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Abstract: When a public health emergency occurs, a potential sanitation threat will directly change
local residents’ behavior patterns, especially in high-density urban areas. Their behavior pattern
is typically transformed from demand-oriented to security-oriented. This is directly manifested as
a differentiation in the population distribution. This study based on a typical area of high-density
urban area in central Tianjin, China. We used Baidu heat map (BHM) data to calculate full-day and
daytime/nighttime state population aggregation and employed a geographically weighted regression
(GWR) model and Moran’s I to analyze pre-epidemic/epidemic population aggregation patterns and
pre-epidemic/epidemic population flow features. We found that during the COVID-19 epidemic, the
population distribution of the study area tended to be homogenous clearly and the density decreased
obviously. Compared with the pre-epidemic period: residents’ demand for indoor activities increased
(average correlation coefficient of the floor area ratio increased by 40.060%); traffic demand decreased
(average correlation coefficient of the distance to a main road decreased by 272%); the intensity of the
day-and-night population flow declined significantly (its extreme difference decreased by 53.608%);
and the large-living-circle pattern of population distribution transformed to multiple small-living
circles. This study identified different space utilization mechanisms during the pre-epidemic and
epidemic periods. It conducted the minimum living security state of an epidemic-affected city to
maintain the operation of a healthy city in the future.

Keywords: COVID-19; public-health resilience; ‘people-oriented’ concept; population agglomeration
index (PAI) and population tidal index (PTI); dense urban area of China

1. Introduction

Under the concept of people-oriented urban design [1], the interaction between human
behavior and urban material space is the most important dimension to study the regulation
of urban processes [2–6]. Urban population distribution [7–9], like population activity
density [10] and urban vitality distribution [11], is the dependent variable of urban spatial
behavior that can be used to characterize the operational state of an urban area [12]. The
population distribution and flow in a high-density urban area are the consequence of mate-
rial space, functional space, and public policy. In recent years, researchers from different
countries have begun to study the interactive relationships among population distribution
and other factors, including urban function [13–15], urban spatial structure [16–18], and
regional policy [19,20]. These studies have revealed many aspects of urban population
distribution, but have concentrated on its static characteristics, which has limited value in
actual daily life.

In recent years, many studies have considered the multi-period spatial population
distribution patterns caused by differences in residents’ spatial behaviors. Li used the
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population density index (PDI), spatial correlation index (SCI) and ordinary least squares
(OLS) model to investigate the spatial-temporal distribution and urban demographic
structure in Xi’an, based on Baidu heat map (BHM) and points of interest (POI) data [21].
Shi et al. investigated the correlation between population density and the location of public
facilities in Shanghai, using the data of 20 million 2G mobile phone records and the land
use data of urban public service facilities [22]. These studies analyzed the daily spatial
characteristics of urban populations using many different research methods. However,
cities are complex giant systems that experience a range of different events. The response
relationship between a fixed objective environment and population behavior patterns
during particular events have not been fully explained by the above studies. Exploring the
relationship between population distribution and spatial elements during specific events
will be the main direction of future research in this field.

The outbreak of COVID-19 has changed residents’ behavior patterns and has also
reshaped the urban function mode [23–25]. There is a significant relationship between
public health and population distribution [26,27]. Most recent studies have focused on
changes in inter-city population movements [28–30], but there have been few studies of
the relationship between residents’ behavior changes and their spatial traits within a city.
There have been no studies of how the solidified urban material space accommodates
different patterns of residents’ behavior in an epidemic/pre-epidemic situation. This study
considered the corresponding relationship between population spatial behavior patterns
and physical space before and during a major public-health mergence. The study has
attempted to improve urban public health resilience by comparing the changes of spatial
demand in high-density urban areas before and during an epidemic.

Section 2 of this paper introduces the data and methods used in the study. Section 3
presents the population distribution and the characteristics of population flow via the
population aggregation and population-tide features. A geographically weighted regres-
sion (GWR) model and Moran’s I were used to analyze the characteristics of population
aggregation and the mechanisms influencing day-and-night tides before and during the
epidemic period. Section 4 discusses urban spatial organizing mode under the perspective
of public-health resilience and the shortcomings of the study, while Section 5 presents the
main conclusions.

2. Materials and Methods
2.1. Study Area

This study focused on urban area within Tianjin Outer Ring Road (117◦5′31′′–117◦19′15′′ E,
39◦1′54′′–39◦15′22′′ N), which is the central area of political, cultural and economic activities in
the city (Figure 1). It has a land area of 576.160 km2 (13.292% of Tianjin), and a population of
5.08 million people (39.543% of Tianjin, according to the Chinese Sixth Census). In this area, the
average block size is 160,000 m2, and we used a grid with dimensions of 400 m× 400 m as the
basic unit of analysis.
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Figure 1. Study area. 

2.2. Data Sources 
Tianjin had experienced four periods during the COVID-19 epidemic. The first was 

the discovery period (prior to 23 January 2020); the second was the control period (from
24 January to 10 February 2020); the third was a gradual resumption of activity period
(from 11–29 February 2020) and finally there was a post-epidemic recovery period (from 
1 March 2020 onwards). The gradual resumption period was a phase transformation be-
tween the suspension of urban activity and normal operation. It represented an operating
state under the constraint of various control measures. Therefore, we selected 29 Novem-
ber 2019 and 27 February 2020 as the representative days of the urban area in the pre-
epidemic and epidemic periods, respectively [10,31].

This study used BHM to illustrate the urban spatial demographic characteristics. 
Based on the geographic location data of mobile-phone users on a location-based services 
(LBS) platform, the BHM can visualize the spatial population aggregation through certain 
algorithms and reflect real-time population distributions [21,32]. We obtained the BHM 
data every half hour, and then conducted a projection conversion and reclassification to
build population distribution dataset. Because seven colors represented seven population
density levels, the original pictures were transformed from colors to 0–7 value tiff rasters 
[10,31]. 

In the GWR model, the impact factors were calculated by the data that were obtained 
from the Baidu open platform (http://lbsyun.baidu.com/ (accessed on 28 February 2020)) 
and Map World (http://tianditu.gov.cn (accessed on 13 June 2017)). The datasets included 
the Tianjin building footprint, main traffic network, urban subway stations, the area of 
urban blue/green spaces, and points of interests (POIs). 
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2.2. Data Sources

Tianjin had experienced four periods during the COVID-19 epidemic. The first was
the discovery period (prior to 23 January 2020); the second was the control period (from
24 January to 10 February 2020); the third was a gradual resumption of activity period
(from 11–29 February 2020) and finally there was a post-epidemic recovery period (from
1 March 2020 onwards). The gradual resumption period was a phase transformation
between the suspension of urban activity and normal operation. It represented an operating
state under the constraint of various control measures. Therefore, we selected 29 November
2019 and 27 February 2020 as the representative days of the urban area in the pre-epidemic
and epidemic periods, respectively [10,31].

This study used BHM to illustrate the urban spatial demographic characteristics.
Based on the geographic location data of mobile-phone users on a location-based services
(LBS) platform, the BHM can visualize the spatial population aggregation through certain
algorithms and reflect real-time population distributions [21,32]. We obtained the BHM data
every half hour, and then conducted a projection conversion and reclassification to build
population distribution dataset. Because seven colors represented seven population density
levels, the original pictures were transformed from colors to 0–7 value tiff rasters [10,31].

In the GWR model, the impact factors were calculated by the data that were obtained
from the Baidu open platform (http://lbsyun.baidu.com/ (accessed on 28 February 2020))
and Map World (http://tianditu.gov.cn (accessed on 13 June 2017)). The datasets included
the Tianjin building footprint, main traffic network, urban subway stations, the area of
urban blue/green spaces, and points of interests (POIs).

http://lbsyun.baidu.com/
http://tianditu.gov.cn
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2.3. Methods

In this study, the quantitative population indicators, population agglomeration index
(PAI) and population tidal index (PTI), were constructed by the BHM, and analyzed by
a GWR model and Moran’s I index, respectively. The technology roadmap is shown
in Figure 2.
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2.3.1. The PAI and PTI

The PAI represents the population aggregation within an urban space. This study
used the average population density in spatial units (400 m × 400 m) during active time
(10:00 am–21:59 pm) as the indicator (Equation (1)). The PAI value range was 0–7; a high
value represents a high population density. The PTI was calculated based on the PAI. It
represents the difference between mean PAI in daytime (10:00 am–16:59 pm) and nighttime
(17:00 pm–21:59 pm) (Equation (2)). The PTI ranges from −7 to 7, with a negative value
indicating that the population gathering intensity is higher in the nighttime than in the
daytime, and the day-and-night difference increases as the value decreases. A positive
value indicates that the population gathering intensity is higher in the daytime than in the
nighttime, and the day-and-night difference increases as the value increases:

PAIt1∼t2 =

t2
∑

t=t1


7
∑

g=1
HVg×HCg

7
∑

g=1
HCg


t2− t1

(1)

where, PAIt1∼t2 represents the average PAI of spatial units during the t1–t2 period; HVg
represents the score of the thermal color of g-grade, and HCg represents the number of
grids of the g-grade:

PTI = PAI10∼16 − PAI17∼21 (2)

where, PTI is the PTI in Equation (2).
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2.3.2. The GWR Model

There are many factors influencing the urban population distribution, such as the
quality of the built environment [33,34], public service conveniences [35,36], traffic ac-
cessibility [37–39], spatial ecological quality [40,41], and others [42,43]. There is spatial
heterogeneity within each factor and traditional linear regression models have not been
fitted well in previous studies [44,45], so we used a GWR model to figure out the population
distribution mechanism. GWR is a revised spatial linear regression model [46–48]. When
facing spatial heterogeneity, it can deal with the spatial relations among multiple variables
and correctly analyze the spatial differences:

yi = β0(ui, vi) +
k

∑
j=1

β j(ui, vi)xij + εi (3)

where yi represents the induced variable; β0(ui, vi) represents the constant of unit i; and
β j(ui, vi) is the regression coefficient of the j-th parameter of unit i, which reflects the spatial
analysis of different parameters’ impact on unit i. The value of the coefficients indicates
the strength of the correlation, with a positive or negative value representing a positive or
negative correlation of the parameters and spatial positions respectively. (ui, vi) represents
the coordinates of unit i; xij represents the j-th value of unit i; εi represents the random
error; and k is the number of independent variables.

In the process of indexes selection, we first selected building density (BD), floor area
ratio (FAR), distance to a subway station (DS), distance to a main road (DR), POI quantity
(POI-Q), POI diversity (POI-D), and Proportion of blue and green space (BGR) to build
an indicator system. POI-D was rejected by a collinear test in the OLS model (VIF > 10).
Except POI-D, the other six indicators were standardized to form a collection of variables.

2.3.3. Spatial Autocorrelation

The spatial autocorrelation analysis is assessing the dependence and heterogeneity
of grids (400 m × 400 m) by the Moran’s I index [47,49]. The global Moran’s I indicates
the overall distribution of data in a research area, while the local Moran’s I evaluates
the similarity and differences of adjacent units. Both indexes range from −1 to 1, with a
positive value indicating similarity and a negative value indicating difference. The degree
of similarity and difference increases as the value increases. The Z-score and p-value
represent levels of spatial association and their significance, respectively. The local Moran’s
I value can be used to discriminate between four spatial types. The HH type represents a
high value agglomeration, indicating that the partial mean is higher than the overall mean,
while the LL type represents a low value agglomeration, indicating that the local average
is lower than the overall average. The HL unit is a high value surrounded by low values,
while the LH type is a low value surrounded by high values. In this study, HH and LL
indicated aggregated population outflow units and aggregated population inflow units,
respectively, while HL indicated local population outflow units and LH indicated local
population inflows units:

I =
n
S0
×

n
∑

i=1

n
∑

j=1
ωij•(xi − X)(xj − X)

n
∑

i=1
(xi − X)

2
(4)

S0 =
n

∑
i=1

n

∑
j=1

ωij (5)

where xi and xj are the attribute values of features i and j; x is the average of n cells’
attribute values; ωij is the spatial weight matrix. In this study the Queen’s Case (adjacency
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defined by mutual edge or point) was applied as the definition rules; and S0 is a collection
of spatial weights.

3. Results

According to the technology roadmap, the results were obtained from the perspective
of population distribution and population tide characteristics during the pre-epidemic and
epidemic periods.

3.1. Differences in the Population Distribution between the Pre-Epidemic and Epidemic

The Moran’s I results showed the average PAI during the pre-epidemic period was
1.309, while during the epidemic the value was 1.065 (Figure 3). The intensity of pre-
epidemic population aggregation was higher than during the epidemic. The pre-epidemic
population aggregated in the central area around the Haihe River, which was presented
spatially as a single core circle. The intensity around the middle of the Haihe River was
higher than that in the east. There was a low aggregation phenomenon in the peripheral
spaces that was apparent only near the main roads. In contrast, during the epidemic period,
population aggregation decreased with the dissolution of the single core circle structure,
while peripheral population aggregation increased. Homogenization became the main
characteristic, with aggregation around the Haihe River and near the main roads decreasing
significantly.
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3.2. Differences in the Influences on the Urban Population Distribution between the Pre-Epidemic
and Epidemic Periods

Tables 1 and 2 present results of the GWR model explaining the distribution of the pop-
ulation during the pre-epidemic and epidemic periods, respectively. In both periods, the
R2 value was higher than 0.75, and the model had strong explanatory power. In the results,
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MEAN represents the average coefficient, while STD, MIN, MAX indicate the standard
deviation, maximum, and minimum, respectively. The area ratio of significance was the
significant indicator, representing the proportion of significant units. The term + indicated
the same relevance unit, while—was the opposite. During the pre-epidemic, the POI-Q
had the biggest spatial influence area, with 93.752% significant units. The Area ratio of
significance of the DS and the BGR was lowest at 13.829% and 12.774%, respectively. There
were negative correlations for BD, DS, DR, and BGR, with DR presenting the largest corre-
lation coefficient among the four indicators. The increase in the DR value corresponded to
0.305 units of PAI. The FAR and POI-Q were positive factors for population aggregation,
with both having an average correlation coefficient of over 0.5, and the proportion of
significant units reached 100%.

Table 1. The GWR model results for the pre-epidemic period.

Variable MEAN STD MIN MAX Area Ratio of
Significance (%) * + -

Intercept 0.228 0.097 −0.015 0.529 90.89% 100.00% 0.00%
BD −0.241 0.198 −1.051 0.394 37.55% 0.00% 100.00%

FAR 0.401 0.243 −0.126 1.789 46.04% 100.00% 0.00%
DS −0.089 0.203 −1.017 0.359 13.83% 81.93% 18.07%
DR −0.305 0.18 −1.001 0.032 69.09% 0.00% 100.00%

POI-Q 0.533 0.162 0.015 1.098 93.75% 100.00% 0.00%
GBR −0.12 0.179 −0.873 0.718 12.77% 0.00% 100.00%

RSS 29.468
sigma 0.09
AICc −6419.5

R2 0.792
Adjusted R2 0.766

* Area ratio of significance is the proportion of significant (p < 0.10) grids in the study area.

Table 2. The GWR model results for the epidemic period.

Variable MEAN STD MIN MAX Area Ratio of
Significance (%) * + −

Intercept 0.143 0.08 −0.082 0.475 60.37% 100.00% 0
BD −0.304 0.246 −1.084 0.522 42.88% 0 100.00%

FAR 0.669 0.398 −0.788 1.608 71.09% 99.96% 0.04%
DS −0.057 0.227 −0.993 0.531 13.50% 34.36% 65.64%
DR −0.082 0.135 −0.793 0.359 8.28% 8.39% 91.61%

POI-Q 0.543 0.253 −0.059 1.472 83.92% 100.00% 0
GBR −0.139 0.208 −1.19 0.681 9.16% 2.73% 97.27%

RSS 38.927
sigma 0.104
AICc −5417.107

R2 0.753
Adjusted R2 0.722

* Area ratio of significance is the proportion of significant (p < 0.10) grids in the study area.

During the epidemic period, the POI-Q and FAR were significant in most spaces
in the study area, at 83.921% and 71.091%, respectively (Table 2). Compared with the
pre-epidemic period, the significance percentage of epidemic POI-Q decreased by about
10% and the interpretative ability of spatial functionality decreased significantly, while the
explanatory power of FAR rose from 37.545% to 71.091%. The significant unit ratio of DS,
DR and BGR was lower than 15%. Compared with pre-the epidemic period results, the
proportion of significant DS units was basically stable. The DR decreased significantly from
69.092% (2nd) to 8.275% (6th), and the area of influence also shrank. The BGR decreased
from 12.774% to 9.164%, with the restriction on the use of leisure space (e.g., parks and
riverbanks) partially affecting the internal mechanism of population aggregation.

Comparing the positive and negative significant unit ratios, the FAR, DS, and BGR were
clearly different. The significant ratio of DS changed from 81.928–18.072% to 34.362–65.638%,
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showing that some positive units changed into negative units, and the PAI decreased as the
number of these changes increased. In the epidemic model, the FAR coefficient was the largest
(0.669). The POI-Q coefficient reduced to 0.543, indicating that its influence on population
flow was substantially weakened. Among the negative indexes, the decreases in BD and BGR
indicated that their influence was enhanced. The influence of DR and DS decreased too.

Comparing the results of the two models, it was apparent that the demand for outdoor
activities was greatly reduced during the epidemic period, resulting in an enhancement
of the correlation and significance of the built-environmental indicators (BD, FAR), and
a decline of the correlation and significance of the spatial functional index (POI-Q), the
spatial quality index (GBR), the traffic access index (DS, DR). Because of the single-core
structure in the city and the travel restrictions, the limited travel radius in the high-density
area weakened the ability of traffic to reshape the population pattern, while spatial units
were more strongly influenced by their adjacent units.

3.3. Differences of Population Tidal Distribution during Pre-Epidemic and Epidemic Periods

The tidal intensity distribution results of the day-and-night population flows during
the pre-epidemic and epidemic periods are shown in Figure 4. The red color indicates
that the daytime population aggregation level was higher than the nighttime level, while
the blue color has the opposite meaning. High-value units of tidal intensity during the
pre-epidemic period were commonly found along the Haihe River and main roads. While
during the epidemic period, the tidal intensity in the study area was reduced from 4.85 to
2.25, and the maximum values occurred around hospitals (Nankai Hospital and Tianjin
Maternity Hospital). The strong tidal flow along the Haihe River disappeared, and the
spatial characteristics indicated a homogenization in the study area.
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3.4. Aggregation Characteristics of the Urban Population Tidal Intensity

The tidal-intensity Moran’s I index value for the pre-epidemic and epidemic periods
were 0.323 and 0.209, respectively. The pre-epidemic period displayed a more obvious
population aggregation than the epidemic period.

We used the local Moran’s I to distinguish the spatial aggregation types, and HH
(clustered population inflow), LL (clustered population inflow), LH (local population
inflow), and HL (local population outflow) units were identified (Figure 5). During the
pre-epidemic period, the HH type appeared mainly around the middle section of the Haihe
River and the Huayuan Residential District. The LL type was distributed mainly on the
edge of the study area, and there were a few units of the LH and HL types surrounding
peripheral small HH and LL patches. During the epidemic period, the number of HH
type units decreased and a fragmented pattern developed, with the number of LL types
increasing and occurring mainly in the core area. The numbers of LH type units and HL
type units increased significantly and were spatially interspersed with HH and LL units.
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During the pre-epidemic period, the study area presented a stable single-core of the
work-residential structure with more long-distance commuting and less local population
flows. The study area constituted a large living circle. During the epidemic period, travel
demand was reduced, long-distance travel was restricted, and the main population outflow
units were split into many smaller population outflow patches. These patches were also
surrounded by local population inflow units, indicating that short-distance travel had
become the main population mobility trend. The urban living area was separated into
several small local clusters. Urban living units were dispersed into several small units, and
the residential community was closer to the surrounding functional spaces.

We calculated the anomalies in the coefficients during the pre-epidemic and epidemic
periods to determine the differences in population-flow characteristics (Figure 6). Indicators
with large differences between the pre-epidemic and epidemic periods (e.g., FAR and POI-
Q as shown in Figure 6a) were the main factors responsible for the change in HH clusters
during the different periods. Pre-epidemic HH units were composed mostly of office
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buildings, business, parks, and factories, and had a high BD and small FAR. The proportion
of these spaces was reduced in the epidemic period HH units. The average FAR and
POI-Q increased because of the increase in people remaining in residential communities.
In contrast, indicators in which there was less difference (e.g., DS and DR), had very little
influence in HH units. The LL units represented the typical living space in the city, as
shown in Figure 6b. There were few differences in BD, FAR, POI-Q and BGR between
the pre-epidemic and epidemic period. The road accessibility index (DS, DR) decreased
significantly in the epidemic period. During the epidemic, the work-life balance of urban
residents was weakened, and travel intensity decreased, resulting in the decreases in
the relevant indicators. The BD and POI-Q of HL units decreased and the DR and BGR
increased, as shown in Figure 6c. The centripetality of the HL type units was enhanced.
Most of these units were service facilities in local residential areas and were located adjacent
to LL units, satisfying most of the short-distance shopping demand during the epidemic.
This type of unit had little demand of location and public transportation, but it needed the
convenient road traffic and space quality. In Figure 6d, the anomalies of FAR and POI-Q
of LH units increased, and the traffic accessibility index decreased significantly. Most LH
units were located adjacent to HH units, indicating the significance of short travel distances
in work-centered residential areas. This was caused by the impact of the reduction in
demand for shopping and entertainment. This type of unit developed by the gathering of
peripheral HH patches to all HH clusters, verifying the fragmentation of the urban lifestyle
from the pre-epidemic to epidemic periods.

Int. J. Environ. Res. Public Health 2021, 18, x 11 of 16 
 

 

  

 

  

Figure 6. Anomalies of factors’ coefficient during the pre-epidemic and epidemic periods. (a) HH type; (b) LL type; (c) 
HL type; (d) LH type 

4. Discussion 
Population distribution and its tidal characteristics are the most important expres-

sions of local genes. They are the outcomes of differences in the spatial characteristics of 
urban material space, functional space and public policy. 

While faced with a public-health emergency, the use of material space will undergo 
a subversive transformation. Demand for outdoor activities transforms to demand for 
home-based protection; leisure space, shopping, and entertainment spaces are closed; 
public-health facilities are over-operating; and the road utilization rate greatly decreases. 
These phenomena will sever the links between urban functional space units. Low-activity 
space is used to improve urban resilience. Based on the distribution characteristics and 
daytime-nighttime tide of urban population during pre-epidemic and epidemic periods, 
this study investigated the temporal differences in use of urban space and the results will 
help to improve the resilience of urban public-health measures. 

4.1. Implications for Public-Health Resilience in High Density Urban Areas 
In China, the reconstruction of material space use in response to the COVID-19 out-

break has become a new topic in the field of urban research. Many studies have investi-
gated regional urban connections with inter-city population flows, but the daily spatial 
behavior of residents has rarely been considered. This study bridged this gap by compar-
ing the demographic spatial distribution during the pre-epidemic and epidemic periods 
and evaluated its tidal characteristics as well. 

Urban spatial vitality has been the main focus of urban planning and construction, 
but the public-health emergency completely reversed this trend. There was a need for 
novel spatial control strategies that encouraged minimal contact among the population 
when the health emergency occurred. This included the shutting down schools, shopping 
malls, and other functional places, while allowing for the over-running of hospitals, com-

Figure 6. Anomalies of factors’ coefficient during the pre-epidemic and epidemic periods. (a) HH type; (b) LL type; (c) HL
type; (d) LH type.

4. Discussion

Population distribution and its tidal characteristics are the most important expressions
of local genes. They are the outcomes of differences in the spatial characteristics of urban
material space, functional space and public policy.

While faced with a public-health emergency, the use of material space will undergo
a subversive transformation. Demand for outdoor activities transforms to demand for
home-based protection; leisure space, shopping, and entertainment spaces are closed;
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public-health facilities are over-operating; and the road utilization rate greatly decreases.
These phenomena will sever the links between urban functional space units. Low-activity
space is used to improve urban resilience. Based on the distribution characteristics and
daytime-nighttime tide of urban population during pre-epidemic and epidemic periods,
this study investigated the temporal differences in use of urban space and the results will
help to improve the resilience of urban public-health measures.

4.1. Implications for Public-Health Resilience in High Density Urban Areas

In China, the reconstruction of material space use in response to the COVID-19
outbreak has become a new topic in the field of urban research. Many studies have
investigated regional urban connections with inter-city population flows, but the daily
spatial behavior of residents has rarely been considered. This study bridged this gap by
comparing the demographic spatial distribution during the pre-epidemic and epidemic
periods and evaluated its tidal characteristics as well.

Urban spatial vitality has been the main focus of urban planning and construction, but
the public-health emergency completely reversed this trend. There was a need for novel
spatial control strategies that encouraged minimal contact among the population when
the health emergency occurred. This included the shutting down schools, shopping malls,
and other functional places, while allowing for the over-running of hospitals, community
neighborhood committees, and governments. The lifestyle changed from the pursuit of a
high-quality lifestyle to a basic living security under the minimum travel time and distance.
The intensity of population, information and material flows decreased substantially, and
the dependence on transport also decreased, while the demand for convenient services in-
creased. The community’s external connections were weakened, and some travel networks
were subject to controls. Mapping to population distribution, people in leisure, tourism,
and shopping spaces was substantially decreased, particularly in locations along the Haihe
River. Aggregation decreased in the units next to some important roads (e.g., Heiniucheng
Road and Kunlun Road). It confirmed that the work-life balance was broken, and the
population aggregation in residential areas increased considerably.

This study provides reference for future urban epidemic prevention and protection,
and urban spatial control during a public-health emergency. Adjacent areas of HH-LH
units constituted a spatial mode for the gathering of the daytime population and nighttime
population outflows. In these units, evaluating the risk of regional exposure in real time
and monitoring the movement trajectory of vulnerable populations were important to
improve the relevance and effectiveness of epidemic surveillance. Adjacent areas of LL-HL
units formed a community-centered local living circle. Unlike the pre-epidemic period,
short-distance living demands became the driving force of this population distribution
pattern.

Before the public-health emergency arose, the urban space could be considered similar
to a large living circle, with a high degree of integration (Figure 7a). The city center had
the highest service level, while urban residents lived in the periphery. Their aim was to
pursue a high quality of life and functional diversity in high-density areas of the city. The
public-health emergency interrupted the connections within the city area and divided the
large living circle into several basic living units (Figure 7b), in which the residents’ needs
for basic living were satisfied in areas closer to their place of residence. This shows the form
of urban spatial organization that will ultimately be required to safeguard public health.
The most important feature of resilience in urban public health is to satisfy the supply
needs of the basic living circle units, including grain, oil, and medical protective equipment.
It is necessary to build a service system for epidemic prevention and control units.
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4.2. Limitations of the Study

This study clearly revealed the differences in population distribution and day-night
tidal characteristics during different periods in the core urban area of Tianjin, but there were
still some limitations. First, BHM is an important data source for population aggregation
evaluation that can effectively reflect the real-time urban population distribution. It is a
type of hierarchical raster numerical data, which is calculated by a certain algorithm that
is generated based on the number of terminal access points. Therefore, it is not able to
visually present the absolute number of residents, but can consider only the differences in
the relative numbers of residents in the unit through a grade assignment. This has a large
influence on the accuracy of population distribution. Second, different groups of people
have different life characteristics [50,51]. In this study, it was difficult to determine the
differences among different groups, such as old people, women, and children.

In the future, the use of multi-source data would help to optimize the method to
determine the population spatialization and to obtain more details for the different groups.
Improvement of population distribution data accuracy should also be a focus of future
research, which would greatly improve the accuracy of future studies.

5. Conclusions

By comparing the urban population distribution and daytime-nighttime tides during
pre-epidemic and epidemic periods, this study analyzed the differences in population
distribution before and during a public-health emergency, and figured out its controlling
and organizational mechanisms. The study quantitatively described the heterogeneity of
urban space and reached several key conclusions.

Epidemic population density decreased in the central area, and the single core circle
distribution pattern dissolved partly. The decreasing demand for open spaces and trans-
portation and the increasing demand for indoor activity, resulted in a decline in population
aggregation in high-accessibility areas. This was a consequence of the enhanced urban
space control and the self-control of residents when facing the risk of infectious diseases.
These actions led to a reduction in the frequency of medium/long-distance travel. The
need is obvious that to regress to a less expansive lifestyle, and an increase in the amount
of home-based activities. Because the POI-Q and BGR are subsidiary indexes within the
scope of a change in the living area, they had a weak impact and presented little difference
between the pre-epidemic and epidemic periods.

The decrease in the population tidal intensity indicated a decrease of population flow.
The spatial characteristics of the population tides tended to be homogeneous. There were



Int. J. Environ. Res. Public Health 2021, 18, 2135 13 of 15

four types of tidal aggregation in the results: HH, LL, LH and HL. It was found that the
pre-epidemic city presented a large living circle spatial pattern, with spatial distance having
little impact on an individual’s willingness to travel, and residents tended to pursue a
high-quality lifestyle. During the epidemic period, the living circle was limited by travel
capacity and willingness. It transformed into several local living circles. Basic living
security facilities around the community became an important component of the local
living circles and their importance was greatly enhanced. The overall living circle in high-
density areas was greatly weakened, and serval smaller basic living units emerged. During
a public-health emergency, we should attempt to improve support measures for there basic
units and control the flow intensity of the overall living circle.

Material space, functional space, and public policy influenced the city in different
ways and with different intensities during the pre-epidemic and epidemic periods. They
led to a substantially different population distribution. This study proposed the need of
different urban spatial response strategies under different situations. During pre-epidemic
periods, increasing the spatial function attraction and traffic accessibility will lead to pop-
ulation concentrations in small areas, improving local spatial vitality. During epidemic
periods, organizing basic living units, controlling the safety threshold of population ag-
gregation, and configuring basic public service facilities will guarantee the convenience of
residential life.
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