (HMGBI) released from injured lung in A549
cells (34). There was a negative feedback mechanism in
the TGF-f1/Smad-involved pulmonary fibrosis. TGF-f1
upregulates the expression of CXCR7, a seven transmem-
brane G protein-coupled receptor in endothelial cells, in
a Smad?2/3-dependent pattern. Overexpression of CXCR7
impeded endothelial-to-mesenchymal transition (EndMT)
and lung fibrosis induced by TGF-f1 through inhibition of
the Jagl-Notch pathway (35). TGF-B1 stimulation signifi-
cantly upregulated the expression of Resistin-like molecule-§
(RELM-B) through the Smad2/3/4 pathway, which was
reported to enhance TGF-f1-induced cell proliferation and
EndMT (36). Rho kinase signal transduction activated by
TGF-p1 in EMT was a positive regulator of phosphodies-
terase 4 (PDE4), which promoted EMT of AEC (37).

TGF-f1-involved pulmonary fibrogenesis. The expression of
peroxisome proliferator-activated receptor y (PPAPY), a nega-
tive regulator of TGF-f1-induced fibrosis, is mainly controlled
by TGF-p1. Cells lacking Smad3 showed that the down-regu-
lation effect of TGF-p1 on PPARy was weakened, suggesting
that TGF-p1 regulates the PPARY in a Smad3-dependent
manner (38). TGF-f1 exerted a pro-fibrosis effect by regulating
the expression of connective tissue growth factor (CTGF), which
was attributed to activation of the TGF-f1/Smad3 signaling
pathway (39). Follistatin-like protein 1 (Fstll) was a glycopro-
tein that plays a crucial role in promoting fibrogenesis. At the
transcriptional and translational level, the expression of Fstll
was upregulated by TGF-f1 via the Smad3-c-Jun signaling
pathway in mouse pulmonary fibroblasts, suggesting that
TGF-f1 may contribute to the IPF through a Smad3/c-Jun/Fstl1
axis (40). Huang et al (41) reported that TGF-31/Smad3 signal
inhibited the expression of long noncoding RNA fetal-lethal
noncoding developmental regulatory RNA (FENDRR) which
can reduce fibrogenesis and inhibit the process of pulmonary
fibrosis. The TGF-f31/Smad3 signal upregulates the phosphor-
ylation level of ERKS5 and further leads to the contraction and
migration of collagen gel induced by TGF-p1 (42). miR-29, a
downstream target gene of TGF-/Smad, was capable of inhib-
iting numerous fibrosis-related genes upregulated by TGF-f1
including CTGF, Smad3 and TGF-31 (43). However, in fibro-
blasts, the expression of miR-29 was negatively regulated by
TGF-pf1/Smad3 signal (43-45). Similarly, Smad7, a negative
regulator of TGF-f1, is suppressed by miR-182-5p which is
induced by TGF-f1, resulting in the development of IPF (46).
TGF-p1 activates Semaphorin (SEMA) 7A and its receptors
through a Smad3-independent and Smad 2/3-independent
mechanism, respectively, promoting pulmonary fibrosis (47)
Activating transcription factor 4 (ATF4) was a pivotal tran-
scriptional regulator for the metabolism of amino acid (48).
TGF-p1/Smad3 signaling could increase the expression of the
ATF4 through initiating the mechanistic target of rapamycin
complex 1 (mTORC1) and its downstream translation initia-
tion factor 4E binding protein 1 (4E-BP1), promoting collagen
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Table I. The association between IPF incidence with age.

Studies <50 years 50-59 years (%) 60-69 years (%) >70 years (%) (Refs.)
Miyake 2.9% 14.7 549 275 117)
Kim NA 17.1 25.7 572 (118)

Table II. The association between IPF incidence with sex.

Studies Male (%) Female (%) (Refs.)
Baumgartner 60 40 (119)
Miyake 90.2 9.8 117)
Garcia-Sancho Figueroa 732 26.8 (120)
Awadalla 473 427 (121)
Kim 75.7 243 (118)
Koo 70.5 29.5 (122)
Paolocci 72.5 27.5 (123)

biosynthesis (49). This is one of the key pathways through
which TGF-p1 stimulates collagen synthesis and IPF in
HLF (50) (Fig. 2).

PI3K-relevant signaling pathway. A great number of studies
indicated that phosphatidylinositol-3-kinase (PI3K) was
involved in the pathomechanism of pulmonary fibrosis (51-54).
It was also revealed that PI3K may play an important role in
TGF-pl1-relevant IPF.

As mentioned previously, CTGF is a functional inter-
mediate product between TGF-f1 and ECM protein. CTGF
derived from epithelial cells can activate fibroblasts and
further accelerate the fibrosis process in an autocrine
manner (55). It was reported that TGF-p1 may induce the
EMT and synthesis of ECM in lung epithelial cells through
the TGF-B1/PI3K/CTGF signaling pathway (56). Treating
human lung epithelial cells with PI3K inhibitor can, not only
inhibit the synthesis of CTGF and type I collagen, but also
reverse the EMT and fibrogenesis stimulated by TGF-f1.
TGF-p1 activated PI3K and protein kinase B (PKB)/AKT via
SEMA 7A-dependent mechanisms. SEMA 7A plays a central
role in the PI3K/PKB/AKT pathway, which contributes to
TGF-B1-induced fibrosis and remodeling (47). TGF-p1 acti-
vated the PI3K/Jun-NH2-terminal kinase (JNK)/AKT and
AP-1 synergistically to induce tissue factor (TF) expression in
HLF, promoting the process of IPF (57) (Fig. 3).

MAPK-relevant signaling pathway. Mitogen-activated protein
kinase (MAPK), mainly consisting of three distinctive
cascades, the JNK, p38 and ERK pathways, is a well-known
and crucial signaling pathway in multiple diseases (58-61).
In the past decades, the role of MAPK cascade in the
TGF-pl-relevant IPF has been gradually elucidated.

JNK pathway. Coagulation factor XII (FXII) is a serine
protease relevant to fibrinolysis, it was demonstrated that the
production of FXII induced by TGF-f1 in HLF was mediated
with JNK/Smad3 signaling pathways (62). With the stimulation

of TGF-f1, the expression of phosphorylated p38, phosphory-
lated JNK, and interstitial phenotypic markers including
desmin, vimentin and a-SMA were significantly increased (63).
TGF-pl-induced primary lung fibroblasts immediately release
extracellular fibroblast growth factor-2 (FGF-2), p38 MAPK and
JNK phosphorylation. As a result, lung fibroblasts proliferated
in response to TGF-B1 indirectly (64). TGF-f1 can induce the
phenotype of HLF to myofibroblasts in a dose- and time-depen-
dent manner. Although the activity and phosphorylation of
c-JNK, p38 MAPK, and ERK increased in response to TGF-f1,
phenotypic modulation from HLF to myofibroblast was only
regulated by c-JNK, suggesting that TGF-f1 induced HLF to
myofibroblast via a c-JNK-mediated pathway (65). TGF-p1 was
also reported to contribute to pulmonary fibrosis through down-
regulation of the expression of vascular endothelial growth
factor-D (VEGF-D) in HLF via the JNK signaling pathway,
providing a speculative mechanism in the tissue remodeling of
IPF (66). Notably, this protective effect of TGF-31 on fibroblasts
was independent on endothelin (ET)-1, which also endows
fibroblast resistance to apoptosis. TGF-B1 could induce the
deposition of extracellular matrix derived from tracheal basal
cells, and the latter promoted EMT via a c-JNK1 involved
pathway, which impairs the homeostasis of epithelial cell and
the occurrence of IPF (67).

p38 signaling pathway. Notably, TGF-f1/MAPK signal not
only contributed to the phenotypic modulation to myofibro-
blast, but also showed a protective effect on myofibroblasts.
For example, TGF-fB1 attenuates the apoptosis of fibroblast
by inducing the production of a p38-dependent growth
factor, which activates PI3K/AKT successively (68). It is
noteworthy that activation of p38 MAPK induced by TGFfp1
was able to induce a-SMA but not collagen I in HLF (24).
Tissue inhibitors of matrix metalloproteinases 3 (TIMP3),
an effective angiogenesis inhibitor blocking the binding of
VEGEF to VEGEF receptor 2, may be an important mediator of
TGF-pB1-mediated IPF (69). As TGF-f1 strongly upregulates
the expression of TIMP3 in HLF, this process is relevant to
p38 but not ERK pathway. The p38-mediated loss of epithelial
complement inhibitory protein (CIP) caused by TGF-p1 led
to the expansion of IPF epithelial damage, which in turn led
to complement activation, further downregulated CIPs and
induced the expression of TGF-f1 in feedback (70).

ERK signaling pathway. TGF-p1 regulates the autocrine of
basic fibroblast growth factor (bFGF) in HLF, which activated
the expression of ERK pathway and the induction of activator
protein-1 (AP-1), accelerating pulmonary fibrogenesis (71).
It was also reported that TGF-B1 induces GSK-3f inhibition
and nuclear (3-catenin translocation in HLF through ERK1/2
activation, which successively led to the production of
v-SMA and collagen (72). CD44v6 regulates the synthesis of
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Table III. Continued.

(Refs.)

Biological effect

Target gene Potential signaling pathways

Cell/tissue type

Author, year

(74)

Promoting fibroblast proliferation and

fibrogenesis

TGFpB1/FGF-2/ERK1/2

FGF-2

Human alveolar epithelial cell

Xiao et al, 2012

(85)

Attenuating myofibroblast

differentiation

TGF-B1/CDCP1

CDCPI

Human lung fibroblasts

Noskovicova et al, 2018

YE and HU:

(96)
(71)

Promoting cell apoptosis and lung injury
Promoting pulmonary fibrogenesis

Promoting development of IPF
Promoting pulmonary fibrosis

TGF-B/caspase-3/Fas

caspase-3
bFGF

ANG

Human bronchiolar epithelial cells

Human lung fibroblasts

Hagimoto et al, 2002
Finlay er al, 2000
Uhal et al, 2007
Zhou et al, 2012

TGF-31/bFGF/ERK-AP1

TGF-f1/ANG

(86)
oD

Primary human lung fibroblasts

TGF-f1/amphiregulin/EGFR/TGF-f1

Amphiregulin

Human alveolar epithelial cell (A549)

TGF-$1 IN IDIOPATHIC PULMONARY FIBROSIS

COL1 and a-SMA in fibroblasts, and it is a potential activa-
tion target of TGF-f1 in lung fibroblasts (73). The induction
of CD44v6 by TGF-B1 not only depends on ERK-induced
early growth response-1 (EGRI1) signaling, but also requires
abundant AP-1 involvement, suggesting that there is a
TGFPR1-ERK-EGR1/AP-1-CD44v6 axis (73). TGF-f1 can
induce the expression of FGF-2 and its release from type II
AEC. In addition, the FGF-2 signaling is responsible for
the fibroblast proliferation and fibrotic activation through
the ERK pathway (74). TGF-f1 binds non-covalently to the
latency-related peptide (LAP) to form a complex. Consequently,
the interaction of integrin a8f1 and LAPT-TGF-1 complex
induces FAK and ERK phosphorylation and promotes cell
proliferation (75) (Fig. 4).

Wht/-catenin relevant signaling pathway. The Wnt/p-catenin
pathway is the canonical Wnt signaling pathway, also known
as the ‘B-catenin-dependent’ Wnt pathway. Wnt/p-catenin has
been proven to play an important role in body development
and growth, tumor, cardiovascular disease, musculoskeletal
diseases, and also respiratory disease (76-78). In normal condi-
tions, the glycogen synthase kinase-33 (GSK-3[3) combines with
the (-catenin, axis inhibition protein (Axin) and adenomatous
polyposis coli (APC) to form a complex. When the Wnt/f3-catenin
was activated, the complex degraded, while -catenin was not
degraded and translocated into the nucleus (77).

Increasing evidence suggested that Wnt/f-catenin was
involved in the TGF-B1-relevant IPF. TGF-B1 initiated the
Wnt/B-catenin cascade via upregulating -catenin and
GSK-3p, promoting the fibrotic differentiation of lung resident
mesenchymal stem cells (LR-MSCs) (79). In addition, it was
found that, Wnt/B-catenin was required for the initiation of
Smad?2/3 induced by TGF-f1, suggesting that there may be a
crosstalk between the two mechanisms in the myofibroblast
differentiation (80). GSK-3 signaling decreases the phosphory-
lation of cAMP-response element binding protein (CREB) and
attenuates its antagonism function on TGF-f/Smad signaling,
promoting the myofibroblast differentiation in HLF (81).
However, Liu et al suggested that in the transition of human
normal skin fibroblast to myofibroblast induced by TGF-f1,
Wnt/B-catenin played the role of negative regulator (82).
TGF-p1 was capable of inducing the accumulation of 3-catenin
in the nuclear, facilitating EMT in a CREB-binding protein
(CBP)-depending pattern in AEC (83). This revealed a poten-
tial cascade of TGF-f1/p-catenin/CBP. miR-29 negatively
regulated the proliferation of IMR-90 cells induced by TGF-f31,
but TGF-f1 inhibited the expression of all three members of
the miR-29 family via Wnt3a/B-catenin pathway (84) (Fig. 5).

Feedback regulation mechanism. Feedback regulation is a
crucial aspect in molecule cascades. Both positive and negative
feedback are revealed in TGF-B1-involved pathway in IPF.
TGF-f1 strongly downregulated Cub domain-containing
protein 1 (CDCP1), which promoted myofibroblast differen-
tiation through inhibition of the potential negative feedback
effect of CDCP1 expression on TGF-p1 stimulation (85).
Similarly, TGF-B1 activated the autocrine mechanism of
angiotensin (ANG) and angiotensinogen (AGT) peptide, which
upregulated the expression of TGF-f1 to form an ‘autocrine
loop’, promoting the development of IPF (86). miR-133a was
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Figure 1. Role of TGF-f1 in Idiopathic pulmonary fibrosis. TGF-f1 plays a crucial role in idiopathic pulmonary fibrosis. It promotes the transformation of
fibroblast into myofibroblast, epithelial cell into mesenchymal cell, and it promotes the production of collagen, filamentous actin and a-SMA.

EMT/EndMT

— Promoting
~ — Inhibiting
CTGF

SEMATA
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Myofibroblast differentiation

Figure 2. TGF-B1/Smad signaling pathway. TGF-B1 influences the three key steps of idiopathic pulmonary fibrosis: EMT/EndMT, myofibroblast differentia-
tion, and fibrogenesis by participating in Smad-related signaling pathways. TGF-f1 activates HMGBI1, RELM-f, Slit2, and Fstll by combining with Smad2
and Smad3. However, this combination has both a positive promotion role, as well as an inhibitory role. In addition, Smad7 plays a negative regulatory role in
these mechanisms. These are not three independent pathways, there are places where they cross each other.

reported to attenuate the differentiation of myofibroblasts
by targeting many components of the TGF-f1 pro-fibrosis
pathway, including a-SMA, CTGF and collagen. There seems
to be a negative-feedback loop in the TGF-p1 pro-fibrogenesis
pathway, because TGF-P1 upregulates the expression of
miR-133a (87). Additionally, p21, a key regulator of apoptosis
induced by TGF-f1 through tumor necrosis factor-o. (TNF-o)
signaling pathway, negatively regulates TNF-a expression
induced by TGF-p1, participating in the fibrosis and alveolar
remodeling induced by TGF-f1 (88). TNF-a could enhance
the process of EMT induced by TGF-f1 in A549 cells through

combination with TGF-f1 (89). However, TGF-f1 was also
reported to inhibit the release of TNF-a from mast cells (90).
TGF-p1 stimulates the EGFR ligand, amphiregulin, which
regulates the classical and non-classical TGF-B1 signaling
pathway through the activation of EGFR (91) (Fig. 6).

Other signaling pathways. Besides the signaling pathways
discussed above, other molecules cascades were also revealed
to be involved in the TGF-f31 relevant mechanisms of IPF.
The proliferation of fibroblasts is mainly mediated by
platelet-derived growth factor (PDGF) isoforms, whose activity
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Figure 3. PI3K signaling pathway. TGF-f1 activates the PKB, JNK, and AKT signaling pathways through the PI3K signaling pathway, and also activates AP-1
to promote the production of tissue factor, which ultimately lead to the formation of idiopathic pulmonary fibrosis.
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Figure 4. MAPK signaling pathway. The JNK, P38 and ERK pathways constitute the canonical MAPK signaling pathway. The downstream of JNK signaling
pathway has Smad3, a-SMA, and VEGF-D, which promote the former two and inhibit VEGF-D. Downstream of p38 are CIP, GF, TIMP3 and a-SMA. P38
inhibits CIP, CIP inhibits complement, and complement in turn inhibits TGF-f1. The ERK pathway is a very complex signaling pathway, in which there are
many molecules, including FGF-2, AP-1, and y-SMA. The final effect of these pathways is to promote the production of a-SMA and COL1, leading to idiopathic

pulmonary fibrosis.

was potentially regulated by TGF-f1 (92). It was reported that
TGF-p1 downregulated the expression of PDGF-a receptor
(PDGF-Ra) transcript. However, TGF-p1 facilitated the
transcription of PDGF-Ra in HLF, suggesting that TGF-f1
may contribute to IPF through a PDGF-Ra-involved complex
network (92). It was reported that the IL-11 secreted by
fibroblasts in the lungs of patients with IPF was significantly
upregulated (93), and results demonstrated that TGF-1

significantly increases IL-11 receptor expression in mouse
fibroblasts (94), suggesting that IL-11 may be an important
mediator of TGF-f1 involved IPF. Fas pathway-mediated
apoptosis of lung epithelial cells is involved in the pathogen-
esis of pulmonary fibrosis (95). In lung tissues of patients
with IPF, Fas- and FasL-induced apoptosis occurs in AEC
and infiltrated inflammatory cells. TGF-1 enhances the
Fas-mediated pulmonary epithelial cell apoptosis through
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Figure 5. Wnt/p signaling pathway. The Wnt/f signaling pathway plays an important role in idiopathic fibrosis promoted by TGF-f1. After TGF-f1 activates
‘Wnt/B-catenin, it degrades the complex formed by GSK-3f and f-catenin, axin and APC, then (3-catenin is released. Additionally, TGF-B1 promotes the
production of f-catenin by combining with Smad2/3, which ultimately leads to an increase in the production of CBP.
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Figure 6. Feedback regulation signaling pathway. TGF-f1 promotes the production of EGFR by promoting the production of amphiregulin, but EGFR plays
a negative feedback role, inhibiting the process by which TGF-f31 promotes the production of amphiregulin. TGF-f1 promotes the production of p21 by
promoting the production of TNF-a, but p21 in turn inhibits the process that promotes its production. TGF-B1 promotes miR-133, but miR-133 inhibits the

production of a-SMA, CTGF and COL I.

caspase-3, resulting in lung injury and pulmonary fibrosis (96).
TGF-p1 induces the expression of exogenous tribbles
homolog 3 (TRB3), which stimulates EMT and promotes the
onset of IPF. In addition, TRB3 may participate in the regula-
tion of EMT in MLE-12 cells induced by TGF-p1 through the
Wnt/p-catenin signaling pathway (97). Insulin-like growth
factor-1 (IGF-I) can co-operate with TGF-f1 to enhance the
proliferation of lung fibroblast (98).

Currently, findings have shown that TGF-f1 may
contribute to the development of IPF through epigenetic regu-
lation. In fibroblasts from patients with IPF, TGF-f1 induces
the upregulation of DNA methyltransferase (DNMT3a) and
tetmethylcytosine dioxygenase 3 (TET3) (99). TGF-f31 inhibits
Caveolin (Cav)-1 gene via histone modifications, contributing
to fibroblast proliferation and apoptosis resistance (100).

TGF-B1 may promote IPF by reducing the production of
antioxidant substance and inducing oxidative stress. TGF-31
disturbs the homeostasis of the messenger RNA (mRNA) of the
v-glutamylcysteine synthase (y-GCS) gene and downregulates
the transcription of the gene, inducing the production of ROS

in epithelial cells (101,102). It was also reported that TGF-f31
reduced the production of glutathione by downregulating
precursor amino acid transport and synthesis rate (103). These
results are consistent with previous reports of Guo et al (29)
and Hecker et al (27) (Fig. 7).

3. Discussion

IPFis anirreversible lung disease, and there is no exact cause (1).
In recent years, the incidence of IPF has gradually increased.
There are numerous reasons for the increasing incidence of
IPF. Firstly, IPF susceptibility is closely related to aging, which
may lead to telomeres shortening and mitochondrial dysfunc-
tion. At present, the aging population is on the rise, resulting
in an increasing incidence of IPF (104). Secondly, the develop-
ment of medical technology has led to easy, convenient, and
precise diagnosis of IPF, resulting in increasing incidence of
IPF (105). Additionally, accumulating exposures to numerous
risk factors such as smoking, occupational dust, drug stimula-
tion, bacterial and virus infection, also play a role (106). The
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Figure 7. Other signaling pathways. TGF-f31 promotes Fas by activating caspase-3, and it can also promote the Wnt/f} signaling pathway by promoting TRB3.
In addition to positive promotion of idiopathic pulmonary fibrosis, it also has a negative inhibitory effect, such as TGF-f1 through the inhibition of PDGF-Ra
protein transcription and inhibition of Cav-1 production to play a negative role in idiopathic pulmonary fibrosis.

increased incidence of IPF has had a significant impact on the
economic development of human society and the physical and
mental health of people (4). The drugs currently studied can
only delay the progression of the disease and maintain lung
function but cannot cure the disease (107). In the pathogenesis
of IPF, there are many mechanisms, of which TGF-f1 plays an
important role (16). The IPF incidence of male was higher than
that of female; this may be because of exposure to smoking,
which is an acknowledged risk factor (106). Regarding the
association between the IPF incidence and age, as mentioned
previously, IPF is an age-associated disorder (1). Accumulated
environmental exposures and cellular functional alteration
with aging, for example, telomeres shortening, would facilitate
the injury of lung (104). Although lung transplantation is the
single most effective way to treat IPF, age is an influencing
factor as older patients are less tolerant to surgery. According
to the current study, age has become a limiting condition for
lung transplantation in IPF patients, and the survival rate after
lung transplantation in elderly patients older than 65 years
is relatively low (108). Therefore, it is ofgreat significance to
develop effective early diagnostic methods and innovative
therapeutic strategies, such as applications of mesenchymal
stem cells (109).

TGF-B1 activates Smads through the transmembrane
receptor serine/threonine kinase, thereby continuously regu-
lating the transcription of target genes (110), The TGF-f1/Smad
signaling pathway functions in IPF mainly through the
following three processes: Myofibroblast differentiation,
EMT/EndMT and fibrogenesis (111). TGF-f1 activates PI3K
and protein kinase B (PKB)/AKT through a SEMA
7A-dependent mechanism, thereby inducing the formation of
EMT and ECM in lung epithelial cells (47). TGF-B1 mediates
the production of FXII through the JNK/Smad3 signaling
pathway (62). It also attenuates the apoptosis of fibroblasts by
inducing the production of p38-dependent growth factor, which
continuously activates PI3K/AKT. At the same time, it also
initiates the Wnt/B-catenin cascade by upregulating [3-catenin

and GSK-3f (79). TGF-f1, not only regulates various mecha-
nism pathways, but also affects IPF by regulating epigenetics,
oxidative stress, and miRNA (112-115). Some research
suggested that Smad3 activation has no effect on collagen I or
a-SMA (24). However, Liu ef al suggested that in the transi-
tion of human normal skin fibroblast to myofibroblast induced
by TGF-B1, Wnt/B-catenin played a role of negative regulator,
but had different functions in the lung, thereby promoting the
hypothesis that Wnt/B-catenin is tissue-specific (82).

There are crosstalks and self-regulating loop in different
pathways involved in TGF-f1-induced IPF. The Rho/Rock
and Smad signaling pathways may cross talk in lung fibroblast
differentiation (31). The Rho/Rock inhibitor downregulated
Smad?2 expression and the TGF-f/Smad inhibitor down-
regulated RhoA, RhoC and Rockl expression. There may be
a complex network between the Rho/Rock pathway and Smad
signaling in the process of lung fibroblasts to myofibroblasts
induced by TGF-B1. TGF-f1 mainly promotes IPF, but there
are also some self-regulating mechanisms that can induce
miR-133a expression which acts as an antifibrosis regulator
of TGF-f1, which induces IPF (87). Activation of the MAPK
family is mediated by TGF-31, which affects Smad signaling.
ERK1/2 activation directly phosphorylates and activates
p90RSK, which is a set of serine/threonine kinases that play a
key role in the MAPK signaling pathway (116).

However, some mechanisms and pathways involved in
TGF-B1 have not been clarified; thus, greater efforts to iden-
tify these should be made with regard to TGF-f1. Although
some pathways have been proven, fewer drugs are actually
converted into clinical applications. As for further studies
on TGF-f1 in IPF, the focus should be on the intersection
of various pathways, to facilitate the development of more
effective drugs. At the same time, in addition to study on
the various signal pathways involved in TGF-f1, an in-depth
study of its role in epigenetics, and oxidative stress should also
be conducted. After all, the purpose of research is to serve the
clinic and solve the problem of clinical IPF treatment.
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4. Conclusion

TGF-f1 plays a crucial role in the development of IPF as it regu-
lates the pathomechanism of IPF through a number of signaling
pathways, including Smad, MAPK, Wnt, and ERK pathways.
The effect of TGF-f1 on IPF is one of stimulation. Nevertheless,
there are some self-limiting mechanisms. Furthermore, some
TGF-B1-relevant mechanisms in IPF remain to be elucidated.
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