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ABSTRACT A total of 194 Mycobacterium abscessus isolates were collected from pa-
tients, and the whole genomes were sequenced. Eighty-five (43.8%) isolates showed
linezolid (LZD) resistance. Only 8.2% of resistant isolates harbored 23S rRNA muta-
tions. Quantitative real-time PCR (qRT-PCR) revealed higher transcriptional levels of
efflux pumps lmrS and mmpL9 in LZD-resistant isolates. Genome comparative analy-
sis identified several new LZD resistance-associated genes. This study highlights the
role of efflux pumps in LZD-resistant M. abscessus and proposes potential target
genes for further studies.
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Mycobacterium abscessus, one of the important nontuberculous mycobacterial
(NTM) pathogens (1), causes human infections with high morbidity and mortality

(2, 3). However, chemotherapeutic options against infections caused by M. abscessus
are very limited due to its innate resistance to multiple antibiotic classes (4).

Linezolid (LZD), the first member of the oxazolidinone class, has been reported to be
one of the most potent antibiotics against infections caused by M. abscessus (3, 5).
Unfortunately, LZD-resistant M. abscessus strains are emerging worldwide (6, 7). Almost
all resistance mechanisms against LZD reported to date involve alterations of LZD
binding sites, including mutations in 23S rRNA and ribosomal proteins (L3, L4, and L22),
or modifications of 23S rRNA, which were mainly investigated in M. tuberculosis,
Staphylococcus spp., and Enterococcus spp. (8–10).

To date, knowledge on LZD resistance mechanisms in M. abscessus is limited. In this
study, we collected 194 M. abscessus clinical isolates and sequenced all the genomes.
Further investigation of resistance mechanism was performed in 85 LZD-resistant
clinical isolates.

Screening of LZD-resistant isolates. One hundred ninety-four M. abscessus isolates
were collected in Shanghai Pulmonary Hospital from sputum and bronchoalveolar
lavage fluid samples between January 2012 and December 2017. LZD MICs were
determined by a broth microdilution method according to CLSI guidelines, and the
breakpoints were interpreted according to CLSI document M24-A2 (�8 mg/liter, sus-
ceptible; 16 mg/liter, intermediate resistant; �32 mg/liter, fully resistant) (11). Mycobac-
terium peregrinum ATCC 700686 and Staphylococcus aureus ATCC 29213 served as the
control reference strains.

The MICs of LZD against 194 M. abscessus isolates ranged from 0.5 to 64 mg/liter,
with an MIC50 of 8 mg/liter and an MIC90 of 32 mg/liter (Fig. 1A). Eighty-five (43.8%)
isolates were resistant to LZD, 44 (22.6%) of which were intermediate resistant and 41
(21.2%) which were fully resistant. The remaining 109 (56.2%) isolates were susceptible
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to LZD. The LZD resistance rate of M. abscessus was high (43.8%), which is consistent
with findings from previous studies (6, 7, 12–16).

Alternations in the LZD target sites. Whole genomes of the 194 strains were
sequenced (BioProject PRJNA488058 from this study and PRJNA448987 and PRJNA448987
from our previous studies), including 96 isolated in 2017 and 98 isolated during 2012
to 2016 (13, 17). The sequences of the entire 23S rRNA, L3, L4, and L22 proteins were
extracted from the whole-genome sequence data of each strain and compared with
those from reference strain ATCC 19977. A total of 26 mutation types were observed in
23S rRNA. Detailed information about the mutations is listed in Table S1 in the
supplemental material. Nine mutations were found in 7 (8.2%) LZD-resistant strains,
indicating that these mutations contributed to LZD resistance (Fig. 1B, red). Other 17
mutations in 23S rRNA were present in either susceptible strains or in both susceptible
and resistant strains, suggesting that they do not contribute to LZD resistance. No
meaningful mutations were found in L3, L4, and L22 in LZD-resistant strains. These
results suggest that a mutation in ribosomal proteins is not responsible for LZD
resistance in most of the strains isolated in this study.

The methyltransferase genes cfr, rlmN, and spr033 and the pseudouridine synthase
gene rulC that modify the 23S rRNA at the LZD binding sites are known to affect LZD
susceptibility (18–21). However, none of them were found in our 194 isolates.

Efflux pumps play an important role in LZD resistance of M. abscessus. Several
efflux pumps, including drrABC, rv0987, lmrS, acrAB, mmpL9, acrF, and optrA, have been
reported to extrude LZD (22). Therefore, efflux pump inhibition tests were conducted
with a combination of phenylalanine-arginine �-naphthylamide (Pa�N, 20 mg/liter),
carbonyl cyanide 3-chlorophenylhydrazone (CCCP; 5 mg/liter), and reserpine (12 mg/

FIG 1 (A) Distribution of LZD MICs of 194 M. abscessus clinical isolates. The number and proportion of
isolates are labeled on the top of each bar. (B) Schematic diagram of mutations in the 23S rRNA among 194
M. abscessus clinical isolates. Green indicates that the mutation is present only in LZD-susceptible isolates,
red indicates that the mutation is present only in LZD-resistant isolates, and yellow indicates that the
mutation is present in both LZD-susceptible and -resistant isolates.
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liter) (23, 24). As shown in Table 1, these inhibitors could decrease MICs of LZD in over
50% of resistant strains, supporting the role of efflux pumps in LZD resistance of M.
abscessus.

Sequence alignment showed that the homologs of drrABC, rv0987, lmrS, acrAB,
mmpL9, and acrF were present in all of the 194 M. abscessus isolates, except for optrA.

Therefore, LZD-resistant isolates with a significant MIC fold change (4-fold) upon
efflux pump inhibition (n � 6), along with 6 randomly selected LZD-susceptible isolates
(MICs, 0.5 to 4 mg/liter), were selected and subjected to quantitative real-time PCR
(qRT-PCR) analysis, as previously described (17). Primer pairs for amplification of each
gene were as follows: mmpL9, ACGTCATTTCAGCTCTGCCA/AAGGGGCGGGTGATACTTTG;
drrC, GTCGAGTACAGCACGCGATA/TAATCCGACCAGCAACCCAC; drrA, GTCCCGGATTGGC
GAAATTG/GCTGCTTTTCCATCTCGCTG; lmrS, TGGTCAATGCTCGCATTCCT/ATCGGGTATCC
CCTTGGTCA; acrF, ACTTCGTTGCGTTCCTCGAT/AGCGTTGTCACTCAACACCA; and acrB,
GATTCGGTATCGGTGGCTGT/CCGGATTCTCCTCGACGAAC. As shown in Fig. 2, the LZD-
resistant strains had �50-fold (P � 0.004) and �5-fold (P � 0.04) increased transcrip-
tional levels of lmrS and mmpL9, respectively, compared to the LZD-susceptible strains.

TABLE 1 MIC fold changes of 41 linezolid-resistant M. abscessus strains upon addition of
efflux pump inhibitorsa

Treatment

No. (%) with MIC fold change decrease of:

1 2 4

Linezolid � PA�N 12 (29.3) 26 (63.4) 3 (7.3)
Linezolid � CCCP 10 (24.4) 25 (61.0) 6 (14.6)
Linezolid � reserpine 19 (46.3) 20 (48.8) 2 (4.9)
a1 represents no MIC fold change.

FIG 2 qRT-PCR analysis of transcript levels of lmrS (A) and mmpL9 (B). Error bars represent the standard
errors of each data point. A t test was used to test the differences among groups. Triangles (Œ) indicate
the strains whose LZD MIC decreased 4-fold after treatment with the inhibitor PA�N. Circles (�) indicate
the strains whose LZD MIC decreased 4-fold after treatment with the inhibitor reserpine.
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These results indicated that efflux pumps lmrS and mmpL9 play an important role in
LZD resistance in M. abscessus. No difference in the transcription levels of drrABC,
rv0987, acrAB, or acrF was observed between the LZD-susceptible and resistant groups
(data not shown).

Whole-genome comparative analysis. For 25% of the LZD-resistant M. abscessus
isolates in this study, resistance could not be explained by known mechanisms,
suggesting the presence of novel mechanisms for LZD resistance. Accordingly, genome
comparative analysis was conducted and identified 24 genes that were highly associ-
ated with LZD resistance (P � 0.01), such as genes encoding MmpL10, which is known
to mediate drug resistance in M. tuberculosis (25), and FabG, which is required for
antibiotic resistance in P. aeruginosa (26). Detailed information for these genes is listed
in Table S2.

In conclusion, this study suggests that rather than mutations or modifications of LZD
target sites, efflux pumps played a predominant role in LZD resistance of M. abscessus.
Whole-genome sequencing and comparative analyses also identified new LZD
resistance-associated genes, which set the foundation for elucidation of the mechanism
of LZD resistance in M. abscessus.

Accession number(s). Whole-genome sequences have been deposited under Bio-
Project no. PRJNA488058.
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