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INTRODUCTION
The cardinal motor symptoms of Parkinson’s disease (PD)—
bradykinesia, rigidity, tremor, and postural instability—belie an 
extraordinarily complex disorder in which the etiopathogenesis is 
only partially understood.1–5 Motor abnormalities in fact represent 
a relatively delayed feature of the disease. By the time a patient 
 presents with motor symptoms, cyto- and histopathologic mecha-
nisms have been advancing in both the central and peripheral ner-
vous systems for up to a decade or more.6 While current therapies 
are symptomatic and aimed at restoring neurochemical and elec-
trical signaling within the basal ganglia (BG), efforts to address the 
genetic and molecular underpinnings of PD are still at relatively 
nascent stages.7 In this mini-review, we will explore the landscape 
of current modalities of surgical PD treatments and discuss a novel 
therapeutic framework to be considered for evaluation in future 
human clinical trials.

FROM FETAL DOPAMINERGIC TRANSPLANTS TO STEM CELLS: 
AN HISTORICAL ACCOUNT OF DOPAMINE REPLACEMENT 
THROUGH CELL IMPLANTATION IN PD PATIENTS
The initial randomized, placebo-controlled trials to address the 
histopathologic basis of PD, i.e., loss of nigrostriatal dopaminergic 

projections, utilized stereotactic injections of fetal mesencephalic 
tissue in PD patients versus a sham surgery.8,9 These trials were 
designed utilizing data collected from over two decades of pre-
clinical work establishing the efficacy of cell transplantation in 
Parkinsonian animal models and later humans.10–18 Nevertheless, 
both trials resulted in a modest treatment effect—clinical ben-
efit was shown only in a subpopulation of younger, less severely 
affected patients—and furthermore were associated with disabling 
dyskinesias in a subgroup of patients likely due to dopaminergic 
supersensitivity and graft-derived serotonergic hyperinnervation.19

Notwithstanding, several important themes emerged from these 
and prior open-label trials, including the successful demonstration 
of dopaminergic reinnervation in host tissue along with the ultimate 
amelioration of motor symptoms allowing a proportion of patients 
to achieve levodopa independence.20–36 Additionally, Lindvall and 
Björklund37 argue that insufficient dopaminergic cellular volume 
and production likely played a key role in the modest effect seen 
in the Freed and Olanow trials given the relatively low rate of fluo-
rodopa uptake seen on subsequent positron emission tomography 
imaging. This, in addition to the lack of adequate immunosuppres-
sion and a patient cohort with severe disease burden, represented 
a significant divergence from previous trials and offers insight into 
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Parkinson’s disease (PD) is a complex neurodegenerative disorder that is currently managed using a broad array of  symptom-based 
strategies. However, targeting its molecular origins represents the potential to discover disease-modifying therapies. Deep brain 
stimulation (DBS), a highly successful treatment modality for PD symptoms, addresses errant electrophysiological signaling pathways in 
the basal ganglia. In contrast, ongoing clinical trials testing gene and cell replacement therapies propose to protect or restore neuronal-
based physiologic dopamine transmission in the striatum. Given promising new platforms to enhance target localization—such as 
interventional MRI-guided stereotaxy—the opportunity now exists to create hybrid therapies that combine DBS with gene therapy and/
or cell implantation. In this mini-review, we discuss approaches used for central nervous system biologic delivery in PD patients in previ-
ous trials and propose a new set of strategies based on novel molecular targets. A multifaceted approach, if successful, may not only 
contribute to our understanding of PD pathology but could introduce a new era of disease modification.
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some of the key factors that help determine graft survival. More 
recently, dopaminergic grafts implanted during these initial clini-
cal trials have been recovered years later after the death of several 
patients and have demonstrated Lewy body and other pathologies 
characteristic of host tissue.38,39 Motivated by these findings, Dehay 
et al.40 argue that prevention of propagation of alpha-synuclein, the 
main component of Lewy bodies, may represent a novel therapeu-
tic target for PD progression.

Building on the relative successes of these and other preclinical 
trials, Kim et  al.41 have proposed an approach utilizing stem cell 
technologies to address the shortcomings of fetal tissue transplants. 
First and foremost, use of stem cells solves the limitation posed by 
access and potential ethical considerations of fetal dopaminergic 
tissue. Moreover, stem cells substantially improve the substrate 
yield and consistency of transplants. This is likely to be a key factor 
in maximizing synaptic integration of dopaminergic (DA) neurons, 
since prior work has established the following principles: (i) in the 
natural course of PD, signs of motor deterioration follow a step func-
tion in that they appear after loss of ~70% of dopaminergic neurons 
in the substantia nigra pars compacta, a relatively consistent fea-
ture across symptomatic individuals42 and (ii) following cell trans-
plantation in the putamen, 50% uptake (~1/2 putaminal volume or 
~100,000 tyrosine hydroxylase-positive neurons) must be achieved 
to improve motor symptoms.43,44 A comprehensive strategy for 
re-attempting dopaminergic cellular implants may also include 
determining whether extrastriatal implantations along the meso-
limbic dopaminergic pathway are warranted, since previous stud-
ies have suggested more effective transplant integration when this 
pathway is intact.13,45 Finally, immunosuppressive therapy is being 
investigated as a possible therapeutic adjunct to enhance cellular 
integration and to answer the question of the role of inflammation 
in the native PD pathological mechanism.46 Of course, an important 
underlying consideration with regard to efficacy will be to optimize 
patient selection, with an emphasis on younger individuals without 
advanced disease and severe dyskinesia. Already, several stem cell 
systems—including both embryonic stem cells and induced plu-
ripotent stem cells—for repairing gene mutations exist, paving the 
way for the next round of human clinical trials using this promising 
methodology, especially among individuals with genetic forms of 
PD.41,47–51

The two approaches—fetal transplants and stem cells—continue 
development in parallel. In the European Union, the TRANSEURO 
trial and GForce-PD initiative continue to fund efforts to advance 
human fetal mesencephalic and stem cell transplants, respec-
tively.52 Thus, cell replacement as a strategy to treat PD remains an 
intensely active area of research with no consensus as of yet as to 
which represents the most promising path forward.

CAN GENE THERAPY CHANGE THE PARKINSONIAN BRAIN? 
STRATEGIES TO DIRECTLY CONTROL MOLECULAR BIOLOGY 
IN PD
The recent introduction of novel viral vector designs—such as 
adeno-associated viruses (AAV) and lentivirus—now make it 
 possible to transduce neuronal populations within the central ner-
vous system thus allowing for molecular modulation of key bio-
logical pathways. Accordingly, gene transfer technologies are being 
applied to PD in hopes of supporting dopaminergic neuron survival 
or modulating aberrant dopaminergic signaling within the BG. 
Viral vector-mediated gene therapies have so far largely targeted 
DA production pathways that originate in the substantia nigra pars 
compacta, namely, the enzymes responsible for DA synthesis such 

as tyrosine hydroxylase and aromatic amino acid decarboxylase, as 
well as neuroprotection through growth factor production includ-
ing glial-derived neurotrophic factor and neurturin.53–61 Another 
approach that has been employed is to attempt to mitigate excit-
atory glutamatergic outflow of the subthalamic nucleus (STN) by 
AAV-mediated delivery of glutamic acid decarboxylase (GAD) to the 
STN.62 AAV-mediated delivery of GAD within STN projection neu-
rons counterbalances excessive glutamatergic outflow to the glo-
bus pallidus interna (GPi) and substantia nigra reticulata. Using this 
approach, Lewitt and colleagues published initial results of a ran-
domized, sham surgery–controlled, double-blinded phase 2 clinical 
trial involving 37 patients at seven centers in the United States. At 
the 6-month endpoint, the Unified Parkinson’s Disease Rating Scale 
(UPDRS) total score for the AAV-GAD group (26.6, n = 16) was signifi-
cantly lower than the sham-operated group (34.3, n = 21) (P = 0.04), 
demonstrating a short-term effect.59–61 Nevertheless, a larger trial 
of AAV-GAD with longer follow-up is not planned, demonstrating 
a decline in optimism for gene therapy–based approaches that 
directly compete with deep brain stimulation (DBS). This is accom-
panied by several failed gene therapy trials using growth factor–
based approaches.63 As in the fetal cell studies, the lack of success 
in these trials is likely multifactorial including inadequate striatal 
coverage/tissue delivery of viral vectors, and the disease process 
itself mitigating growth factor signaling pathways.64,65 Although the 
clinical trials have been unsuccessful, this important work has dem-
onstrated the superior safety profiles of the use of viral vectors for 
delivery and expression of intraparenchymal biologicals in all trials 
to date. Much work remains to be done as a commercially viable 
product still does not exist.

HYBRID MODALITY STEREOTACTIC IMPLANTATION FOR 
PARKINSON’S DISEASE: RATIONALE FOR A NEw APPROACH
First approved by the Food and Drug Administration in 1997 for clin-
ical use in PD patients, DBS represents the most successful symp-
tomatic therapy to date for PD since the introduction of levodopa 
in the late 1960s.66,67 Although the exact mechanism remains con-
troversial, high-frequency stimulation of the STN or GPi modulates 
pathological BG circuits that ultimately result in improved motor 
control.68,69 Part of the appeal of DBS technology is that it engenders 
a rapid improvement in symptoms and restores key  quality-of-life 
measures for patients. But how long does this effect last?  Long-term 
follow-up data show sustained improvement in certain UPDRS 
motor subscores—along with reduction in dyskinesias and 
levodopa equivalent dosages—up to 10 years  post-implantation. 
However, Castrioto et  al. reported that axial motor signs begin 
showing deterioration ~3 years following implantation likely due to 
progressive and unremitting pathology involving nondopaminergic 
pathways.70,71 Derangement of verbal fluency, particularly following 
STN stimulation, and the emergence over time of other cognitive 
and nonmotor symptoms that do not respond to DBS have also 
been common findings in studies reporting long-term outcomes in 
DBS patients.72 Overall, efficacy of hypokinesia reversal at 10 years 
is reduced to ~25% of preoperative baseline post-implantation.70,73

The potential benefit derived from combining DBS with stem cell 
or gene transfer technologies lies not only in the potential additive 
value of each of these modalities but it would also allow us to ask 
several fundamental questions about PD not possible with a mono-
therapy approach. The first such question is: What is the theoretical 
limit of effective motor control duration in PD patients? Moro et al.74 
suggest that patients with Parkin and PINK1 mutations may 
derive less benefit from bilateral STN stimulation in the first year 
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post-implantation than noncarriers (36 versus 56% motor UPDRS 
improvement). In their study, at 3–6 years, UPDRS scores normal-
ized between the two groups (12 carriers versus 68 noncarriers) due 
to an increase in levodopa-induced dyskinesias and worsening axial 
symptoms in the noncarrier group. However, Piccini et al. followed 
a patient with unilateral putaminal embryonic implants and found 
using positron emission tomography that even after 10 years dopa-
minergic transmission remained at equivalent levels to the unim-
planted side.31,75–77 The upper limit of therapeutic efficacy using cell 
and gene therapy is unknown, with most trials achieving on aver-
age 2–5 years of follow-up. However, in a scheme wherein DBS is 
combined with these alternative modalities, effective motor control 
would be expected for at least 10 or more years from DBS alone, 
while the temporal dynamics of cell and gene therapy protocols can 
be evaluated on much longer timescales, for example, 15–20 years.

A second basic question concerning a hybrid stereotactic 
approach is: What would be the optimal sites for implantation in a 
combined DBS and biologic approach? We know from systematic 
analyses of DBS outcome data that while STN and GPi are ideal stim-
ulation sites for dyskinesia and tremor control,73 other targets that 
may be considered are the thalamic centromedian/parafascicular 
complex and caudal zona incerta.78–80 Additionally, sites such as the 
pedunculopontine nucleus have shown some promise in selected 
cases in ameliorating gait and nonmotor symptoms.81–87 Therefore, 
a variety of potential configurations for a hybrid stereotactic 
approach could be considered; for example, DBS lead implantation 
in GPi and GAD-based viral vector implantation into STN or stem cell 
delivery to the post-commissural putamen.88 Alternatively, STN DBS 
could be considered in conjunction with STN cellular implants (see 
below) or striatal and nigral neurotrophic support mediated by viral 
vector platforms or modified cell therapies.

Perhaps the most important question highlighting the difference 
between this proposed approach and traditional single therapy 
approaches would be: Can we take advantage of possible syner-
gism between DBS and molecular modulation of biological path-
ways? In stem cell cultures, several recent studies have documented 
enhanced neuronal proliferation, differentiation, and migration in 
response to an applied electric field.89–99 Wang et al. demonstrated in 
olfactory bulb neural precursor cells that a biphasic electrical stimu-
lation paradigm prevented apoptotic-induced cell death through 
activation of the PI3K/Akt (phosphatidylinositol 3′-kinase) pathway 
and brain-derived neurotrophic factor production.100 Although 
not directly proven in dopaminergic neurons, the early conclusion 
is that electrical stimulation is an important mediator of stem cell 
transplantation survival through engagement of mechanisms pro-
moting growth and differentiation and prevention of early death.

In animals, this question has been tested directly in a recent study 
in which rodents were implanted with DBS leads in the anterior 
nucleus of the thalamus, a site of stimulation for patients with medi-
cally intractable epilepsy. Neurons in the dentate gyrus, connected 
to the anterior nucleus of the thalamus through the fornix, showed 
a multi-fold increase in the number of new hippocampal neurons 
versus animals undergoing sham surgery. A separate arm showed 
that pharmacologic suppression of hippocampal neurogenesis 
could be rescued by anterior nucleus of the thalamus electrical 
stimulation.101,102 Stimulation of another limbic target, the entorhi-
nal cortex, also promotes neurogenesis within the dentate gyrus, 
and this stimulation-induced neurogenesis likely facilitates spatial 
memory as assessed in a water-maze test.103 In many other animal 
models, including PD, a rapidly expanding literature has elabo-
rated the modulation of expression of a variety of genes including 

transcription and trophic factors by DBS.104–113 Thus, merging DBS 
with biologics has considerable potential and holds a distinct advan-
tage over monotherapy approaches, of simultaneously addressing 
both immediate (pathological BG circuits) and  long-term (patho-
logical molecular pathways) PD mechanisms.

DBS CONTINUES TO EvOLvE ALONG wITH ADvANCED 
NEUROIMAGING PROCEDURES
Most DBS outcome studies show that implanting a single target 
on one side of the brain, e.g., GPi or STN, is effective in controlling 
primarily contralateral body symptoms. However, in several pub-
lished studies, some authors have used more than one target in a 
single side of the brain, e.g., STN and pedunculopontine nucleus, to 
treat multiple and/or refractory symptoms, such as tremor and gait 
imbalance.114,115 Thus, therapeutic interventions at multiple nodes 
within the BG can be additive. Furthermore, several developing 
technical platforms are aimed at more accurate and safe stereotac-
tic targeting using either DBS or volume delivery of cells or gene 
vectors. For example, interventional MRI has been adapted for use 
with DBS.116,117 With this technique, patients are placed under gen-
eral anesthesia, and DBS leads are implanted while patients are in 
the bore of an MRI scanner using rapid MRI sequences that can be 
updated every few minutes. The advantage of this technique over 
traditional DBS surgery is that final placement of the lead is demon-
strated in real time and can be adjusted if necessary prior to the end 
of the case (versus a separate operation to revise the lead). A sec-
ond advantage of this technique is that the same targeting devices 
developed specifically for use with interventional MRI, for example, 
the ClearPoint, SmartFrame, and SmartFlow devices, can be used to 
safely infuse substrate containing stem cells or viral vectors intrapa-
renchymally. This has already been demonstrated in both nonhu-
man primate models and humans.118

In summary, there is reasonable preliminary evidence that DBS 
itself can modulate not only neurophysiological aspects of patho-
logic circuits but also gene expression, neurogenesis and stem 
cell biology on a variety of time scales. Thus, a promising avenue 
of investigation will be further development of hybrid treatments 
that combine DBS with biological therapies. These hybrid treat-
ments could be readily delivered using conventional or MRI-guided 
approaches and address issues identified with current approaches. 
As such, combined approaches would provide the following clini-
cally and biologically relevant advances: (i) the ability to enhance 
the delivery of a therapeutic agent (spatially and temporally), (ii) the 
possibility of spatiotemporal control of a biological therapeutic, and 
(iii) the potential to develop novel therapies that would have imme-
diate symptomatic benefit but may also mitigate neurodegenera-
tion in the long term.

CONCLUSION
Although effective symptomatic treatments for PD exist, a disease-
modifying approach is still lacking. Current cell transplantation 
and gene therapy trials have offered a glimpse of this prospect. 
However, future generations of these modalities must continue 
to evolve if they are to become viable treatment options for PD 
patients. Fortunately, alternate cellular and molecular strategies 
exist and suggest that we have not yet exhausted the possibili-
ties for designing an effective cell- or gene-based therapy for PD. 
Hybrid approaches incorporating DBS lead implantation in con-
junction with stem cell or viral vector therapeutics may capitalize 
on the additive contribution from each modality, given the com-
plementary time frames on which each may achieve the optimal 
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effect. Additionally, it may be more cost effective to combine these 
approaches into a single treatment in which fundamental ques-
tions regarding the utility of hybrid stereotactic surgery can be 
addressed. These include extending effective motor control beyond 
what is currently possible with single modality therapy, determin-
ing optimal implantation sites, and possibly lowering the use of 
levodopa therapy and accompanying dyskinesias. The ultimate 
objective is to design a therapeutic approach that provides the 
crucial answers needed to advance PD treatment from control of 
symptoms to control of the disease.
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