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STARTRAC analyses of scRNAseq data from tumor
models reveal T cell dynamics and therapeutic
targets
Dev Bhatt1*, Boxi Kang2*, Deepali Sawant1*, Liangtao Zheng2*, Kristy Perez1, Zhiyu Huang1, Laura Sekirov1, Dan Wolak1,
Julie Y. Huang1, Xian Liu1, Jason DeVoss1, Paolo S. Manzanillo1, Nathan Pierce1, Zemin Zhang2, Antony Symons1, and Wenjun Ouyang1

Single-cell RNA sequencing is a powerful tool to examine cellular heterogeneity, novel markers and target genes, and
therapeutic mechanisms in human cancers and animal models. Here, we analyzed single-cell RNA sequencing data of T cells
obtained from multiple mouse tumor models by PCA-based subclustering coupled with TCR tracking using the STARTRAC
algorithm. This approach revealed various differentiated T cell subsets and activation states, and a correspondence of T cell
subsets between human and mouse tumors. STARTRAC analyses demonstrated peripheral T cell subsets that were
developmentally connected with tumor-infiltrating CD8+ cells, CD4+ Th1 cells, and T reg cells. In addition, large amounts of
paired TCRα/β sequences enabled us to identify a specific enrichment of paired public TCR clones in tumor. Finally, we
identified CCR8 as a tumor-associated T reg cell marker that could preferentially deplete tumor-associated T reg cells. We
showed that CCR8-depleting antibody treatment provided therapeutic benefit in CT26 tumors and synergized with anti–PD-
1 treatment in MC38 and B16F10 tumor models.

Introduction
Immunotherapies including anti–programmed death 1 (PD-1)
and anti–CTLA-4 antibodies have achieved major progress in the
treatment of various cancers over the past decade (Sharma and
Allison, 2015). Although many patients have benefited from
these revolutionary treatments, many cancers respond inade-
quately due to the ability of cancer cells to develop various es-
cape mechanisms and evade immune surveillance (Sharma
et al., 2017). Understanding these immune evasion mecha-
nisms holds the key for the development of the next generation
of immunotherapies. T cells play a central role in mediating
antitumor immunity (Fridman et al., 2012). Solid tumors are
frequently infiltrated with a heterogenous population of T cells
as part of the endogenous antitumor response. Cytotoxic T cells
inside tumors frequently display an exhausted or dysfunctional
phenotype marked by the upregulation of various coinhibitory
receptors, such as PD-1, TIM-3, and LAG-3 (Pardoll, 2012;
Ahmadzadeh et al., 2009). Checkpoint inhibitor therapies, such
as anti–PD-1 antibodies, block these inhibitory pathways and
reinvigorate the cytolytic capacity of these T cells (Egen et al.,
2020; Huang et al., 2017; Blank et al., 2019). Recent studies

further divide exhausted T cells into predysfunctional (pro-
genitor or stem like), early dysfunctional, and late dysfunctional
(terminally exhausted) subsets (Im et al., 2016; van der Leun
et al., 2020). In addition to exhausted T cells, cytotoxic T cells
in tumors and tissues display various other phenotypes, in-
cluding effector T cells (Temra/TEFF cells), central memory
T cells (TCM cells), resident memory T cells, effector memory
T cells (TEM cells), and stem cell–like phenotypes (Tsc; Zhang
et al., 2018; Yost et al., 2019; Yu et al., 2020; van der Leun et al.,
2020). Although some of these CD8+ cells are developmentally
linked to exhausted T cells, their precise contributions to the
antitumor response are not fully understood.

Conventional CD4+ T cells and CD4+Foxp3+ regulatory T cells
(T reg cells) also participate in cancer immunity. While CD4+ T
helper type 1 (Th1) and T follicular helper (Tfh) cells promote
CD8+ cytotoxicity and antitumor activities, T reg cells suppress
antitumor immunity (Borst et al., 2018; Nishikawa and
Sakaguchi, 2014). In preclinical models, many therapies, such
as anti–CTLA-4 and anti-OX40, achieved therapeutic benefits
through the depletion of tumor-infiltrating T reg cells (Egen
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et al., 2020). Similarly, although not conclusive in human
cancers, there are data that suggest that partial depletion of T
reg cells in the tumor is one of the mechanisms of action for
anti–CTLA-4 checkpoint inhibitors (Simpson et al., 2013; Wei
et al., 2017; Sharma et al., 2019); however, anti–CTLA-4 therapy
and, indeed, most checkpoint blockade therapies lead to sig-
nificant adverse effects in cancer patients, including autoim-
mune reactions (Myers, 2018; Michot et al., 2016). New
strategies to manipulate cancer-infiltrating T reg cells should
aim to further improve their therapeutic window while mini-
mizing nonspecific inhibition that may lead to adverse effects.

Although the interplay of tumor cells and tumor-infiltrating
T cells has been well documented, several key questions re-
garding the heterogeneity, diverse functionalities, dynamics of
T cell clonal expansion, cross-tissue migration, and stimulus-
dependent phenotypic transition of tumor-infiltrating T cells
remain poorly understood. The advancement of single-cell se-
quencing technology has allowed an unprecedented and unbi-
ased view of the whole transcriptome of various cell types and
the heterogeneity of cellular compositions within a given tissue
or organ (Puram et al., 2017; Tirosh et al., 2016; Zhang et al.,
2018). Single-cell RNA sequencing (scRNAseq) technology has
been a valuable tool with which to dissect the cellular compo-
sition of heterogeneous leukocyte populations within the tumor
microenvironment of various human cancers (Wu et al., 2020;
Guo et al., 2018; Zhang et al., 2018; Deng et al., 2018). It has also
provided insights into the cellular impact of therapies and elu-
cidated mechanisms of drug resistance in cancer patients and
preclinical animal models (Yost et al., 2019; Zhang et al., 2020).

Another major advantage in single-cell immunology is the
ability to simultaneously sequence the transcriptome and the
α/β TCR antigen receptors. Because of the highly diverse nature
of antigen receptor variable, diversity and joining gene sege-
ment (V(D)J) recombination, each unique TCR clonotype rep-
resents a unique clonal lineage arising from a single progenitor
passed onto daughter cells and gives a direct measurement of
clonal expansion. Simultaneous determination of the TCR clo-
notype and total gene expression at the single-cell level enables a
precise categorization of the multitude of phenotypic states of a
TCR clone undergoing clonal expansion and enables tracking of
these clones across multiple tissues. To best integrate tran-
scriptome and TCR clonotype data, we previously developed a
single T cell analysis using the RNA sequencing and TCR
tracking (STARTRAC) algorithm for the study of T cell dynamics
in human colorectal cancer (CRC) samples (Zhang et al., 2018).
This analysis revealed many interesting features of tumor-
infiltrating T cell subsets. For example, exhausted CD8+ T cells
inside tumors exhibited high clonal expansion and expressed
high levels of effector genes, but showed low mobility and ap-
peared to be trapped inside the tumor. Conversely, tumor T reg
cells displayedmoderate levels of clonal expansion and appeared
to be developmentally different from the T reg cells identified in
the adjacent normal tissue.

Large numbers of α/β TCR clonotypes from individuals also
enable us to identify public TCRs. Public TCR clonotypes have
been traditionally defined as epitope-specific TCRs that are
frequently observed in multiple individuals (Venturi et al.,

2008); however, analysis of mouse naive T cells and preterm
neonates has shown that public TCRs may comprise a significant
portion of the naive T cell repertoire (Bousso et al., 1998; Carey
et al., 2017). These studies have typically relied on identification
of either α or β chains within a bulk population; however, it has
been shown that the sharing of paired TCRs between individuals
does indeed occur, albeit at a lower frequency (Grigaityte et al.,
2017 Preprint; Carter et al., 2019). Both recombinational bias and
convergent recombination are proposed to contribute to the
occurrence of public TCRs between individuals (Venturi et al.,
2008; Li et al., 2012). Public TCRs for either α or β chain alone
have been used in most of the previous studies that feature the
properties of public TCRs. For example, >1% of amino acid se-
quences encoded for TCRβ CDR3 are shared in two individuals
(Robins et al., 2009). Public CD8+ TCRβ CDR3 sequences specific
to influenza epitope have been detected in mice, suggesting a
convergent selection for best fit immunodominant epitope
(Kedzierska et al., 2004). Public TCRβ CDRs on CD4+ T cells were
also revealed in EAE models and were implicated as potential
drivers of disease progression (Zhao et al., 2016). Similarly,
public TCRs have been found in cancers (Le Gal et al., 2005;
Derré et al., 2008) and in mouse tumor models (Sainz-Perez
et al., 2012). Both recombinational bias and convergent recom-
bination seem to drive the occurrence of public TCRs in cancer
(Wang et al., 2017), and immunotherapy has been reported to
enhance public TCRα and β clonotypes (Hosoya et al., 2018);
however, public TCR single chains may not entirely reflect the
full antigen specificity of these cells, especially when tumor
antigens are the source of public TCR enrichment. Many public
β chain CDR3 sequences have been identified in various human
cancers and individuals, having been identified in tumor as well
as in peripheral blood (Li et al., 2016). The frequency of shared
public CDR3s in blood samples was also similar between healthy
individuals and bladder cancer patients (Elhanati et al., 2018).
From these data, the contribution of tumor antigens in driving
the frequency of these public TCR chains remains unclear.

In this study, we performed principal component analysis
(PCA)–based subclustering and applied the STARTRAC method
of clonotype tracking to gain a greater understanding of the
complexities of T cell subsets in mouse tumors. We conducted
paired single-cell TCR and gene expression sequencing with the
10x Genomics Chromium 59-based system on T cells from mice
bearing MC38 tumors at different time points and mice bearing
CT26 model—widely used syngeneic models to evaluate various
antitumor immune-modulation strategies. We harvested T cells
from the tumor, spleen, draining LN, and peripheral blood. We
sequenced over 60,000 T cells with complete TCRα and β chains
from several MC38 mice, enabling investigation into the pres-
ence of public TCRs and revealing the enrichment of public TCR
clones inside the tumors. We also combined the transcriptome
and clonotype information of all cells using STARTRAC, which
revealed a dynamic relationship between CD8+, CD4+, and
CD4+Foxp3+ T reg cell subsets that reflects much of what has
been seen in human cancers. Our data identified many unique
markers for various T cell subsets in mouse tumor models, but
also for the first time described the dynamic status of these T cell
subsets in the MC38 syngeneic tumor model. We also confirmed
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these subsets further by scRNAseq data obtained from different
time points of the MC38 model and CT26 model. Finally, by
comparing the transcriptome of human and mouse T reg cells
from cancers, we identified CCR8 as a potential depletion
marker for tumor-infiltrating T reg cells. When compared with
previously characterized tumor-infiltrating T reg cell markers,
such as CTLA-4, CCR4, and OX40, the expression of CCR8 was
more restricted in these T reg cells, suggesting that CCR8 was
potentially a better target for preferentially depleting T reg cells
in tumors. Indeed, an anti-CCR8 depletion antibody, but not
ligand-blocking antibody, was able to drive antitumor activity in
the CT26model and provide synergistic therapeutic benefit with
anti–PD-1 antibody in MC38 and B16F10 tumor models.

Results
T cell subsets identified in MC38 tumor model based on
transcriptome and paired TCR data
To understand T cell clonal expansion, activation and migration
dynamics, and developmental trajectories in a mouse tumor, we
used the well-established MC38 syngeneic tumor model due to
its amenability to immunotherapy. Tumors, spleens, draining
LNs, and peripheral blood mononuclear cells were harvested
from four tumor-bearing C57BL/6 mice 16 d after tumor im-
plantation. Total T cells from each tissue were purified and
processed for scRNAseq and TCR sequencing via drop se-
quencing using the 10x Genomics Chromium system. Samples
were prepared in two separate batches of purified FACS-sorted
T cells from two mice, with purified cells from each individual
mouse’s tissue run on a separate microfluidic lane.

All single-cell datasets were aligned using 10x Genomics Cell
Ranger count and vdj pipelines, and postalignment filtering and
clustering was performed using Seurat. The aggregated single-
cell datasets were filtered based on transcript levels, number of
unique genes observed, mitochondrial content, and finally se-
lection of cells with paired single TCRα and β chains. Distinct
clonotypes were assigned according to the presence of a unique
α and β chain, with each chain being defined as a unique com-
bination of V segment, J segment, and nucleotide-level CDR3.
The clonotype composition of all cells revealed that 56% of all
clonotypes contained a single paired α and β chain pair. The next
largest fractions of cells contained only one chain, either α or β,
most likely representing sequencing dropouts. A smaller pro-
portion of cells expressing two copies of either α or β alleles
possibly represent either biallelic expression within a single cell
or a cell doublet of two single-chain pairs. A small fraction of
cells (1–2%) contained more than two copies of any chain allele
were likely cell multiplets captured on a single bead (Fig. S1 A).
Importantly, these numbers were consistent regardless of the
tissue of origin (Fig. S1 A, right).

To maintain the highest degree of certainty about clonal
identity, we restricted our analyses to cells exhibiting a single α
and β chain pair and performed gene expression clustering on
this filtered set of cells. This yielded between 1,000 and 6,000
single cells per sample that passed gene expression quality filters
and had a clonotype comprised of a productive pair of α and β
TCR chains and an aggregate total of 64,449 cells from all

samples. 47,196 unique clonotypes with a single α and β pair
were found from these cells, indicating that 17,253 cells were
clonally expanded (Fig. S1 B). These 64,449 cells were used to
perform gene expression–based clustering. We performed batch
correction on the datasets as described in the Materials and
methods and then graph-based Louvain clustering on all ag-
gregated cells (Stuart et al., 2019), which identified 17 major
clusters (Fig. S1 C). However, when we examined these clusters
withwell-established T cell subsetmarker genes, such as FOXP3,
RORγt, IL-21, and IL-17, etc., we observed that some of these
clusters contained biologically meaningful subclusters. For ex-
ample, in the peripheral T reg cell and memory CD4+ subsets
(Fig. S1 C, red circle), FOXP3 clearly marked two additional
subsets within the memory cluster of cells (Fig. S1 D, red circles).
We therefore further refined the initial major cluster assign-
ments by iteratively examining for heterogeneous substructures
and splitting heterogeneous groups by PCA-based clustering.
Clusters that displayed at least five significantly differentially
expressed genes among its subclusters were assigned as separate
clusters, yielding 33 distinct clusters (Fig. 1 A, Table S1, and
Table S2). Since this procedure might result in overclustering,
we confirmed the reproducibility of these clusters by validating
their presence and similar distribution in all four individual
mice from two batches of scRNAseq data (Fig. 1 B), and examined
their stability by calculating the concordance of the clusters
from the down-sampled dataset with that from the full dataset
for all major clusters and PCA-based subclusters (Fig. S1 F). In
addition, as discussed later, we also verified that many of the
subclusters identified through this procedure were consistent
with previously defined T cell subsets.

Among these clusters, we identified 13 CD8+ clusters
(C01–C13), 7 CD4+Foxp3− clusters (C14–C20), and 5 CD4+Foxp3+

T reg cell clusters (C21–C25) based on key marker gene ex-
pression (Fig. 1, C–E) and their tissue of origin (Fig. 2, A and B).
We also found five ambiguous clusters that were composed of a
mixture of multiple cell types (C29–C33). We first applied the
doublet detection methods, Scrublet and DoubletDetection
(Wolock et al., 2019; Gayoso et al., 2018), to show that none of the
mixed clusters was identified as a collection of experimental
doublets (Fig. S2, A and B). We then applied per-cluster in-
spection of gene counts, read counts, and mitochondrial content
for all clusters (Fig. S2, C–E). The results indicated that
C29_Mixed_Lnc and C33_Mixed_Texhausted_Treg might be
composed of low-quality cells due to their lower number of
genes, lower number of read counts, and higher mitochondrial
content, while the qualitymetrics of othermixed clusters did not
deviate much from other clusters. However, marker gene
analyses indicated that C30, C31, and C32 contained mixed cell
types. For example, cluster C31 was marked by the presence of
canonical B cell and myeloid markers, such as Cd74 and Lyz2, as
well as canonical T cell markers (Fig. S2 F). Similarly, clusters
C30 and C32 were heterogeneous T cell clusters comprised of
both CD4+ and CD8+ single positive cells. Differential gene ex-
pression analysis did not exhibit obvious major phenotypic
differences from nearby related clusters, such as naive T cells
(Fig. S2 F). These latter two heterogeneous mixed clusters were
minimally derived from tumor samples (Fig. 2, A and B), and
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Figure 1. Gene expression and profiles of T cell subsets. (A) tSNE plot of 64,449 tumor and peripheral-derived T cells derived from four mice, colored as 33
distinct phenotypic clusters. (B) Distribution of the percentage of cells in each cluster from individual animals. (C) tSNE plot of key marker gene expression.
(D and E) Violin plots of major population and cluster-specific marker genes in CD8+ (D) and CD4+/T reg cell clusters (E).
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Figure 2. Tissue distribution of T cell clusters. (A) Tissue distribution preference of each cluster shown as a STARTRAC observed/expected distribution
score. (B) Tissue distribution of cells within each cluster displayed as tSNE (top) and bar graph (bottom). (C) Heatmap of differentially expressed genes in three
NKT/MAIT clusters. (D) Proportion of MAIT, NKT, and conventional variable TCR T cells in clusters C20 and C26-C28. dLN, draining LN.
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their TCRs were not clonally expanded (data not shown) and
were thus excluded from further analyses.

In addition to conventional T cell subsets, PCA-based sub-
clustering helped to better identify invariant natural killer
T cells (iNKT) and mucosal-associated invariant T cells (MAITs;
Figs. 1 A and S1 C, C26–C28). These clusters differed from other
standard variant clusters by the high expression of canonical
NKT genes, such as the lineage-specifying transcription factor
Zbtb16 (PLZF) and cell surface markers Klrb1c (NK1.1) and Nkg7
(Fig. 2 C). The semi-invariant T cells in these subclusters were
confirmed by their specific TCR α chain use, with 509 iNKT cells
that have the specific TRAV11-TRAJ18 α chain and 48 MAITs
defined by a TRAV1-TRAJ33 α chain (Garner et al., 2018). These
three were distinguished from each other by their gene profile
(Fig. 2 C), tissue localization (Fig. 2, A and B), and invariant cell
composition (Fig. 2 D and Table S3). C26_NKT_Cd160was almost
solely composed of splenic iNKTs, while C27_NKT_Gzmb and
C28_NKT_Pxdc1 showed a broader tissue distribution and in-
cluded many tumor-derived cells. Of these two clusters, C27 was
distinguished by high levels of multiple granzymemolecules and
Ly6c2 (Fig. 2 C). Cluster C28 had a higher proportion of MAITs
(Fig. 2 D) and expressed higher levels of the Th17 marker genes
Il17a, Rorc, Il23r, and Pxdc1, consistent with reported phenotypes
of NKT17/MAIT17 (Fig. 2 C; Salou et al., 2019).

Public clonotypes are enriched in tumor-derived and clonally
expanded clusters
The large number of clonotype sequences frommultiple animals
allowed us to address the frequency of clonotype sharing across
individual animals. Public TCR clonotypes have been tradition-
ally defined as epitope-specific TCRs that are frequently ob-
served in multiple individuals (Venturi et al., 2008); however,
analysis of mouse naive T cells and preterm neonates has shown
that public TCRs may comprise a significant portion of the naive
T cell repertoire (Bousso et al., 1998; Carey et al., 2017). These
studies have typically relied on identification of either α or β
chains within a bulk population; however, it has been shown
that the sharing of paired TCRs between individuals does indeed
occur, albeit at a lower frequency (Grigaityte et al., 2017 Preprint;
Carter et al., 2019). Here, we used both paired and unpaired α
and β chain sequence to address clonotype sharing among ani-
mals (public) based on the presence of identical nucleotide or
amino acid CDR3 sequences. In our data, the number of unique
amino acid–defined clonotypes was slightly lower: 47,115 com-
pared with 47,196 nucleotide-defined clonotypes. The reduced 81
clonotypes was caused by a low level of convergence from a
different nucleotide sequence of either one or both TCR chains to
identical amino acid sequence (Fig. S1 B and Table S4). Consid-
ering α and β paired clonotypes at the nucleotide level revealed
that only three clonotypes were shared between two animals
with no clonotype shared by all four animals (Fig. 3 A). Loos-
ening the sharing criteria to the amino acid sequence increased
the paired public TCR (ppTCR) clonotypes shared by at least two
animals to 41 clonotypes, which comprises 0.087% of total
unique paired amino acid CDR3 sequences (Fig. 3 B). Phenotypic
characteristics of the ppTCR clonotypes revealed that they are
mostly restricted to tumor-derived clusters (Fig. 3 C). ppTCRs

were identified in various tumor-infiltrating CD8+ subsets and
CD4+ subsets, with C11_CD8_Tex_Ccl3 and C17_CD4_Th1 con-
taining the highest percentage of public clonotypes in CD8+ and
CD4+ subsets, respectively (Fig. 3 D). These data suggest that
common tumor antigens may select for a convergence at the
amino acid level of tumor-specific TCR clonotypes. Consistently,
as further discussed below, these public clonotypes are mark-
edly clonally expanded, although not among the most highly
expanded CD8+ effector clonotypes (Fig. 3 E). In all mice, this
expansion was only observed with public clonotypes from tu-
mors, but not those from peripheral lymphoid tissues (data not
shown), suggesting that the expansion might be driven by
tumor-associated antigens.

Next, we analyzed the cross-animal publicity of individual α
or β chains. Comparison of amino acid chains yielded a higher
number of public TCR chains, with 119 α and 14 β amino acid–
level chains shared by all four animals (Figs. 3 F and S3 A). As
expected, the shared single public chain numbers are much
higher than that of ppTCR chains (Fig. S3 B). Invariant T cells
defined by the specific Vα-Jα combination discussed above only
comprised a few of the total public α chains—three NKT α
chains and only one MAIT α chain were shared by all four
subjects (Fig. S3 C). Despite the presence of a fixed germline
gene segment, these invariant α chains still displayed diverse
and subject-specific CDR3s (Fig. S3 C). Interestingly, the paired
clonotypes of semi-invariant NKTs and MAITs did not exhibit
cross-individual sharing despite having invariant α chains,
showing that the β chains in these cells maintain a high degree of
individual diversity (data not shown). We further investigated
whether public chains were associated with specific phenotypic
clusters by measuring the clonotype proportions (Fig. S3 B) and
calculating a STARTRAC publicity score for each cluster. This
score was derived in two steps: First, we calculated a publicity
index for each individual chain based on its clonal expansion and
distribution across multiple animals, and then the cluster-level
STARTRAC publicity score was defined as the weighted average
of all TCR chain publicity indices contained in the cluster (see
Materials and methods). A high publicity score for a cluster
meant that the public chains in that cluster were highly ex-
panded or constituted multiple paired clonotypes, possibly im-
plying that commonly shared antigens would drive expansion of
a particular phenotype. Most clusters had a similar level of chain
publicity, with the notable exception of the three invariant
clusters, which had high α chain publicity scores and clonotype
proportions (Fig. S3, B and D).

Tumor-infiltrating CD8+ cells displayed gradual expression
profiles and activation states
The naive CD4+, CD8+, and T reg cell subsets could be broadly
identified by the absence or low expression of Cd44 (Fig. 1 C).
The expression of several other marker genes—Tcf7, Lef1, Ccr7,
and Sell, encoding L-selectin CD62L—further defined naive
subsets and helped to distinguish several memory subsets.
Within CD8+ T cells, naive CD8+ cells (C01_CD8_Tn), marked by
Cd44−Tcf7+Lef1+ expression (Table S5), comprised the largest cluster
and was detected in the peripheral lymphoid tissues, but not in the
tumor (Figs. 1 C; and 2, A and B). The Cd44+Sell− C05_CD8_Teff

Bhatt et al. Journal of Experimental Medicine 6 of 26

scRNAseq analysis revealed CCR8 as a T reg target https://doi.org/10.1084/jem.20201329

https://doi.org/10.1084/jem.20201329


cluster belonged to an effector population, equivalent to hu-
man Teff cells or Temra cells, with high expression of Klrg1,
Cx3cr1, and S1pr5 (Fig. 4, A and C). There were three CD8+

central memory–like subsets marked as Cd44+Sell+ primarily

found in peripheral lymph tissues, including C02_CD8_Tscm,
C03_CD8_Gzmm, and C04_CD8_KLR (Fig. 4 A). In addition to
typical central memory cell markers, the C02_CD8 cluster had
higher expression of Myb, Tcf7, and Eomes (Fig. 4 C). BothMyb

Figure 3. Analysis of public TCRs. (A and B) Numbers of private and public nucleotide (NT; A) and amino acid (AA; B) levels of TCR clonotypes. Clonotypes
shared by more than one mouse are marked as public. (C and D) Public aa-level clonotypes as a percentage of all aa clonotypes within each tissue (C) and
phenotypic cluster for each mouse (n = 4; D). Paired Student’s t test was applied to determine the significance between clusters and tissues in C and D. ***, P <
0.001; **, P < 0.01; *, P < 0.05. (E) Clonal expansion of tumor T cells between private and public aa-level clonotypes. (F) Sharing of individual TCR chains
displayed as proportions. dLN, draining LN.
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Figure 4. Gene expression signatures of CD8+ clusters. (A and B) Heatmaps of peripheral-derived CD8 clusters C01-C05 (A) and tumor-derived CD8+

clusters C06-C13 (B). Genes displayed are either significantly differentially expressed between CD8+ populations or are notable markers of T cell differentiation,
function, and exhaustion. Rows represent genes and columns represent individual cells with cluster identities indicated by the color bar on top. (C) Violin plots
of key functional and differentiation markers. KLR, killer lectin related gene; ISG, IFN stimulated genes.
Bhatt et al. Journal of Experimental Medicine 8 of 26
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and Tcf7 help to maintain the stemness of T cell subsets, implying
that the C02_CD8 cluster may be a memory stem cell–like (Tscm)
population (Gattinoni et al., 2009). C04_CD8_KLR cells exhibited
markers associated with activation by IFN-γ pathway, which in-
cluded Il12rb2 and several KLR family genes, such as Klrb1c (NK1.1
protein), Klra6, and Klra7 (Fig. 4 C). C03_CD8_Gzmm and
C05_CD8_Teff cells resided mainly in peripheral tissues, whereas
cluster C04_CD8_KLR is of heterogeneous tissue origin (Fig. 2, A
and B).

Although exhausted or dysfunctional CD8+ T cells are domi-
nant in cancer-infiltrating CD8+ subset (Hashimoto et al., 2018),
these cells display a gradient of cell states from predysfunction
and early dysfunction to late dysfunction (van der Leun et al.,
2020). Because we harvested a large number of single cells, we
attempted to capture more granularity of these heterogeneous
substructures of the major exhausted subsets by PCA-based
subclustering (see Materials and methods; Figs. S1 C and 1 A).
Eight CD8+ T cells subsets or states were identified inside the
tumor, including C06_CD8_Tem_ISG, C07_CD8_Tex_ISG, C08_
CD8_Tex_Cd244, C09_CD8_Tex_Ccr7, C10_CD8_Tex_Gzmc, C11_
CD8_Tex_Ccl3, C12_CD8_Mki67_E2F, and C13_ CD8_Mki67 based
on statistically significant unique gene signatures (Figs. 4 B and S3
E and Table S5). Among these clusters, C06_CD8_Tem_ISG had
moderate expression of exhaustion markers, including Pdcd1 and
Lag3 (Fig. 4, B and C). Instead, cells in this cluster expressed genes
that are characteristic of effector and memory cells, for example,
Gzmk, Klf3, and Tcf7, as well as high levels of IFN-stimulated genes
(ISGs), such as Ifit2/Ifit3 and Isg15 (Fig. 4 C), presumably from
exposure to the tumor microenvironment. The remaining tumor-
infiltrating clusters all expressed high levels of Pdcd1, a marker
associated with exhausted or dysfunctional CD8+ T cells (van der
Leun et al., 2020). C07_CD8_Tex_ISG, C08_CD8_Tex_Cd244,
C10_CD8_Tex_Gzmc, C12_CD8_Tex_Mki67_E2F, and C13_CD8_
Tex_Mki67were similar to the typically defined tumor-infiltrating
exhausted T cells and expressed other exhaustion marker genes,
Havcr2 and Cd244, in addition to Pdcd1 and Lag3 (Fig. 4 C), but PCA-
based subclustering captured subtle different gene expression
profiles that may reflect their functional status and exposure to
the microenvironment. For example, cluster C10_CD8_Tex_Gzmc
expressed a higher and broader range of granzyme molecules and
Prf1 than any other clusters (Fig. 4 C), associating with a potential
effector function in action. Cluster C07_CD8_Tex_ISG, in contrast,
had a higher IFN signature, suggesting an exposure to an IFN
microenvironment. In addition, both C12_CD8_Tex_Mki67_E2F
and C13_CD8_Tex_Mki67 clusters expressed Mki67 (Fig. 4 C), a
marker for cell cycle. C12_CD8_Tex_Mki67_E2F also highly ex-
pressed E2f1 and Cdc6, implying that they were in G1/S stage of the
cell cycle (Figs. 4 B and S4 F). Finally, both C09_CD8_Tex_Ccr7 and
C11_CD8_Tex_Ccl3 clusters had lower expression of Havcr2 and
Cd244, suggesting a less exhausted or predysfunctional status
(Fig. 4 C). Indeed, C09_CD8_Tex_Ccr7 also had less expression of
other effector molecules, but higher expression of Ccr7, a marker
gene for the predysfunction or stem precursor of CD8+ Tex cells
(Fig. S4 A; Brummelman et al., 2018; Galletti et al., 2020). In
contrast, C11_CD8_Tex_Ccl3 had higher expression of Ifng, Ccl3,
and Ccl4, and genes associated with NF-κB pathways, categorizing
these cells in an early TCR activation stage (Fig. 4 C). Since only

fewer effector marker genes, such granzymes, Ifng, Ccl3, and Prf1,
were identified to classify different clusters of tumor-infiltrating
CD8+ T cells by PCA-based subclustering, these clusters might not
represent distinct differentiated subsets as those identified in
CD4+ cells. Instead, these genes likely captured different activation
states or stimulatory conditions.

To better understand the developmental relationships among
all the T cell subsets in tumor, we performed monocle trajectory
analyses (Fig. S4 B). Consistent with our premise, the results did
not map clearly the developmental trajectories for most CD8+

Tex subsets (C09-C11), which are overlapped but distinguished
from C05_CD8_Teff and C06_Tem_ISG populations (Fig. S4 B),
supporting the idea that they were not distinct differentiated
subsets. This could be caused by related few distinct marker
genes among these Tex subsets or by Monocle2 to force cells
along branching trajectories. Interestingly, C07_Tex_ISG re-
sided at one end of the developmental trajectory and was more
overlapped with the cluster C06_CD8_Tem_ISG (Fig. S4 B). To
confirm that these different exhausted states we identified were
not simply due to overclassification, we analyzed additional
scRNAseq data from T cells isolated from MC38 tumors at dif-
ferent time points (day 11 and day 20) and from CT26 tumors
(Fig. 5 A). By using the Seurat3 pipeline, the same clusters have
been identified from these additional datasets (Fig. 5 A). Im-
portantly, the original marker genes identified from the original
day 16 data demonstrated similar differential expression pat-
terns and marked the similar clusters in these new datasets
(Fig. 5 B). Furthermore, as demonstrated as an example for
C07_CD8_Tex-ISG, the marker genes for the same cluster that
derived from different datasets showed a high degree of corre-
lation (Fig. 5 C). Similar results were also obtained for other Tex
subsets (data not shown). Finally, all these clusters were iden-
tified with similar distribution patterns from different time
points of MC38 tumors and CT26 tumors. In the MC38 model,
there was a higher percentage of C04_CD8_KLR cluster in day 11
than in later time points. There was also a trend toward an in-
crease of C08_CD8_Tex_CD244 in the later time points (Fig. 5, D
and E). Taken together, these data support the idea that these
different states of Tex cells were broadly present in mouse tu-
mor models.

Shared TCR uses among tumor CD8+ Tex subsets and
peripheral Teff cells revealed by STARTRAC analyses
By taking advantage of the higher cell numbers sequenced in
this study, we identified more gradual states of the intratumor
dysfunctional or exhausted CD8+ subsets than those reported in
human cancers (Zhang et al., 2018; Guo et al., 2018; Zheng et al.,
2017; Azizi et al., 2018; Tirosh et al., 2016; van der Leun et al.,
2020). Although these clusters might capture a more detailed
activation status and environmental conditions for intratumoral
CD8+ Tex cells, trajectory analyses further supported that these
clusters were not developmentally distinct subsets. We there-
fore used TCR clonal expansion data to examine the relation-
ships among these Tex clusters. Previously, we devised the
STARTRAC method to combine both transcriptome data and
TCR clonal information to describe various T cell clusters (Zhang
et al., 2018). Briefly, this method relies on the premise that cells

Bhatt et al. Journal of Experimental Medicine 9 of 26

scRNAseq analysis revealed CCR8 as a T reg target https://doi.org/10.1084/jem.20201329

https://doi.org/10.1084/jem.20201329


Figure 5. Correlation of tumor CD8+ clusters across multiple tumor time points and models. (A) tSNE plot of integrated tumor T cell datasets, split by
tumor model and time point indicated at top. (B) Heatmap of key cluster-specific genes in multiple tumor models. (C) Correlation of key marker genes within
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bearing the same TCRαβ chain are derived from the same pro-
genitor cells and are thus developmentally related. The cross-
cluster transition or cross-tissue migration scores can be
calculated by the weighted Shannon diversity index for indi-
vidual clonotypes in a specific cluster or tissue by comparing
with multiple other clusters or tissues (Zhang et al., 2018).
Consistent with the characteristics of human tumor-infiltrating
CD8+ Tex cells (Zhang et al., 2018), all Tex clusters (C7-C13)
observed in MC38 tumors displayed higher clonal expansion
scores than other CD8+ clusters, especially naive and central
memory clusters (Fig. 6 A, top), but relatively lower migration
scores than Teff cluster C05_CD8_Temra (Fig. 6 A, middle, and
Fig. 6 B). Importantly, these Tex clusters had high STARTRAC
transition scores (Fig. 6 A, bottom), indicating that they were
developmentally connected, as supported by their significant
sharing of common TCRs among each other, further supporting
the conclusion from the pseudotime trajectory analyses (Fig. S4
B) and pairwise clonotype transition analysis discussed below
(Fig. 6 C).

Next, we compared expression profiles of orthologous genes
between the human and mouse tumor-infiltrating CD8+ ex-
hausted T cell subsets (Table S6). In this analysis, we combined
all mouse Tex subsets and generated combined gene signatures
to compare with the expression signature of human tumor-
associated CD8+ Tex cells described in previous studies (Zhang
et al., 2019; Guo et al., 2018; Zhang et al., 2018). Although many
canonical exhaustion markers Pdcd1, Tigit, and Havcr2 showed
a broad correlation in both species (Fig. 6, D and E; and Table
S6), there did remain a few unique signatures that were dis-
tinct to each species. For example, Itgae and Cxcl13were highly
expressed in all human tumor T cells examined, but absent in
mouse. Conversely, mouse CD8+ Tex clusters express Nkg7
and S100a6 at higher levels than human counterparts. Fur-
thermore, we found that many other genes, such as Bhlhe40,
showed a cross-species correlation (Fig. 6, D and E). Together,
these data suggest that CD8+ Tex cells in human cancer and in
a mouse tumor model share similar markers and dynamic
behaviors.

Within tumor-associated subsets, C06_CD8_Tem_ISG cells
were more overlapped with C07_CD8_Tex_ISG, but not with
other Tex subsets in the trajectory analysis (Fig. S4 B). They
instead showed moderate clonal expansion and slightly higher
migration capability than Tex subsets (Fig. 6 A). Notably, cells in
this cluster did not have a significant TCR clonotype-based de-
velopmental transition score to any Tex subset within the tumor
(Fig. 6 C). Importantly, although C07_CD8_Tex_ISG shared a
common IFN response signature with C06_CD8_Tem_ISG,
STARTRAC analyses suggested that these two subsets had dif-
ferent developmental origins (Fig. 6, A and C). Cells in the
C06_CD8_Tem_ISG cluster might not be directly reactive to the
tumor and might belong to bystander T cells reported in pre-
vious studies (Scheper et al., 2019; Simoni et al., 2018); however,

these cells may be exposed to cytokines such as IFN, similar to
C07_CD8_Tex_ISG, in the tumor microenvironment that result
in upregulation of IFN-responsive family genes such as Ifit
and Isg in their transcriptome (Fig. 4, B and C). Together, these
data supported the idea that STARTRAC could be used to
better understand the developmental and migration rela-
tionships among different clusters in supplement to tran-
scriptome and trajectory-based analyses.

Like its human counterpart, the periphery-enriched cluster
C05_CD8_Teff was the only subset that had a high expansion
score and a high cross-tissuemigration score (Fig. 6 A). Although
most cells in this cluster migrated between blood and spleen,
clonotypes within this cluster were highly shared with tumor
CD8+ clusters (Fig. 6 B). The gene signature and dynamic
properties of C05_CD8_Teff cluster were consistent with what
has been previously described for CD8+ Teff cells in human CRC
(Zhang et al., 2018). Interestingly, this cluster displayed high
STARTRAC transition score with a majority of the CD8 Tex
subclusters, except the cluster C08_CD8_Tex_Cd244 (Fig. 6 C),
supporting a developmental connection between intratumor
Tex T cells and peripheral effector-like cells.

In summary, the combined transcriptome, trajectory, and
STARTRAC analyses revealed more detailed dynamic states of
T cell exhaustion in the microenvironment of MC38 tumors.

STARTRAC analysis unveiled developmental connection
between intratumor Bhlhe40+ Th1-like cells and peripheral
Tfh cells
In the case of CD4+ cells, seven conventional CD4+ T helper cell
subsets and five T reg cell subsets could be readily distin-
guished by differential expression of Foxp3 (Fig. 1 A, Fig. S1 C,
and Table S7). PCA-based subclustering helped to identified
small, well-established T helper cell clusters, such as Th17 and
Tfh cells (Fig. 1 A and Fig. S1 C). Among conventional CD4+

clusters, the largest cluster C14_CD4_Tn was composed of
peripheral lymphoid tissue–derived naive cells expressing
high levels of Tcf7/Lef1 (Fig. 7, A and B). These cells were
nearly evenly distributed in the blood, LN, and spleen (Fig. 2,
A and B). Two peripherally enriched CD4+ memory subsets,
C15_CD4_Tfh and C16_CD4_Itgb1, were identified based on
their high expression of Cd44, Slamf6, and Itgb1 (Fig. 7, A and
B). The C16_CD4_Itgb1 cluster was preferentially enriched in
the blood and spleen, while C15_CD4_Tfh cells had high ex-
pression of known Tfh cell genes Il21, Bcl6, and Cxcr5 (Figs. 7 A
and S4 A) and were enriched in spleen and draining LNs
(Fig. 2, A and B). Their high STARTRAC migration scores
implied that cells in both clusters were mobile in the pe-
ripheral lymphoid tissues (Fig. 7 C, middle, and Fig. S4 C).
Interestingly, there is a high level of TCR clonal sharing be-
tween C15 and C16 clusters, indicating their developmental
connection (Fig. 7 D). Consistently, both clusters were largely
overlapped in the trajectory analyses and preceded the more

cluster C07_Tex_ISG between different mouse tumor time points and models. Fold change of genes over other tumor CD8+ clusters are plotted, with top 10
common and top five model-specific genes highlighted. (D and E) Boxplots showing the distribution of percentage of cells within each phenotypic cluster from
each indicated tumor type and time point. P values were calculated using unpaired t test. ***, P < 0.001; **, P < 0.01; *, P < 0.05.
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Figure 6. STARTRAC analysis of CD8+ clusters. (A) Clonal expansion, cross-tissue migration, and phenotypic transition scores for all CD8+ clusters quantified
by STARTRAC for each animal (n = 4). Significance calculated by ANOVA. (B) Pairwise migration between tissue pairs of CD8+ clusters quantified as a STARTRAC pMigr
score. (C) Cross-cluster phenotypic transition scores for all combined animals. P values calculated by permutation of clusters to determine significance of pairwise cluster
sharing. ***, P < 0.001; **, P < 0.01; *, P < 0.05. (D) Gene signature comparison between human and mouse Tex cells. Mouse CD8+ clusters C08-C11 were combined into
CD8_Tex and compared against all other clusters, while human Tex from previous human findings (Guo et al., 2018; Zhang et al., 2018; Zheng et al., 2017) were compared
with non-Tex clusters. Gene expression from both species are displayed as log2FC (color bar) with adjusted P value (green). Homologous genes are classified as human or
mouse enriched genes based on adjusted P value of < 0.01 and log2FC > 1.5 (human) or P value < 0.01 and log2FC > 0.3 (mouse). Genes enriched in both species are
indicated as core. (E) Correlation of key marker genes between aggregated mouse Tex clusters C08-C11 and aggregated human Tex clusters from three human cancers
labeled in D as Ca3. Gene expression fold change of genes over other clusters by species are plotted, with commonmarkers highlighted in red, mouse specific in green, and
human specific in blue. dLN, draining LN; HCC, hepatocellular carcinoma.
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Figure 7. Gene expression and STARTRC analysis of CD4+ effector clusters. (A) Heatmaps of all CD4+ clusters C14-C20. (B) Violin plots of key marker
genes. (C) Clonal expansion, cross-tissue migration, and phenotypic transition scores for CD4+ clusters quantified by STARTRAC for each animal (n = 4).
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differentiated Th subsets, such as Th1 and Th17 cells (Fig. S4
B). Neither of these two clusters displayed substantial clonal
expansion scores (Fig. 7 C, top). The C20_CD4_NKT_like
cluster represents a small number of mostly spleen-resident
cells that clustered closely together with the C28_NKT_Pxdc1
cluster (Fig. 1 A) and specifically upregulated the expression
of Zbtb16 (Fig. 1 D), but did not express the canonical TRAV11-
TRAJ18 α chain (Figs. 1 B and S2 B).

Although conventional CD4+ T cells only represented a
smaller portion of tumor-infiltrating cells compared with
CD8+ T cells, we identified three clusters—C17_CD4_Th1,
C18_Cd4_S1pr1, and C19_CD4_Th17—that were specifically
enriched in the tumor (Fig. 1, A and B; and Fig. S1 C). The
C18_CD4_S1pr1 cluster had higher expression of S1pr1 and Il7r
(Fig. 7, A and B), a feature of central memory cells, suggesting
that they might have recently migrated into the tumor. In sup-
port of this hypothesis, C18_CD4_S1pr1 was developmentally
linked with the peripheral C15_CD4_Tfh and C16_CD4_Itgb1
subsets in terms of their STARTRAC pairwise transition scores
(Fig. 7, C and D). In addition, consistent with the dynamic fea-
tures observed in human tumor-infiltrating central memory
cells (Zhang et al., 2018), cells in the C18_CD4_S1pr1 cluster had
lower clonal expansion, but a relatively high migration score
(Figs. 7 C and S4 C). C19_CD4_Th17 were Th17 cells that prefer-
entially expressed Il17a, Il23r, and Rorc (Fig. S4 A). These Th17
cells were not highly clonally expanded (Fig. 7 C, top), suggesting
that they were not actively proliferating within the tumor. In-
terestingly, they were developmentally related to C18_CD4_S1pr1
central memory cells, but not to any peripheral memory subsets,
indicating they may be derived from those TCM cells and remain
within the tumor as a resident memory subset (Fig. 7 D).

The C17_CD4_Th1 cluster was similar to Bhlhe40+ Th1 cells
described in human CRC (Fig. 7, A and B; Zhang et al., 2018,
2020; Yu et al., 2018; Emming et al., 2020). Cells in this cluster
expressed higher activation markers, Bhlhe40, Tbx21, and Ifng
(Fig. 7 B and Table S7). These cells might be activated by tumor
antigens, as supported by their high clonal expansion score
relative to all other CD4+ subsets (Fig. 7 C, top). Additionally, the
C17_CD4_Th1 cluster had both high migration and global de-
velopmental transition scores (Fig. 7 C, middle and bottom).
Trajectory analysis placed these cells at the end of the cell dif-
ferentiation pathway and closely related to C18_CD4_S1pr1
central memory cells (Fig. S4 B). In contrast to Th17 cells,
STARTRAC further revealed that these Th1-like cells were de-
velopmentally connected to not only C18_CD4_S1pr1 central
memory cells, but also to peripheral C15_CD4_Tfh and
C16_CD4_Itgb1 subsets (Fig. 7 D), because of the significant
sharing of common TCRs, implying that these Th1 cells could be
derived from different sources. Recently, the importance of IL-
21–producing Tfh cells in cancer immunity has been highlighted
in different models (Hollern et al., 2019). Consistently, a portion
of these Bhlhe40+ Th1 cells were able to express Il21 (Figs. 7 A and
S4 A).

Identification of clonally expanded tumor-associated T reg
cells in peripheral lymph organs
Like in CD4+ and CD8+ cells, PCA-based subclustering identified
five T reg cell clusters that exhibited distinct gene expression
profiles and tissue distributions (Fig. 8, A and B; and Table S1
and Table S2). The naive T reg cell subset C21_Treg_Foxp3
mainly resided within peripheral tissues and not in the
tumor (Fig. 2, A and B). Two memory T reg cell subsets—
C22_Treg_Ccr2 and C23_Treg_Cd83—were identified in the
periphery as well (Fig. 2 A), but were not identified in previous
human studies (Zhang et al., 2018; Guo et al., 2018; Zheng et al.,
2017). C22_Treg_Ccr2 was preferentially enriched in blood,
while the C23_Treg_Cd83 cluster was mainly enriched in LN
and spleen. Consistently, these two clusters could be distin-
guished by different marker genes that might reflect their
physical location. C22_Treg_Ccr2 was marked by high expres-
sion of S1pr1, Itgb1, Ccr2, and Lgals3 (Galectin-3) that were re-
lated to migration, while C23_Treg_Cd83 had higher expression
of Cd83, Lag3, and Pdcd1 that might be caused by priming and
activation (Fig. 8, A and B; and Table S8). Two T reg cell
clusters—C24_Treg_Gzmb and C25_Treg_Ki67—were tumor-
associated T reg cells, distinguished by high Gzmb, Lag3, and
Tnfrsf9, while the latter cluster contained proliferating T reg
cells (Fig. 8, A and B; and Table S8). We next sought to un-
derstand the correlations between tumor T reg cell phenotypes
observed in mice and previously published human tumor T reg
cells (Zhang et al., 2018; Guo et al., 2018; Zheng et al., 2017).
Comparative analysis of T reg cell samples revealed similarities
between the expression profiles of mouse tumor T reg cells and
human tumor T reg cells. The genes Foxp3, Ikzf2, Il2ra (CD25),
and Tnfrsf18 (GITR) showed strong concordance as tumor T reg
cell markers across species (Fig. 8, C and D; and Table S9);
however, many orthologous genes had divergent expression
patterns; CXCR6 was a significant marker of human T reg cells,
but was not highly expressed in mouse cells, while Ccr5 and Ccr2
were strongly upregulated in mouse but not in human (Fig. 8 C
and Table S9). Other common T reg cell marker genes identified
in both human and mouse tumors included Ccr8 and Entpd1.

TCR-based STARTRAC analyses indicated that only the
tumor-infiltrating T reg cells exhibited high clonal expansion in
the MC38 model (Fig. 8 E, top), consistent with the observations
of T reg cells in human tumors. The mobility of tumor-
infiltrating T reg cells was similar to peripheral memory T reg
cells (Fig. 8 E, middle). C22_Treg_Ccr2 and C23_Treg_Cd83 were
developmentally overlapped and placed between naive T reg
cells and tumor-infiltrating T reg cells based on trajectory data
(Fig. S4 B). Interestingly, in contrast to the relatively low de-
velopmental connectivity to the peripheral T reg cells observed
in previous studies for human tumor-infiltrating T reg cells,
the tumor-infiltrating T reg cells in theMC38model are strongly
developmentally connected with peripheral memory T reg
cell subsets, especially C22_Treg_Ccr2 (Fig. 8 E, bottom, and
Fig. 8 F). This discrepancy could be due to the fact that either

Significance calculated by ANOVA. (D) Cross-cluster phenotypic transition scores between CD4+ clusters for all animals combined. P values calculated by
permutation of clusters to determine significance of pairwise cluster sharing. ***, P < 0.001; **, P < 0.01; *, P < 0.05.
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Figure 8. Gene expression and STARTRC analysis of Foxp3+ T reg cells. (A) Heatmaps of all Foxp3+ clusters C21-C25. (B) Violin plots of key marker genes.
(C) Gene signature comparison between human and mouse T reg cell cells. Mouse T reg cell clusters C24 and the combination of C22/23 clusters, while human
T reg cell from previous human studies (Guo et al., 2018; Zhang et al., 2018; Zheng et al., 2017) were compared with non–T reg cell clusters. Gene expression
from both species are displayed as log2FC (color bar) with adjusted P value (green). Homologous genes are classified as human or mouse enriched genes based
on adjusted P value of < 0.01 and log2FC > 1.5 (human) or P value < 0.01 and log2FC > 0.3 (mouse). Genes enriched in both species are indicated as core.
Notable genes are highlighted in red. (D) Correlation of genes between human and mouse-derived tumor T reg cells. Fold change of genes over non–T reg cell

Bhatt et al. Journal of Experimental Medicine 15 of 26

scRNAseq analysis revealed CCR8 as a T reg target https://doi.org/10.1084/jem.20201329

https://doi.org/10.1084/jem.20201329


only a relatively small number of peripheral blood T reg cells
was examined in humans or T reg cells from peripheral lym-
phoid tissues, such as spleen and LN, were not examined in
previous human studies (Zhang et al., 2018). In summary, these
data support the model that tumor-infiltrating T reg cells in the
MC38 model are capable of undergoing clonal expansion in the
tumor and that these expanded T reg cell clones can be detected
in peripheral lymph tissues.

Antitumor activity of depleting CCR8-expressing tumor-
infiltrating T reg cells
Both tumor-infiltrating CD8+ T cells and T reg cells are essential
targets for cancer immunotherapy. Our scRNAseq data in the
MC38 and CT26 models provided an opportunity to identify
common targets expressed on these cells from both mouse
models and human tumors. Targeting T reg cells by anti–CTLA-4
antibody is clinically beneficial but also associated with signifi-
cant side effects in cancer patients (Tanaka and Sakaguchi, 2017;
Nishikawa and Sakaguchi, 2014). We therefore focused on the
identification of additional targets commonly expressed in both
human and mouse tumor-related T reg cells, but not in by-
stander T reg cells. Ccr8 was a top gene identified that was
preferentially expressed on T reg cells isolated from various
human cancer types and in theMC38 and CT26 models (Figs. 8 C
and 9, A–C). Importantly, compared with other known T reg cell
depletion targets, such as CTLA-4, CD25, OX40 (TNFRSF4), and
CCR4 (Onda et al., 2019; Sharma et al., 2019; Sugiyama et al.,
2013; Bulliard et al., 2014), CCR8 was more preferentially en-
riched in CRC-infiltrating T reg cells (Fig. 9 B). Unlike Ctla4, the
frequency of Ccr8 expression was much lower in peripheral and
normal tissue T reg cells, suggesting that it might be a better T
reg cell–depleting target. Similar patterns were also observed in
mouse (Fig. 9 C). Although in mouse T cell subsets, Ccr8 ex-
pression was broader than that in human (Fig. 9 C), its expres-
sion was still better restricted in tumor T reg cells compared
with CTLA-4 and OX40 (Fig. 9 C).

To better understand the protein expression of CCR8 in
tumor-infiltrating T reg cells and other T cell subsets, we ana-
lyzed the expression of CCR8 on tumor-infiltrating T cells from
MC38 model tumors by FACS. While ∼70% of tumor-infiltrating
T reg cells were positive for CCR8, <5% of CD8+ cells and
∼10–15% of CD4+FOXP3− cells had CCR8 expression (Fig. 9 D). In
addition, the quantity of CCR8 expression on positive cells was
significantly higher in T reg cells than in other cell types as
measured by mean fluorescence intensity (Fig. 9 D). Within the
CD4+FOXP3− population, CCR8+ cells were enriched in 4-1BB+

Th1-like cells (Figs. 9 E and S5 A), and in CD8+ cells the per-
centage of CCR8+ cells was significantly higher in the CCR7+

population than in the CCR7− population (Figs. 9 F and S5 B),
consistent with the observations from scRNAseq data (Fig. 9 C).

We next validated whether increased CCR8 protein expression
could be detected on tumor-infiltrating T reg cells across several
syngeneic mouse tumor models—CT26, B16F10, and EMT6.
CD25+Foxp3+ T reg cells comprise ∼15–60% of the total CD4+

T cells infiltrating mouse tumors (Fig. S5 C). Within the total T
reg cell compartment, CCR8+ T reg cells constituted ∼50–70% of
total tumor T reg cells in these models (Fig. 9 G). Importantly,
CCR8 expression was specifically upregulated on tumor-
infiltrating T reg cells relative to its expression on T reg cells
from peripheral lymphoid organs (spleen and draining LNs), as
well as other immune cell types across all tumor models (Figs.
9 H and S5 D). These analyses confirmed enriched CCR8 protein
expression on tumor T reg cells across multiple syngeneicmouse
tumor models, in alignment with the scRNAseq analysis from
the MC38 and CT26 models.

Owing to previous publications demonstrating that the CT26
tumor model is sensitive to anti–CTLA-4 monotherapy (Selby
et al., 2013; Simpson et al., 2013), we decided to first evaluate
the antitumor potential of targeting CCR8 as a single agent in the
CT26 tumor model. Furthermore, we sought to dissect the rel-
ative contribution to antitumor activity of a T reg cell–depletion
strategy mediated by anti-CCR8 antibody versus inhibition of T
reg cell recruitment to the tumor via CCL1-induced chemotaxis
(Iellem et al., 2001). We generated a CCR8-depleting antibody
with antibody-dependent cytotoxicity activity (aCCR8 mIgG2a)
and a nondepleting version that lacks antibody-dependent cy-
totoxicity (aCCR8 mIgG1 N297G). Both of these antibodies could
block the chemotaxis activity induced by CCL1, the dominant
ligand for CCR8, in vitro (Fig. S5 E), while the half-maximal
inhibitory potency (IC50) of the depleting antibody trended
higher than the nondepleting antibody in multiple experiments
(Fig. S5, E and F). To ensure both antibodies could sufficiently
block CCL1-induced chemotaxis in vivo, we measured the
pharmacokinetic parameters of both antibodies in vivo with
10 mg/kg i.p. dosing. Both antibodies had similar pharmacoki-
netics and, at 72 h, the nondepleting antibody could still main-
tain the high serum level at 27.4 μg/ml, which is 7.6-fold higher
than the IC90 (3.6 ug/ml) for blocking CCL1-induced chemotaxis.
We thus chose the 10-mg/kg i.p. dose every 3 d for all in vivo
studies.

Single-dose administration of these antibodies in CT26 tumor-
bearing animals led to a preferential depletion of tumor T reg
cells with the CCR8-depleting antibody and a corresponding
increase in the CD8/T reg cell ratio in tumors without im-
pacting T reg cells in peripheral tissues (Fig. 9, I and J). Im-
portantly, treatment with the CCR8-nondepleting antibody
did not lead to any changes in T reg cell frequencies or the
CD8/T reg cell ratio in any of the tissues evaluated (Fig. 9, I
and J). Although these data could not exclude the possibility
that anti-CCR8 antibody also depleted some small portions of

clusters are plotted, with top 10 common and top 5 species-specific genes highlighted. Human data are taken as an average of tumor T reg cell clusters shown
in C. (E) Clonal expansion, cross-tissue migration, and phenotypic transition scores for T reg cell clusters quantified by STARTRAC for each animal (n = 4).
Significance calculated by ANOVA. (F) Cross-cluster phenotypic transition scores between CD4+ and Foxp3+ clusters for all animals combined. P values
calculated by permutation of clusters to determine significance of pairwise cluster sharing. ***, P < 0.001; **, P < 0.01; *, P < 0.05. HCC, hepatocellular
carcinoma.
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Figure 9. Characterization of CCR8 expression in mouse tumor T reg cells. (A) tSNE plot of Ccr8 expression. (B) Violin plots displaying the cluster-
specific expression of Foxp3, Ccr8, and other key T reg cell–related marker genes in human tumors taken from Zhang et al. (2018). (C) Violin plots
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CCR8+ non–T reg cells, dosing therapeutically—day 11 after tu-
mor implantation—with the CCR8-depleting antibody in
CT26 tumor-bearing animals demonstrated significantly reduced
tumor burden and improved overall survival compared with
isotype-treated animals (Fig. 10, A and B), supporting the idea
that depletion of CCR8+ T reg cells was sufficient to drive a ro-
bust antitumor immune response. In contrast, blockade of CCR8/
CCL1 chemotaxis alone did not suffice to drive antitumor activ-
ity, since animals treated with the nondepleting CCR8 antibody
failed to exhibit any reduction in tumor burden (Fig. 10, A and
B). Next, we asked whether anti–CCR8-depleting antibody could
synergize with anti–PD-1 therapeutically in mouse tumor mod-
els. Since this antibody demonstrated superior efficacy in the
CT26 model as a single agent with minimal window for a syn-
ergistic effect, we tested anti-CCR8 antibody and anti–PD-1 an-
tibody combination in MC38 and B16F10 tumor models. Anti-
CCR8 antibody alone also significantly reduced the tumor pro-
gression in the MC38 model (Fig. 10, D and E), although it was
less than that in CT26 model, whereas it did not provide thera-
peutic benefit in the B16F10model as a single agent (Fig. 10, F and
G). In both models, however, anti-CCR8 significantly synergized
with anti–PD-1 to slow the tumor progression and prolong the
survival of the animals. These preclinical data in mouse models
highlight the preferential enrichment of CCR8 expression on
tumor T reg cells as an important target to specifically deplete
tumor T reg cells without impacting peripheral T reg cells to
boost antitumor immunity. Furthermore, it suggests that
blockade of the chemotaxis function of CCR8 alone may not
suffice for a robust antitumor therapy.

Discussion
The explosion of scRNAseq data from various human cancers
and preclinical models has enabled a highly granular view of
intratumoral immune cells (Zhang et al., 2020; Tirosh et al.,
2016; van der Leun et al., 2020; Yu et al., 2020). These data
have unveiled potential mechanisms underlying the suscepti-
bility or the resistance of cancers to immunotherapies (Yost
et al., 2019; Zhang et al., 2020). scRNAseq data can be used to
identify novel cell subsets and states, their potential functions
and uniquemarker genes, and their dynamic behavior over time
or in response to treatment. Advanced bioinformatic analyses of
these data have also provided insights into developmental tra-
jectories between related cell subsets (Park et al., 2020; Miragaia
et al., 2019); however, there remain challenges on how to best
interpret scRNAseq data from multiple studies when analyzing
transcriptome data. Individual studies usually capture the status

of cells at fixed time points due to the limitation of sample col-
lection and cost. Challenges also remain in the comparison of
cellular subsets and cellular status across studies, especially
across species. In studies of T cells, TCR information provides a
rich layer of data with which to address these questions. The
STARTRAC method we have previously developed is uniquely
suited to integrate transcriptome and TCR clonal information to
better describe the dynamics of T cell subsets (Zhang et al., 2018,
2020).

In this study, we sequenced a large number of MC38 tumor
and peripheral tissue–derived T cells, capturing both tran-
scriptome and TCR information with the goal of understanding
the expansion, migration, and differentiation of tumor-
infiltrating CD8+, CD4+, and T reg cell subsets. By using a step-
wise cell-partitioning approach in the single-cell transcriptome
analysis, we excluded most technical noises while retaining the
true biological variations among different cell populations,
thereby identifying robust cell subsets across animals and ex-
periment batches. We confirmed our findings with additional
scRNAseq analyses from MC38 tumor at different time points
and from CT26 tumor. Although cell subsets of different major
populations may not be partitioned at a uniform depth, this
method performed well at revealing biologically unique
subsets—for example, Th1, Th17, and Tfh subsets within mem-
ory CD4+ cells; however, this method might result in over-
clustering and artificial subsets. Thus, the biological significance
of certain subsets, such as various CD8+ Tex subsets, needs to be
further examined in vivo. We also aimed to understand the
commonalities and differences of these subsets in human
cancers versus syngeneic mouse tumor models. We found that
tumor T cells are comprised of mostly highly clonally ex-
panded CD8+ exhausted cells and moderately clonally ex-
panded T reg cells. In contrast, peripheral tissue–derived
T cells are more clonally diverse and have a low degree of
clonal expansion. We have identified cells with clonotypes
found in multiple tissues. In particular, those that migrate
between tumor and any peripheral tissue have distinct gene
expression phenotypes from those that are tissue-restricted
clonotypes. By comparing TCRs from individual mice, we also
identified many public TCR CDR3s. Paired TCRαβ sequences
allowed us to characterize the features of ppTCRs inside the
tumor. We focused only on ppTCR CDR3s, which more strin-
gently define antigen specificity, and demonstrated that there
was a clear enrichment of ppTCR preferentially inside tumors,
supporting tumor antigen–driven selection of these TCRs. In
the future, it will be intriguing to explore the potential anti-
tumor functions of these ppTCRs.

displaying the cluster-specific expression of Foxp3, Ccr8, and other key T reg cell–related marker genes in mouse. (D) Flow cytometry analysis of CCR8
expression in T cells from MC38 tumors (upper: percentages; lower: mean fluorescence intensity [MFI]). (E) Coexpression of CCR8 and 4-1BB in
MC38 tumor-derived CD4 TEFF populations (****, P < 0.0001 paired t test). (F) Coexpression of CCR8 and CCR7 in MC38 tumor CD8 populations (**, P <
0.005 paired t test). (G) Flow cytometry analysis of CCR8+ levels on tumor-infiltrating T reg cells across multiple syngeneic mouse tumor models shown
as representative FACS plots (left) and as average bar graphs relative to total T reg cells (right). (H) CCR8 expression on tumor-infiltrating T reg cells
compared with expression in peripheral lymphoid organ T reg cells. (*, P = 0.0250; **, P = 0.0021; ****, P < 0.0001; two-way ANOVA with Tukey’s post-
hoc analysis.) (I) Representative FACS plots of T reg cell levels in CT26 tumor and peripheral lymphoid tissues after administration of CCR8-specific
depleting, nondepleting, and isotype control antibodies. (J) Summary of CD25+/FOXP3+ T reg cell infiltration (left) and changes in CD8/T reg cell ratio in
tumors and peripheral lymphoid upon antibody dosing (****, P < 0.0001; two-way ANOVA with Tukey’s post-hoc analysis). DLN, draining LN.
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Figure 10. Antitumor activity of targeting CCR8 expression on tumor-infiltrating T reg cells. (A) CT26 tumor growth curves of animals treated with
CCR8-specific depleting and nondepleting antibodies, along with depleting and nondepleting isotype controls (top). (B and C) Averaged tumor growth (B) and
overall survival of animals (C) treated as in A. (D) Averaged tumor growth curves of MC38 tumors treated with isotype control, anti-CCR8, anti–PD-1, or
combination. (E) Overall survival of MC38 tumor bearing mice treated in D. (F) Averaged tumor growth curves of B16F10 tumors treated with Isotype control,
anti-CCR8, anti–PD-1, or combination. (G) Overall survival of B16F10 tumor-bearing mice treated in F (****, P < 0.0001; ***, P < 0.0002; **, P < 0.002; *, P <
0.05; two-way ANOVA with Tukey’s post-hoc for tumor growth inhibition and Mantel-Cox log rank test for survival curve analysis).
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Combined expression and clonality analysis of T cell subsets
by STARTRAC between species provided important insights to
translate detailed mechanistic data from animal models to the
development of novel therapeutic agents for human cancer
(Zhang et al., 2020). By comparing the gene signature of mouse
tumor Tex and various human cancer Tex cells (Fig. 6, D and E),
we identified many common and species-specific markers.
Within all PD-1hi subsets, expression of some key exhaustion
markers, such as Pdcd1 and Lag3, were similar, but expression of
other markers, including Havcr2 and Cd244, were not as strongly
correlated. We also found that the combination of trajectory
analysis and STARTRAC may be a validated method by which to
fine-tune the corresponding subsets in different studies ac-
cording to their clonotype-centric behaviors. For example,
C08_CD8_Tex_Cd244 was closely related to terminally differ-
entiated Tex cells in human tumors based on STARTRAC mi-
gration and transition indices. This approach may help to better
interpret data from mouse models with various treatments in
the future and enhance translatability.

Augmented IFN-γ–producing Th1 cells are associated with
better responses to anti–PD-1 treatments in CRC patients with
microsatellite instability status (Llosa et al., 2015; Mlecnik et al.,
2016). Interestingly, only the BHLHE40+ Th1-like cells, not
EOMES+ Th1, are significantly enriched in CRC patients with
microsatellite instability status over microsatellite stable CRC
patients (Zhang et al., 2018). Our recent study also demonstrated
that an anti-CD40 agonist antibody can synergize with anti–PD-
1 to induce remission in MC38 mouse model through the early
induction of Bhlhe40+ Th1-like cells (Zhang et al., 2020), sup-
porting the important contribution of these cells in cancer
immunotherapies. However, the relationship of these tumor-
infiltrating Bhlhe40+ Th1-like cells with other Th cell subsets is
not fully understood. In this study, STARTRAC clonotype
analysis revealed these Th1 cells are not only developmentally
related to intratumoral TCM-like CD4+ cells, but also to periph-
eral Tfh cells in the LN and spleen. CD4+ Tfh cells express Bcl6,
Il21, and Cxcr5, and are defined as germinal center T cells es-
sential for T-dependent humoral immune responses (Crotty,
2019). Recent studies have also supported the potential role of
Tfh cells in antitumor immune responses. Tfh cells are associ-
ated with longer progression-free survival in head and neck
squamous cell carcinoma (Cillo et al., 2020). In addition, in a
study of immune checkpoint blockade in a triple-negative breast
cancer mouse model, the therapy activated Tfh cells and en-
hanced the antitumor response through activation of B cells
(Hollern et al., 2019). In our study, although Th1-like and Tfh
cells were indeed clonally related, the developmental order of
this relationship was not clear, and future research is needed
to reveal the biological significance of their developmental
connection.

Finally, the refined cell subsets and transcriptome data en-
abled us to identify potential novel therapeutic candidates. T reg
cells are important target cells for cancer immunotherapy. Here,
by using STARTRAC, we identified two peripheral T reg cell
subsets that were developmentally connected with tumor T reg
cell populations. Interestingly, CCR8 was preferentially ex-
pressed on the C23_Treg_Cd83 subset and on tumor-infiltrating

T reg cells. CCR8 has also been identified to be preferentially
expressed on T reg cells infiltrating various cancers (Plitas et al.,
2016; De Simone et al., 2016; Zheng et al., 2017; Zhang et al.,
2018). CCR8 is a chemokine receptor expressed on various leu-
kocytes, especially T cells (Karin, 2018). Human CCR8 has four
putative ligands: CCL1, CCL8, CCL16, and CCL18. CCL1 is its key
ligand governing T cell homing to skin (Schaerli et al., 2004) and
a critical modulator of immunosuppression of autoimmune
models (Barsheshet et al., 2017). CCR8 was reported to be dif-
ferentially expressed on Th2 cells (Zingoni et al., 1998) and
on tissue-resident memory T cells in human skin (McCully et al.,
2018). In humans there are three subsets of T reg cells in the blood:
T reg cell I (CD45RA+FOXP3lo), T reg cell II (CD45RA−FOXP3hi), and
T reg cell III (CD45RA−FOXP3lo). T reg cell II expresses the highest
CCR8 and shares TCRs with intratumor T reg cells in breast cancer
patients (Wang et al., 2019). Thus, the C23_Treg_Cd83 subset from
this study is likely the mouse counterpart of the human T reg cell II
population.

Based on its expression profile, CCR8 may be a good target to
specifically deplete tumor-related T reg cells. Previous studies
showed that an anti-CCR8 antibody treatment suppressed CT26
tumor growth when antibody was administered on day 4 after
CT26 tumor implantation (Villarreal et al., 2018). This antibody
also synergized with Listeria monocytogenes–based tumor vac-
cines to significantly delay growth of established tumors and to
prolong survival (Villarreal et al., 2018). The authors hypothe-
sized that this antibody acts to block ligand-receptor interac-
tions that result in T reg cell depletion inside the tumor;
however, it is still possible that the mechanism of action in vivo
was through an Fc receptor–mediated direct T reg cell depletion
by the anti-CCR8 antibody. In our study, by using an engineered
effectorless antibody, we showed that depletion, but not block-
ing the ligand binding alone, was essential for its anticancer
activity. We were able to demonstrate monotherapy effect even
in an established CT26 tumor model. Importantly, this depletion
antibody could also synergize with anti–PD-1 antibody to treat
established tumors in both MC38 and B16F10 models.

In summary, we have successfully used the STARTRAC al-
gorithm in a mouse model to describe the intratumor dynamics
of various T cell subsets and revealed a potential novel thera-
peutic candidate. STARTRAC may serve as a powerful tool with
which to elucidate various mechanisms underlining the antitu-
mor T cell response in both mouse and human cancers.

Finally, we have created an interactive portal at http://
cancer-pku.cn:3838/mc38startrac/, which can be used as a re-
source for data exploration and identification of novel regula-
tory mechanisms for tumor infiltrating T cells.

Materials and methods
Animals and cell lines
MC38, B16F10, EMT6, and CT26 mouse tumor cell lines were
acquired from the American Type Culture Collection and cul-
tured in complete RPMI medium consisting of 10% heat-
inactivated FBS, penicillin (100 U/ml), streptomycin (100 mg/
ml), and 1× Glutamax and were periodically tested for Myco-
plasma by IDEXX. Cells were thawed from liquid nitrogen stocks

Bhatt et al. Journal of Experimental Medicine 20 of 26

scRNAseq analysis revealed CCR8 as a T reg target https://doi.org/10.1084/jem.20201329

http://cancer-pku.cn:3838/mc38startrac/
http://cancer-pku.cn:3838/mc38startrac/
https://doi.org/10.1084/jem.20201329


and passaged two to three times before being used for in vivo or
in vitro experiments.

6–8-wk-old female C57BL/6 and BALB/C mice were pur-
chased from Charles River Laboratories. All animals were
housed at Association for Assessment and Accreditation of
Laboratory Care International–accredited facilities (Amgen).
Animal procedures were approved by the Amgen Institutional
Animal Care and Use Committee and were compliant with the
Guide for the Care and Use of Laboratory Animals (eighth
edition).

For single-cell studies, mice were injected s.c. in the rear
right flank with 3 × 105 MC38 or CT26 cells per site of injection.
Tumor growth was monitored until takedown on day 16 for the
main experiment, or at days 11 and 20 after implantation for
comparative experiments shown in Fig. 5. Day 20 MC38
scRNAseq data were derived from the isotype-treated samples
described in Zhang et al. (2020). For experiments represented in
Fig. 9, G–J, Fig. 10, and Fig. S5, C and D, mice were injected with
3 × 105 CT26, EMT6 cells, or 2 × 105 B16F10 cells. Animals subject
to antibody treatment were injected with 3 × 105 CT26 cells on
the day of implantation. Tumors were allowed to grow for 10–11
d, after which animals were assigned (mean tumor volume =
110 mm3) to different treatment groups and dosed with either
isotype antibodies (mIgG1 MOPC-21 and mIgG2a C1.18.4; cata-
logue #BE0083 and #BE0085; BioXCell) or CCR8-depleting and
-nondepleting antibodies (rat SA214G2; BioLegend; murinized
internally on mIgG1 N297G effectorless and mIgG2a effector-
competent backbones). Antibodies were dosed i.p. at 300 µg
once every 3 d for a total of three doses (every 3 d × 3). For
pharmacodynamic studies, tumors and peripheral lymphoid
tissues were harvested 48 h after single antibody dose (300 µg).
For efficacy studies, tumor volumes were measured twice per
week until survival end point (tumor volume ≥ 800 mm3).

Tissue isolation and cell preparation
Peripheral blood was isolated from anesthetized animals via
cardiac puncture and diluted into a solution of room tempera-
ture 1× PBS + EDTA (5 mM). Tumor, spleens, and tumor-
draining LNs were subsequently collected after sacrifice.

Tumors were minced into 1-mm pieces and resuspended in
10 ml DMEM/F12 supplemented with 200 µg/ml Liberase TL
(Roche) and DNase I 5 µg/ml (Sigma-Aldrich), followed by me-
chanical dissociation using Miltenyi C-tubes and the gentle-
MACS dissociater with the manufacturer program,
hu_tumor_01. Suspensions were incubated at 37°C with shaking
at 180 rpm for 20 min, followed by enzyme quenching by ad-
dition of 1 ml FBS and an additional two rounds of gentleMACS
dissociation using program hu_tumor_02. Tumor suspensions
were strained through 70-µm filters. The filter was rinsed with
10 ml MACS buffer (PBS, 2% FBS, 2 mM EDTA). Cells were then
pelleted at 1,500 rpm for 5 min at 4°C and resuspend in 5 ml
MACS buffer. Cells were counted on ViCell XR (Beckman
Coulter) and resuspended to the appropriate concentration for
T cell enrichment.

Peripheral blood mononuclear cells were isolated from pe-
ripheral blood by density centrifugation as follows: ∼3–4 ml of
diluted blood was layered over 3 ml Lympholyte-Mammal

(Cederlane) and centrifuged for 20 min at 800 g at room tem-
perature, brakes off. Lymphocytes were washed twice with
40 ml MACS to remove platelets. Spleen and LN were homog-
enized through 40-µm strainers. Samples were preenriched for
total T cells by immunomagnetic negative selection using
StemCell Technologies EasySep Mouse T Cell Isolation Kit
(19851) following the manufacturer protocols for all three pe-
ripheral tissue suspensions, with minor modifications for pro-
cessing of tumor suspensions. The negative selection antibody
cocktail for tumor samples was supplemented with 15 μg/ml
anti–CD34-biotin (13–0341-82; eBioscience) to deplete MC38
tumor cells. After labeling, the tumor cocktail suspension was
washed once with 5 ml MACS buffer before a 10-min incubation
with eBioscience MagniSort Streptavidin Negative Selection
Beads (MSNB600274; Invitrogen) at 20 µl beads/100 ml sample.
All sample volumes were brought up to 2.5 ml with additional
MACS buffer. Samples were then placed on a StemCell Tech-
nologies magnet for 10 min and T cells were subsequently
collected.

Antibodies and flow cytometry
All enriched mouse single T cell samples were stained for via-
bility (Sytox Red) and with antibodies against CD45, TCRβ, and
CD90.2 (eBioscience). Approximately 10e5 viable CD45+TCRβ+

CD90.2+ cells were sorted, washed in PBS, counted, and re-
suspended to a concentration range of 7e5–1e6 cells per ml. For
in vivo immune cell profiling in Fig. 7 and Fig. S5, cells were
stained with antibodies against CD45 (30-F11; catalogue #103116),
TCRβ (H57-597; catalogue #109228), CD4 (GK1.5; catalogue
#100438), CD8 (53–6.7; catalogue #100722), CD19 (6D5; catalogue
#115546), CD11b (M1/70; catalogue #101226), NKp46 (29A1.4;
catalogue #137606), CCR8 (SA214G2; catalogue #150312; all from
BioLegend); CD25 (PC61; catalogue #564022; BD Biosciences);
CCR7 (4B12; catalogue #562675; BD Biosciences); 4-1BB (17B5;
catalogue #25137180; eBioscience); and Foxp3 (FJK-16s; catalogue
#11-5773-82; eBioscience).

Chemotaxis assay
Assessment of mouse anti-CCR8 antibodies’ ability to block
chemotaxis was done using BW5147.G.1.4 cells, a murine T
lymphocyte cell line endogenously expressing CCR8. Testing
was done in a 96-well Transwell plate with a 5-µm pore size in
complete BW5147.G.1.4 growth medium. Cells were pre-
incubated with test antibodies for 30 min and transferred to the
top Transwell chambers in total 50 µl volume and 200,000 cells
per well load. Recombinant human CCL1 (R&D Systems) was
prepared at suboptimal concentration of 100 pM and added to
the bottom Transwell chambers at 100 µl per well. Transwell
plates were incubated at 37°C 5% CO2 for 4 h. Ligand suboptimal
concentration was established based on the cells’ chemotactic
dose-response curve and varied from the effective response
concentration (EC50 to EC80) for different experiments. At the
end of incubation, the top chambers were removed and 50 µl/
well CellTiterGlo reagent (Promega) was added to the bottom
chambers with migrated cells. After 10 min of incubation at
room temperature, 100 µl of the mix from the bottom chamber
was transferred to the black well clear-bottom plates for
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Luminescence readout (Envision plate reader). The percent in-
hibition of chemotaxis was calculated using Basal and Max
chemotaxis control wells present on each plate. The percent
inhibition and IC50 values were calculated using Screener
analysis software.

Single-cell sequencing library preparation
∼17,000 cells were loaded onto 10× chromium instrument for
single-cell encapsulation with the 59 VDJ kit (10x Genomics) to
recover an estimated 10,000 cells. RT was performed according
to the manufacturer’s protocol, followed by emulsion breakage
and cleanup of single-cell cDNA. cDNA was preamplified for 12
cycles to generate an enriched library for parallel TCR and total
cDNA libraries. 5% of preamplified cDNA was reserved for TCR
library generation by two rounds of nested multiplex PCR using
nested primers complementary to the mouse Trac, Trbc1, and
Trbc2 loci. A single Cβ primer was designed complementary to
the identically conserved 59 ends of Trbc1 and Trbc2, and all
primers were restricted to have a similar temperature of
58–60°C and used at a final 1 μM concentration. Primer se-
quences are as follows: mTRAC_R1: 59-GCATCACAGGGAACG
TCTGA-39; mTRAC_R2: 59-AAGTCGGTGAACAGGCAGAG-39;
mTRBC_R1: 59-TGCTCAGGCAGTAGCTATAATTGCT-39; and
mTRBC_R2: 59-TTTGATGGCTCAAACAAGGA-39. 50 ng of en-
riched total cDNA and 50 ng of enriched mTCR libraries were
used to complete the remainder of the single-cell sequencing
library preparation according to the 10x Genomics protocol.
Final total cDNA and TCR libraries for each tissue were diluted
to 20 nM and pooled at equimolar ratios. Pooled total cDNA li-
braries were sequenced to a depth of 500 million reads per
sample on a NovaSeq (26 bp read 1, 98 bp read 2, and 8 bp index
i7). Pooled TCR library was sequenced to a depth of 50 million
reads per sample on a HiSeq4000 (150 bp paired end read, 8 bp
index i7). Fastq files have are available at GEO accession no.
GSE168944.

Sequencing alignment and data analysis
Sequences were aligned to the Ensembl mouse reference tran-
scriptome using the 10x Genomics CellRanger pipeline (version
2.1.0). Quality control and transcriptome analysis of the single-
cell datasets were performed using the R package Seurat (ver-
sion 2.3.0; Butler et al., 2018). Cell matrices are available at GEO
accession no. GSE168944. Genes detected in less than three cells
were excluded. Cells were filtered for quality based on the fol-
lowing criteria: of having a unique molecular identifier (UMI)
count of between 2,000 and 60,000, mapping to over 200
unique genes, and the fraction of unique mitochondrial tran-
scripts was less than 5%. The TCR library sequences were pro-
cessed using the CellRanger vdj function supplied with mouse
TCR gene annotations and reference sequence files acquired
from the International Immunogenetics Information System
database (http://www.IMGT.org) and prepared using the
mkvdjref function. Cells were further filtered for the presence of
a productive paired single TCR α and β chain.

After quality control, 16,136 genes and 64,449 cells remained
and constituted an expression matrix. The expression matrix
was first normalized using the Seurat function, LogNormalize,

and then scaled to universal mean and variance using the Seurat
function, ScaleData, with library size and percentage of mito-
chondrial reads regressed. Next, data from two different se-
quencing batches (T01 and T05 as the first batch, and T09 and
T10 as the second batch) were aligned using the Seurat function
AlignSubspace. Specifically, highly variable genes were selected
separately in two batches using the Seurat function FindVaria-
bleFeatures, with the default parameter, and the first 30 ca-
nonical correlation components were computed on the
intersecting highly variable genes and aligned across batches.
t-Distributed stochastic neighbor embedding (tSNE) dimen-
sionality reduction and graph-based Louvain clustering were
performed on the aligned components using the Seurat func-
tions, RunTSNE and FindClusters. A total of 17 major clusters
emerged at the clustering resolution of 0.6. Every cluster was
examined iteratively for heterogeneous substructures. Briefly,
the expression matrix of the examined major cluster was first
extracted, and then a second round of graph-based clustering
was applied to <10 principal components identified as
meaningful—exhibiting significance of explained variance by
the Seurat function JackStraw and no obvious difference be-
tween the two batches. Subgroups with more than five genes
different from other cells in the same cluster (P < 0.05; average
log fold-change > 1) were assigned as separate clusters. The final
dataset had 33 clusters. Wilcoxon rank sum test was performed
to identify significantly upregulated genes in each cluster using
the Seurat FindMarkers function. Cell-cycle analysis of cells was
done in Seurat using the CellCycleScoring function and cell-
cycle genes described in Nestorowa et al. (2016).

To validate that the T cell subsets identified in the main da-
taset (MC38 tumor, day 16) were prevalent in mouse models,
scRNAseq data of MC38 tumors at different time points (day 11
and day 20) and from CT26 tumors were also obtained. Day 11
mc38 data were obtained from Zhang et al. (2020). For those
validation datasets, the Seurat3 pipeline was applied to obtain
the same cluster annotation as that in the main dataset. First, the
data of the two batches of the main dataset were integrated by
calling function FindIntegrationAnchors and IntegrateData with
default settings. Then, the integrated main dataset was used as a
reference, and the cluster annotations were transferred to each
of the validation dataset by calling function FindTransfer-
Anchors and TransferData. For visualization, all datasets were
integrated by calling function FindIntegrationAnchors and In-
tegrateData. The integrated data were then scaled, after which
PCA and tSNE analysis were performed.

STARTRAC analysis
STARTRAC analysis of clonal transition, migration, and expan-
sion was done as described in Zhang et al. (2018). Briefly, clo-
notype expansion was calculated as 1-evenness in each cluster,
while migration and transition scores for each cluster were
calculated as the weighted sum of the Shannon entropy in-
dices of each clonotype in said cluster based on its distribution
across multiple tissues or clusters, respectively. In the case of
pairwise migration and transition scores as in Fig. 4, B and C,
the Shannon entropy score was restricted to the clonotype
distribution across individual pairs of tissues or clusters. The
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significance of individual STARTRAC scores was determined by
random permutation of cluster identities (number of permuta-
tions, n = 1,000). Specifically, in each permutation, the cluster
identities of cells were randomly sampled without replacement
from the original data and reassigned to cells. Then, the STAR-
TRAC score (transition/migration/expansion) was calculated
using the permuted data. Significance was obtained by com-
paring the score of original data to the distribution of the scores
of the 1,000 permuted data, and P value was calculated as the
number of times the scores of permuted data exceeded the score
of original data divided by 1,000. Code for STARTRAC analysis is
available at https://github.com/Japrin/STARTRAC. Scores and
significance for CD8+ clusters and CD4+/T reg cell clusters were
calculated separately. To calculate STARTRAC scores for TCR
chain publicity within clusters, first a publicity index for each
individual amino acid–level α or β TCR chain was calculated as:

Icpubl � −
XM

m�1
pcmlog2p

c
m,

where pcm is the ratio of the number of cells with chain c in
mouse m to the total number of cells with TCR chain c across all
mice, and

PM
m�1p

c
m � 1. The total publicity index for each cluster

is then defined as the weighted average of all TCR chain pub-
licity indices within the cluster and is calculated as follows:

ISTARTRACpubl �
XC

c�1
Pc
clsI

c
publ,

in which Pccls is the ratio of the number of cells with chain c in
cluster cls to the total number of cells in cluster cls. See Table S10,
Table S11, and Table S12.

Gene signature analysis
CD8+ Tex and CD4+ T reg cell cluster-specific marker genes that
were homologous between human and mouse were compared.
First, differential expressed genes were identified using limma
by comparing CD8+ Tex (or CD4+ tumor-enriched T reg cell)
against all other CD8+ (or CD4+) clusters. Then, for humans,
cluster-specific marker genes were defined as those with
log2FC > 1.5 and adjusted P value < 0.01 in all three human
cancers (hepatocellular carcinoma, non–small-cell lung cancer, and
CRC); for mouse, cluster-specific marker genes were those with
log2FC > 0.3 and adjusted P value < 0.01. Genes showing cluster
specificity in both species are indicated as core, and other cluster-
specific marker genes were indicated as top.human or top.mouse.

Online supplemental material
Fig. S1 shows basic clonotype information and illustrates the
methodology and stability of the clustering approach taken. Fig.
S2 shows quality control metrics and doublet analyses of the
single-cell dataset. Fig. S3 shows additional analyses of TCR
chain publicity status across multiple animals and within dif-
ferent phenotypic clusters, subset-specific gene expression
among CD8+ Tex clusters, and the cell-cycle phase assigned by
different clusters. Fig. S4 shows the gene expression levels of
key Th subset marker genes; monocle trajectory analysis of

CD8+, CD4+ Th, and T reg cell populations; and the STARTRAC
pairwise tissue migration scores of CD4+ Th populations. Fig. S5
shows more detailed flow cytometry analysis of CCR8 levels
within specific tumor TEFF and CD8+ populations, CCR8+ levels
within different mouse tissues and tumor models, and detailed
pharmacodynamic characterization of the α-CCR8+ antibodies
used in this study. Table S1 is a summary table of cluster at-
tributes, including clonal expansion, tissue localization, and
representative marker gene expression. Table S2 lists cell met-
adata indicating tissue, individual mouse, tSNE coordinates, cell-
cycle phase, gene expression cluster, and TCR clonotype. Table
S3 contains differential expression values of NKT clusters C20
and C26:28. Table S4 lists cell metadata, as in Table S2, with
additional annotation of the V, D, and J segments and TCR
publicity status. Table S5 contains differential expression
analysis of genes in each CD8+ cluster. Table S6 contains the
cross-species comparison of human gene expression and
mouse gene expression in CD8+ Tex clusters. Table S7 and
Table S8 list differential expression analyses of genes in each
CD4+ cluster and each CD4+Foxp3+ T reg cell cluster, respec-
tively. Table S9 contains the cross-species comparison of
human and mouse gene expression in CD4+Foxp3+ T reg cell
clusters. Table S10, Table S11, and Table S12 contain the
cluster-specific STARTRAC clonotype analysis, given as ag-
gregated scores, tissue pairwise migration scores, and cluster
pair transition scores, respectively.
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Borst, J., T. Ahrends, N. Bąbała, C.J.M. Melief, and W. Kastenmüller. 2018.
CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev.
Immunol. 18:635–647. https://doi.org/10.1038/s41577-018-0044-0

Bousso, P., A. Casrouge, J.D. Altman, M. Haury, J. Kanellopoulos, J.P. Abas-
tado, and P. Kourilsky. 1998. Individual variations in the murine T cell
response to a specific peptide reflect variability in naive repertoires.
Immunity. 9:169–178. https://doi.org/10.1016/S1074-7613(00)80599-3

Brummelman, J., E.M.C. Mazza, G. Alvisi, F.S. Colombo, A. Grilli, J. Mikulak,
D. Mavilio, M. Alloisio, F. Ferrari, E. Lopci, et al. 2018. High-
dimensional single cell analysis identifies stem-like cytotoxic CD8+

T cells infiltrating human tumors. J. Exp. Med. 215:2520–2535. https://
doi.org/10.1084/jem.20180684

Bulliard, Y., R. Jolicoeur, J. Zhang, G. Dranoff, N.S. Wilson, and J.L. Brogdon.
2014. OX40 engagement depletes intratumoral Tregs via activating
FcγRs, leading to antitumor efficacy. Immunol. Cell Biol. 92:475–480.
https://doi.org/10.1038/icb.2014.26

Butler, A., P. Hoffman, P. Smibert, E. Papalexi, and R. Satija. 2018. Integrating
single-cell transcriptomic data across different conditions, technolo-
gies, and species. Nat. Biotechnol. 36:411–420. https://doi.org/10.1038/
nbt.4096

Carey, A.J., J.L. Hope, Y.M. Mueller, A.J. Fike, O.K. Kumova, D.B.H. van
Zessen, E.A.P. Steegers, M. van der Burg, and P.D. Katsikis. 2017. Public
clonotypes and convergent recombination characterize the naı̈ve CD8+

T-cell receptor repertoire of extremely preterm neonates. Front. Im-
munol. 8:1859. https://doi.org/10.3389/fimmu.2017.01859

Carter, J.A., J.B. Preall, K. Grigaityte, S.J. Goldfless, E. Jeffery, A.W. Briggs, F.
Vigneault, and G.S. Atwal. 2019. Single T cell sequencing demonstrates
the functional role of αβ TCR pairing in cell lineage and antigen spec-
ificity. Front. Immunol. 10:1516. https://doi.org/10.3389/fimmu.2019
.01516

Cillo, A.R., C.H.L. Kürten, T. Tabib, Z. Qi, S. Onkar, T. Wang, A. Liu, U.
Duvvuri, S. Kim, R.J. Soose, et al. 2020. Immune landscape of viral- and
carcinogen-driven head and neck cancer. Immunity. 52:183–199.e9.
https://doi.org/10.1016/j.immuni.2019.11.014

Crotty, S. 2019. T follicular helper cell biology: A decade of discovery and
diseases. Immunity. 50:1132–1148. https://doi.org/10.1016/j.immuni
.2019.04.011

De Simone, M., A. Arrigoni, G. Rossetti, P. Gruarin, V. Ranzani, C. Politano,
R.J.P. Bonnal, E. Provasi, M.L. Sarnicola, I. Panzeri, et al. 2016. Tran-
scriptional landscape of human tissue lymphocytes unveils uniqueness
of tumor-infiltrating T regulatory cells. Immunity. 45:1135–1147. https://
doi.org/10.1016/j.immuni.2016.10.021

Deng, M., X. Gui, J. Kim, L. Xie, W. Chen, Z. Li, L. He, Y. Chen, H. Chen, W.
Luo, et al. 2018. LILRB4 signalling in leukaemia cells mediates T cell
suppression and tumour infiltration. Nature. 562:605–609. https://doi
.org/10.1038/s41586-018-0615-z
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Figure S1. Clonotype analysis and clustering methodology. (A) Number of cells with the indicated ratios of TCR α to β chains per clonotype (left).
Proportion of cells within each tissue with α:β clonotype ratio indicated. (B) Number of unique paired clonotypes—individual α and individual β chains at both
nucleotide and amino acid levels compared with total cells in this study. (C–E) Schematic of iterative clustering approach. Initially assigned clusters in C are
selected and examined for heterogeneity of key marker genes and subclustered by PCA-based clustering (D), resulting in final cluster assignments (E).
(F) Stability of clusters under different levels of downsampling. Adjusted Rand Index (ARI) was computed for all clusters, peripheral CD4/T reg cell clusters
(C16:C23), tumor CD4 effector clusters (C17:C20), and tumor CD8 clusters (C8:C11). dLN, draining LN.
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Figure S2. Quality measurements of single-cell clusters. (A and B) Analysis of putative doublets using Scrublet (A) or DoubletDetection (B) packages.
Doublets are shown in the respective left panels and singlets in the right panels. (C–E) Violin plots of unique genes (C), transcripts (D), and mitochondrial
transcript percentage (E). (F) Violin plots of key T cell, B cell, and myeloid cell marker gene expression across all clusters.
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Figure S3. Analysis of public TCR chains, Tex cluster markers and cell cycle states. (A) Sharing of individual amino acid–level TCR chains between
multiple animals. (B) Proportion of clonotypes with public α or β amino acid chains in each cluster. (C) Clonotype sharing of invariant chains between animals.
(D) Amino acid chain publicity score for each cluster calculated by STARTRAC method (see Materials and methods). (E) Significance of marker gene expression
in Fig. 4 B. Adjusted P value of indicated gene (y axis) in specified cluster (x axis) calculated by Wilcoxon rank sum test. (F) Cell-cycle status of cells within each
cluster displayed as tSNE (top) and bar graph (bottom).
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Figure S4. Marker genes for tumor-infiltrating clusters and pseudotime analysis. (A) tSNE plots of cluster-specific marker genes. Specific clusters
discussed in text are circled in red. (B) Pseudotime analysis of tumor-infiltrating CD8+ clusters 5–11 (top), CD4+ Th clusters 14–19 (middle), and T reg cell
clusters 21:24 (bottom), aggregated together (leftmost plot) or separated by constituent clusters. Axes represent the two major components generated by
Monocle2 dimensionality reduction, black nodes denote the branching points of trajectory, and clusters are denoted by color. (C) Pairwise migration between
tissue pairs of CD4/T reg cell clusters quantified as a STARTRAC pMigr score. dLN, draining LN.
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Figure S5. CCR8 expression in tumor T reg cells and characterization of anti-CCR8 antibodies. (A) Representative histogram plot depicting expression of
CCR8 on 4-1BB+ and 4-1BB− CD4+Foxp3− TEFF population in MC38 tumors. (B) Representative histogram plot depicting expression of CCR8 on CCR7+ and
CCR7−CD8+ T cells in MC38 tumors. (C) Flow cytometry analysis of tumor-infiltrating T reg cells across multiple mouse tumor models shown as representative
FACS plots (left) and frequencies in tumors and peripheral lymphoid organs (right). *, P = 0.0250; ****, P < 0.0001; two-way ANOVA with Tukey’s post-hoc
analysis. (D) Flow cytometry analysis of CCR8 expression on immune cell types (Foxp3+ T reg cells, Foxp3− T effectors, CD8+, NKp46+ NK, CD19+ B, and
CD11b+) in tumors and peripheral lymphoid tissues across tumor models. (E) In vitro chemotaxis assay evaluating the ability of CCR8-depleting and -non-
depleting antibodies to block 100 pM CCL1-induced chemotaxis. (F) Bar graph comparing IC50 values from the chemotaxis assay testing CCR8-depleting and
-nondepleting antibodies (n = 6). (G) Pharmacokinetic assessment of serum antibody concentration after single-dose administration of CCR8-depleting and
-nondepleting antibodies (10 mg/kg i.p.). (H) Serum concentration at 72 h of animals treated as in G. DLN, draining LN; SPL, spleen; MFI, mean fluorescence
intensity.
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Provided online are 12 tables. Table S1 is a summary table of cluster attributes, including clonal expansion, tissue localization, and
representative marker gene expression. Table S2 lists cell metadata indicating tissue, individual mouse, tSNE coordinates, cell-cycle
phase, gene expression cluster, and TCR clonotype. Table S3 shows differential expression values of NKT clusters C20 and C26:28.
Table S4 shows metadata of single-cell clonotype information. Table S5 shows differential expression analysis of genes in each
CD8+ cluster compared to all other CD8 clusters as in Table S3. Table S6 shows cross-species comparison of human and mouse CD8
Tex clusters. Table S7 shows differential expression of CD4 marker genes. Table S8 shows differential expression of T reg cell
marker genes. Table S9 shows cross-species comparison of human and mouse T reg cell clusters. Table S10 shows STARTRAC
analysis of T cell clusters. Table S11 shows pairwise STARTRAC analysis of T cell migration. Table S12 shows pairwise STARTRAC
analysis of T cell cluster transitions.
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