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Abstract: This paper presents a new proposal to generate optimal pseudorandom numbers with Gaussian
distribution. The generator is especially designed for low-cost hardware implementation, although the
software version is also considered. For this reason, Linear Feedback Shift Registers in conjunction with
cyclic rotations are employed. The proposal presents a low implementation cost and overcomes the
limitations of the previous Gaussian generators based on linear feedback shift registers by means of a
less complex algorithm to find optimal configurations. As a consequence, it turns into a really usable
generator. Moreover, a further improvement, based on the simulated annealing algorithm, is applied in
order for the random values to be better adjusted to the normal distribution.
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1. Introduction

Linear feedback shift registers (LFSR) have always been a basic resource for the pseudorandom
number generation (PRNG) due to their low cost implementation, the good statistical properties of the
values produced and the simplicity of their mathematical model that allows a priori analysis of the behavior
of the system [1]. The uniform distribution of the generated numbers allows LFSR to be widely used
in communication and cryptographic applications, as part of the core of CDMA systems [2] and stream
ciphers [3] belonging to the security standards and protocols of wireless and mobile telecommunication
systems such as Bluetooth [4], IEEE 802.11 WLAN [5], GSM [6] and LTE [7]. LFSR are also employed to
design true random number generators (TRNG) [8] in radio frequency identification (RFID) systems [9] .

On the other hand, quantum key distribution schemes (QKD) are evolving from the initial discrete
variable proposals (DV-QKD) [10] based on the transmission of polarized photons using non-orthogonal
states towards continuous variable systems (CV-QKD) [11] based in the transmission of coherent states
which allow the use of standard communications components and, therefore, lower implementation cost.
CV-QKD schemes employ Gaussian modulation to send random amplitude and phase values that must be
generated following a Gaussian distribution [12–14].

Although initially motivated by the potential cryptographic application, we explore in this paper
the utilization of LFSR as a general purpose PRNG with Gaussian distribution instead of their native
uniform distribution. Some authors have previously proposed Gaussian PRNG using LFSR. In 2010,
Kang [15] presented a method employing an LFSR of length N = 4M bits to generate pseudorandom
numbers with (M + 4) bits. The generation algorithm was based on an accumulator operated over
decimated M-bits numbers, producing a final period of (2N − 1)/(8N) which yields on an oversize
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LFSR. More recently, in 2015, Condo et al [16] have proposed a PRNG using permutations over the
successive states of an LFSR. This generator, designed using a unique LFSR of length 17, reduces the cost
of implementation. However, as the own authors claim, not all permutations can be applied. Furthermore,
a high computational cost is required for the searching of valid permutations. Once these permutations
have been applied in the PRNG, the numbers generated follow a Gaussian distribution according to the
results of the normality tests. In other words, only when the tests results are greater than a given threshold,
the permutation is considered a valid one.

All of these proposals are focused on the application of the central limit theorem (CLT) [17] that states
that the distribution of samples mean approximates a normal distribution, as the sample size becomes
larger, assuming that all samples are identical in size, and regardless of the population distribution shape.
In this case, the samples produced by LFSR follow a uniform distribution. The use of several of these
sequences leads us to obtain an approximation of a Gaussian distribution by means of the sum of all of
them. Some authors [18] propose the utilization of several LFSR to generate different and independent
uniform distributed sequences to be summed later. Other proposals Kang [15] and Condo [16] are based
on a unique LFSR that produces all the sequences in order to decrease the global complexity of the PRNG.

Although the application of CLT is not the only method to generate Gaussian random numbers [19],
it will always be a reference to take in mind. In [18], a comparison is performed among the hardware
implementation of three of the best-known methods: CLT, Box–Muller algorithm [20,21] and polarization
decision algorithm [22]. The comparison reveals that the number of gates and other hardware resources
are very similar, while the CLT, implemented in a field-programmable gate array (FPGA) using directly
the numbers produced by several LFSR, showed worse results in the normality tests.

However, the proposals based on a unique LFSR require a lower implementation cost. For this
reason, we present in this article a much simpler implementation of the CLT method, mainly oriented to a
hardware implementation, following the same strategy than Kang [15] and Condo et al [16], that is, using
only one LFSR. The proposal requires the same resources than Condo et al’s PRNG but overcomes the
oversize of Kang’s PRNG [15] and the inconvenient of Condo et al’s PRNG [16] related to the searching
algorithm for valid configurations and reduces its computational cost. It is achieved by means of rotations,
instead of generic permutations, reducing the complexity of precomputation performed to obtain the valid
configurations (rotations). This fact turns the proposal into a really usable PRNG.

Next Sections 1 and 2, describe the fundamentals of the LFSR and the previous proposals on CLT
implementations based on LFSR. Section 3 presents the proposed PRNG based on LFSR rotations, while
Sections 4 and 5 contain the statistical tests applied to check the distribution of the generated numbers and
the results of their application, respectively. In Section 6, a further improvement of the proposed scheme is
presented by means of two coefficients, computed by the simulated annealing algorithm that helps the
generated values to be better adjusted to the normal distribution. Conclusions are presented in Section 7.

2. Lfsr Fundamentals

In this section the basic properties of the LFSR (see Figure 1), and its generated sequences are described.

Definition 1. (cf. [3]) A linear feedback shift register (LFSR) of length m consists of m stages numbered
0, 1, 2, · · ·m− 1, each capable of storing one bit and having one input and one output; and a clock which controls the
movement of data. During each unit of time the following operations are performed:

• The content of stage 0 is output and forms part of the output sequence (out).
• The content of stage i is moved to stage i− 1 for each i where 1 ≤ i ≤ m− 1.
• The new content content of state m− 1 is the feedback bit aj which is calculated by adding together modulo 2

the previous contents of a fixed subset of stages 0, 1, · · · , m− 1.
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Figure 1. A Linear Feedback Shift Register of Length m.

From this definition follows that the value qi is either 0 or 1 (Figure 1) and the feedback bit aj
is the modulo 2 sum of the contents of those stages i, 1 ≤ i ≤ m − 1, for which qm−i = 1. As a
consequence, the output sequence of the LFSR is A = (a0, a1, a2, · · · ) and is uniquely determined by the
following recursion:

aj = q1 · aj−1 + q2 · aj−2 + · · ·+ qm · aj−m (1)

The behavior of the LFSR and the sequences generated can be performed by means of a polynomial
whose coefficients are the values qi that represents the stages used to compute the feedback bit aj. For this
reason, the LFSR is denoted 〈m, p(x)〉, where p(x) = 1+ q1x + q2x2 + · · ·+ qmxm is the connection polynomial.

The LFSR is said to be nonsingular if the degree of p(x) is m (that is, qm = 1). If the initial content
of stage i is si ∈ {0, 1} for each i, 0 ≤ i ≤ m− 1, then [am−1, · · · , a1, a0] is called the initial state or seed of
the LFSR.

On the other hand, the state of the LFSR at the time t is denoted as s(t) = [am−1+t, · · · , at+1, at],
which corresponds to the application of the recursion in the Equation (1) t consecutive times starting with
the seed s(0) = [am−1, . . . , a1, a0]

Example 1. Consider the LFSR 〈4, 1 + x + x4〉. If the initial state of the LFSR is s(0) = [0, 0, 0, 0], the output
sequence is the zero sequence A = (0, 0, · · · ). For the initial state s(0) = [0, 1, 1, 0], the sequence has a length of 15.
The Table 1 shows the successive states s(t). Note that the right-most bit of each state constitutes the output sequence
A = (0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, · · · ).

Table 1. Values of the LFSR 〈4, 1 + x + x4〉 whose initial state is [0, 1, 1, 0].

t s(t) t s(t)

0 0 1 1 0 8 1 1 1 0

1 0 0 1 1 9 1 1 1 1

2 1 0 0 1 10 0 1 1 1

3 0 1 0 0 11 1 0 1 1

4 0 0 1 0 12 0 1 0 1

5 0 0 0 1 13 1 0 1 0

6 1 0 0 0 14 1 1 0 1

7 1 1 0 0 15 0 1 1 0

Definition 2. (cf. [3]) An output sequence A = (a0, a1, · · · ) generated by an LFSR 〈m, p(x)〉, is said to be periodic
if there exits j0 ∈ N such that ai = ai+j0 ∀i ∈ N. Such j0 is called period of the sequence.
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From this definition, the sequence of the example is a periodic sequence with period L = 15.
One of the advantages of LFSR is the mathematical model that allows one to predict the length of the

sequences generated. The following definition and theorem states how and when the maximal length is
reached by the sequences.

Definition 3. (cf. [3]) If p(x) ∈ Z2 [x] is a connection polynomial of degree m, then 〈m, p(x)〉 is called a maximum
length LFSR if the output sequence, with non-zero initial state, has period 2m− 1. This sequence is called m-sequence.

Theorem 1. (cf. [1]) An output sequence A generated by an LFSR 〈m, p(x)〉 is an m-sequence if and only if the
connection polynomial p(x) is a primitive polynomial. The sequence length is independent of the initial state.

Consequently, a primitive polynomial of degree m will generate a sequence of length 2m − 1 and
the LFSR will run through 2m−1 different nonzero states, that is, all possible nonzero states. Hence, if we
consider each state as an m-bit pseudorandom number, we can say that LFSR produce numbers with
uniform distribution.

Besides its maximal length, the m-sequences have many desirable statistical properties that can be
summarized in the three Golomb’s postulates [1]. Given a periodic binary sequence A = (ai)i∈N with
period length L = 2m − 1, it is said to be pseudoradom if the following postulates hold.

1. Distribution test. In every period, the number of ones is nearly equal to the number of zeros,
more precisely the difference between the two numbers is at most 1:∣∣∣∣∣ L

∑
i=1

(−1)ai

∣∣∣∣∣ ≤ 1 (2)

2. Serial test. A sequence of consecutive ones is called a block and a sequence of consecutive zeros
is called a gap. A run is either a block or a gap. In every period, one half of the runs has length 1,
one quarter of the runs has length 2, and soon, as long as the number of runs indicated by these fractions
is greater than 1. Moreover, for each of these lengths the number of blocks is equal to the number of gaps.

3. Autocorrelation test. The auto-correlation function

C(τ) =
L−1

∑
i=0

(−1)ai (−1)a1+τ (3)

is two-valued.

3. Gaussian Generators Based on Lfsr

Several authors [15,16,18] have proposed the utilization of LFSR to generate random numbers with
Gaussian distribution performing direct implementations of the CLT, that is, producing several sequences
of uniform distributed random numbers that are then summed to approximate to the normal distribution.

In order to obtain low cost implementations, Kang [15] in 2010 and Condo [16] in 2015 have proposed
PRNG with only one LFSR. Kang’s proposal uses one LFSR to generate 4 different sequences of numbers
that are summed to produce the final Gaussian random value. To do that, the state of an LFSR of
N = 4M bits is splitted into 4M-bit numbers that are summed. The result of the addition is stored in
an accumulator. N clock cycles later the LFSR state is splitted again to produce a new input into the
accumulator. This operation is repeated 8 times to finally obtain a (N + 4)-bit pseudorandom number at
the accumulator output. This numbers follow a Gaussian distribution. However, the PRNG is not efficient
due to the oversizing required for the LFSR.
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In 2015, Condo et al [16] proposed also a Gaussian PRNG using only one LFSR. In this case, instead
of splitting the state, the system generates several uniform distributed sequences applying several
permutations to every LFSR state. More precisely, two PRNG versions are proposed in [16]. The first
one, depicted in Figure 2, produces four sequences of numbers or, in other words, four numbers at every
instant t: the LFSR state s(t) and three additional numbers obtained applying three different permutations
πi, πj, πk to s(t). The second version produces only 3 sequences of numbers because it only applies two
permutations πi, πj to every state s(t).

The sequences generated by the two versions have been analyzed in [16] using only the LFSR
{17, x17 + x14 + 1}. However, the authors in [16] have provided an estimation of the implementation
cost for a generic PRNG with an LFSR of N stages. This generic design requires one N−bit register,
3N-bit adders (or 2N-bit adders for the second version) and J XOR gates, J being the number of stages to
implement the LFSR feedback. Note also that permutations can be implemented by scrambling the order
of the wires connecting the LFSR to the adder. Hence, they do not require additional hardware resources,
such as gates or registers, thus helping to not increase the total implementation cost. As a result, this
PRNG has lower cost than Kang’s PRNG [15]. In order to generate N-bit random numbers, the Kang’s
PRNG requires one LFSR with 4(N − 4) stages, 3(N − 4)-bit adders and J XOR gates.

Despite the low implementation complexity, this generator has some drawbacks:

• According to the authors only 1/15 of the permutations sets {πi, πj, πk} produce a Gaussian
distribution output. Moreover the set of such permutations is not characterized, which implies
the necessity of having to perform an exhaustive search to choose them. This proposed method
in [16] requeries the generation of the complete sequence for each possible combination.

• According to the authors, the set of valid permutations depends on the chosen seed, that greatly
complicates its practical application.

m bits �

�
+ �

+

Π1

Π2
�

�
+ �

am+t−1 am+t−2 · · · at+2 at+1 at

Π3

+

am

q1 q2 qm−2 qm−1 qm· · ·

Figure 2. Scheme of the Gaussian generator proposed by Condo and Gross.
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4. Gaussian Generator Based on Lfsr Rotations

This section describes the proposed generator that follows the same approach as in [16]; i.e.,
the implementation of the CLT applied over samples with uniform distribution generated by means
of only one LFSR. The main difference is that all sequences of numbers are generated from the unique
LFSR by applying cyclic rotations (a particular case of permutations) instead of the generic permutations
proposed in [16]. The rotation is just a cyclic shift of the content of a given state of the LFSR. Considering
the state as a binary vector, the rotation implies the shift to the right of every component. The right-most
component is then moved to the left-most one. A k−rotation implies k single rotations. The rotations
are always applies to the right. As a consequence, since the rotations, as well as permutations, can be
implemented by scrambling the wires connecting the LFSR to the adder, the implementation cost is the
same, one N − bit register, 3 or 2N-bit adders and J XOR gates. However, the percentage of rotations that
produce Gaussian random numbers is much greater than that of generic permutations. This fact allows
one to randomly select the rotations with a high probability that they can be applied in the Gaussian
generation. In this way, we solve the main drawback of the Condo et al PRNG.

The proposed generator is also designed in two different versions (the first using three rotations;
the second only two) in order to facilitate the comparison to the PRNG in [16]. In both versions, the LFSR
is defined by a primitive polynomial p(x), hence producing an m− sequence.

In Figure 3, the first version is shown, in which the LFSR runs over 2m − 1 states. At every clock pulse
t the state s(t) is then considered as an m-bit number and added to other three m-bit numbers produced by
applying three rotations to the state s(t). The rotations are defined as follows.

Let’s consider an LFSR 〈m, p(x)〉where p(x) is a primitive polynomial of degree m in order to produce
an m−sequence, according to Theorem 1. For every LFSR state s(t) a rotation function Rot(k) is defined as
the cyclic k shifts to the right of the state content. Hence, as s(t) = [am−1+t, · · · , a1+t, at] we have

Rot(1)(s(t)) = Rot(1)([am−1+t, · · · , a1+t, at]) = [at, am−1+t, · · · , a1+t]

Rot(2)(s(t)) = Rot(2)([am−1+t, · · · , a1+t, at]) = [a1+t, at, am−1+t, · · · , a2+t]

· · ·

(4)

Note that Rot(m)(s(t)) = s(t). We denote Rot(j)
1 , Rot(k)2 , Rot(l)3 the three rotations applied to the state

s(t) in the first version of the PRNG, with j ≤ k ≤ l without loss of generality. Similarly, we denote Rot(j)
1 ,

Rot(k)2 the two rotations applied to the state s(t) in the second version of the PRNG, with j ≤ k without loss
of generality.

Finally, the random number RN(t) produced at time t by this generator is computed as follows:

τ(t) = D(s(t)) + D(Rotj
1(s

(t))) + D(Rotk
2(s

(t))) + D(Rotl
3(s

(t))) (5)

where D is the function that maps an m−bit vector into a decimal value, that is,

D(st) =
m−1

∑
i=0

2i · at+i (6)

It is also important to note that the sequence generated by the LFSR is always of length 2m − 1 and
independent from the seed, provided that p(x) is primitive and the seed is a nonzero state. This fact allows
the utilization of any primitive polynomial and any nonzero seed and, hence, the turns the PRNG into a
real usable one.
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We should take into consideration the fact that these equations only appear in order to keep the
mathematical formalism but it has not to be implemented in hardware since the electronic components
works directly with the binary representation of the numbers.

It is also important to highlight that the sequence generated by the LFSR is always of length 2m − 1
and independent from the seed, provided that p(x) is primitive and the seed is a nonzero state. This fact
allows the utilization of any primitive polynomial and any nonzero seed and, hence, the turns the PRNG
into a real usable one.

m bits

+

Roti
1

Rotj
2

am+t−1 am+t−2 · · · at+2 at+1 at

Rotk
3

+

am

q1 q2 qm−2 qm−1 qm· · ·

Figure 3. Gaussian generator based on LFSR rotations.

5. Statistical Analysis

In this section, the distribution of the numbers generated by the proposed PRNG is analysed.
Several normality tests have been applied to identify the configurations (sets of three or two rotations) that
generates numbers with Gaussian distribution.

5.1. Distribution Fit Test

A distribution fit test performs a goodness of fit hypothesis test with null hypothesis H0 that data
was drawn from a population with a specific distribution of values, in this case the Normal distribution,
and alternative hypothesis that it was not. A statistical hypothesis test returns a value called p or the
p-value. This value is used to reject or fail to reject the null hypothesis. This is done by comparing the
p-value to a threshold value chosen beforehand called the significance level α. When the p-value is less
than α, the default hypothesis can be rejected. In the same way, the confidence level of the test is 1− α.
If we set the significance level to 5% and the p-value is greater than 95%, we would conclude that the
null hypothesis affirming that the data is distributed according to the Normal Distribution would not be
rejected at the 5 percent significance level. In the present context, the higher the p-value, the better the
data fits the normal distribution.

There exist different methods to distinguish whether or not the range of values in a distribution
follows a Normal distribution. In Table 2, the normality tests we have considered during the analysis are
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shown. In the next subsection we described the most relevant ones. The table shows the results obtained
in the application of the test to the numbers generated when 3 particular rotations are implemented.

In order to apply the tests, we define the statistical variable to be analyzed as

X(i,j,k) = τ(sn), ∀n ∈ {0, 1, · · · , 2m − 1} (7)

in the case of 3 rotations model and as

X(i,j) = τ(sn), ∀n ∈ {0, 1, · · · , 2m − 1} (8)

in the case of a 2 rotations model.

Table 2. p-tests values for a 3 Rotations model depicted in Figure 3, where n = 17 and Rot2
1, Rot6

2, Rot8
3 have

been applied.

Normal Distribution Fit Test Statistic p-Value

Anderson-Darling 0.194777 0.901172
Cramér-von Mises 0.0269862 0.896351
Jarque-Bera ALM 4.00919 0.130367

Kolmogorov-Smirnov 0.0109818 0.995996
Kuiper 0.0200591 0.993069

Mardia Combined 4.00919 0.130367
Mardia Kurtosis −2.01337 0.0440758

Mardia Skewness 0.0502429 0.822641
Pearson χ2 4.97263 1.0

Shapiro-Wilk 0.998453 0.504076
Watson U2 0.0268772 0.863961

According to the CLT [23], if we consider {X1, . . . , Xn} a random sample of size n that is, a sequence
of independent and identically distributed random variables drawn from a distribution of expected value
given by µ and finite variance given by σ2. Suppose we are interested in the sample average Sn = X1+···+Xn

n
of these random variables. By the law of large numbers, the sample averages converge in probability and
almost surely to the expected value µ as n −→ ∞. The classical central limit theorem describes the size
and the distributional form of the stochastic fluctuations around the deterministic number µ during this
convergence. More precisely, it states that as n gets larger, the distribution of the difference between the
sample average Sn and its limit µ, when multiplied by the factor

√
n (that is

√
n (Sn − µ) ), approximates

the normal distribution with mean 0 and variance σ2. For large n, the distribution of sn is close to the
normal distribution with mean µ and variance σ2/n. The usefulness of the theorem is that the distribution
of
√

n (Sn − µ) approaches normality regardless of the shape of the distribution of the individual Xi.
In Figure 4 we can visualize the histogram of X(2,5,8) for 3 rotations versions where the polynomial

p(x) is primitive of degree m = 10 and Rot2
1, Rot5

2, Rot8
3 have been applied.
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Figure 4. Histograms where a three rotations model has been applied over an LFSR generated controlled
by a primitive polynomial of degree m = 10.

5.1.1. Anderson-Darling Test

The Anderson-Darling [24] test is used to test if a sample of data came from a population with a
specific distribution. It is a modification of the Kolmogorov-Smirnov (K-S) [24] test that endives more
weight to the tails than does this test. The K-S test is distribution free in the sense that the critical values do
not depend on the specific distribution being tested. The Anderson-Darling test makes use of thespecific
distribution in calculating critical values. This has the advantage of allowing a more sensitive test and the
disadvantage that critical values must be calculated for each distribution. Currently, tables of critical values
are available for the normal, uniform, lognormal, exponential, Weibull, generalized Pareto,and logistic
distributions. The Anderson-Darling test is an alternative to the chi-square [24] and Kolmogorov-Smirnov
goodness of fit tests.

The definition is as follows:
H0 : the data follows a specific distribution, Ha : The data do not follow the specified distribution.

The test is defined as:

A2 = −N − S (9)

where

S =
N

∑
i=1

(2i− 1)
N

[ln(F(Yi) + ln(1− F(YN+1−i)] (10)

where F is the cumulative distribution function of the specified distribution, Yi∈N is the set of values to be
tested and N is the set of the stardard normal values.

The critical values for the Anderson-Darling test are dependent on the specific distribution that has
been tested.

5.1.2. Shapiro-Wilk Test

The Shapiro-Wilk test [25], calculates a W statistic that tests whether a random sample, x1, x2, · · · , xn

comes from a normal distribution . Small values of W are evidence of departure from normality and
percentage points for the W statistic, obtained via Monte Carlo simulations, were reproduced by Pearson
and Hartley [25]. This test has done very well in comparison studies with other goodness of fit tests.

The W statistic is calculated as follows:
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W =

(
∑n

i=1 αix(i)
)2

∑n
i=1 xi − x2 (11)

where the x(i) are the ordered sample values (x(1) is the smallest) and the αi are constants generated from
the means, variances and covariances of the order statistics of a sample of size n from a normal distribution.

5.1.3. Chi Square Test

The chi-square test [24] is used to test if a sample of data came from a population with a specific distribution.
In this case we shall focus on this test to check if the distribution of numbers fits the normal distribution.

An attractive feature of the chi-square goodness-of-fit test is that it can be applied to any
univariate distribution for which you can calculate the cumulative distribution function. The chi-square
goodness-of-fit test is applied to binned data (i.e., data put into classes). This is actually not a restriction
since for non-binned data you can simply calculate a histogram or frequency table before generating the
chi-square test.

The chi-square test is an alternative to the Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit
tests, that is much better in terms of the tale analysis, given that this is esential for the Gaussian noise emulator.

The chi-square test is defined for the hypothesis:
H0 : The data follow a normal distribution.
H1 : The data do not follow the specified distribution.
Test Statistic: For the chi-square goodness-of-fit computation, the data are divided into k bins and the

test statistic is defined as:

χ2 =
k

∑
i=1

(Oi − Ei)
2

Ei
(12)

where Oi is the frequency of the i−th value and Ei its corresponding frequency.
In order to deploy this test we firstly assume that x1, x2, ..., xn are the observed values of a variable x.

Then we continue the following steps.

1. Categorize the observations (n) into k categories.
2. Calculate the frequencies fi, i ∈ {1, 2, · · · , k}, where each fi is the observed frequency of the category i.
3. Let pi be the probability, that under null hypothesis, the random variable x belongs to the category i.

Then we calculate the expected frequencies Ei = npi of the observations in category i.
4. Under the null hypothesis, Note that the random variables f1, f2, · · · , fk follow multinomial

distribution with parameters n, p1, p2, ..., pk.
5. Calculate the test statistic χ2

g = ∑k
i=1

(Oi−Ei)
2

Ei
. The expected value of the test statistic, under the null

hypothesis, k− 1− e. ( That is E
[
χ2

g

]
= k− 1− e.)

6. Large and small values of the test statistic (compared to the expected value) suggest that the null
hypothesis H0 does not hold.

7. If the p-value is small enough, the null hypothesis H0 is rejected.

5.2. Results and Comparison with Existing Models

These described tests have been used to check whether a set of values X(i,j,k) defined as in the
Equation (7), is distributed according to a Normal distribution. A minimum level of confidence has been set to
90% therefore the significance level is set to 10% and according to that level of confidence the sequence obtained
has been screened. That is, given a set of values, the Normality tests have been applied to verify whether the
data followed a normal distribution or not. The output of these mentioned tests is a p-value. If the p-value
obtained is greater than 90%, the sequence obtained is considered valid and otherwise has been discarded.
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The proposed generator has been tested for all possible combinations {Rotj
1, Rotk

2} where 0 ≤ j <
k ≤ m in the case of two rotations and {Rotj

1, Rotk
2, Rotl

3} where 0 ≤ j < k < l ≤ m in the case of three
that generates a Gaussian distribution model. All combinations have been tested using the Mathematica
environment, for LFSR whose conection polynomials have degrees 6 ≤ m ≤ 22. The tests have been
performed using Chi sqaure, the Anderson-Darling and Shapiro methods. The results are summarize in
Table 3 where for each degree n, 6 ≤ n ≤ 22 of the polynomials, the total number of existing rotations
has been computed compared to the total number of valid rotations where the p-values has exceeded the
established minimum of 90%.

It proves that the total number of combinations that can be formed considering groups of 3 cyclical
rotations, and the percentages over the total number which generates a final sequence and it fits perfectly
to a Gaussian distribution. Given that the rotation of n bits is equivalent to not apply any rotation, the total
number can be worked out as:

C3
m−1 =

(m− 1)!
3!(m− 4)!

. (13)

Table 3. Number of Valid Rotations at a confidence level of 90%.

LFSR {Rotj
1, Rotk

2 , Rotl
3} {Rotj

1, Rotk
2}

n Total Valid(%) Total Valid(%)
6 10 100 10 100
7 20 100 15 100
8 35 97.14 21 100
9 56 100 28 96.43
10 84 97.62 36 100
11 120 96.67 45 93.33
12 165 93.33 55 98.18
13 220 96.36 66 90.91
14 286 90.91 78 92.31
15 364 92.31 91 95.60
16 455 89.67 105 97.14
17 560 87.96 120 90
18 680 60.26 136 65.44
19 816 59.44 153 50.33
20 969 57.07 171 43.86
21 1140 45.79 190 31.05
22 1540 40.65 210 20.95

The Figure 5 shows the histogram for a particular case where the 3 rotations model has been applied
and the primitive polynomial has degree m = 17.

As shown in the Table 3, the rotations allow a practical generator use, since the election of the set of
rotations Roti

1, Rotj
2, Rotk

3 is much simpler than the election of permutations proposed by Condo in [16].
The election of the seed as well as the election of the primitive feedback polynomial are not relevant.
Furthermore, a much higer percentage of rotations, 100 % in some cases, generates a Gaussian distribution.
Valid permutations suggested by Condo in [16] represents only 6.6% of the total.
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Figure 5. Distribution where n = 17, three rotations applied.

The cardinal of the set of valid combinations of two rotations Rot1i, Rot2j, are also presented in Table 3,
considering that the total number of combinations is:

C2
m−1 =

(m− 1)!
2!(m− 3)!

(14)

As in the case of three rotations, the Table 3 indicates a much higher percentage of 90% of all
combinations of two rotations generating an output sequence with Gaussian distribution, for any m, length
of the LFSR. The effect of rotations remains also independent of the seed and the primitive polynomial
feedback chosen.

Finally, it is important to notice that the cost of implementation is the same as the generator Condo [16],
since the same type of operations and the same number of adders are used.

The proposed PRNG [21] has also been compared with the Box-Muller algorithm that was designed
as a pseudo-random number sampling method for generating pairs of independent, standard, normally
distributed (zero expectation, unit variance) random numbers, given a source of uniformly distributed
random numbers. If U1 and U2 are independent samples chosen from the uniform distribution on the unit
interval (0, 1), then the variables defined as:

Z0 = Rcos(Θ) =
√
−2ln(U1) · cos(2πU2) (15)

Z1 = Rsin(Θ) =
√
−2ln(U1) · sin(2πU2) (16)

are independent random variables with a standard normal distribution.
After having executed the Box-Muller algorithm we have found the following disadvantages.

• According to the results presented in Table 4, we can see that the values of the p-test are better in the
3 rotation model, than in the Box-Muller algorithm.

• The computational cost required to implement the algorithm is much higher.
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Table 4. Evolution of the p-values obtained, after applying the Chi Square Goodness of Fit Test method to a
set of values, for Box-Muller and a 3 rotations LFSR model.

Polynomial Degree Number of Values p-Values for Box Muller p-Values for an LFSR with 3 Rotations

n = 6 26 = 64 p = 0.92 p = 0.99
n = 7 27 = 128 p = 0.91 p = 0.98
n = 8 28 = 256 p = 0.91 p = 1
n = 9 29 = 512 p = 0.90 p = 1

n = 10 210 = 1024 p = 0.89 p = 0.99
n = 11 211 = 2028 p = 0.86 p = 0.99
n = 12 212 = 4096 p = 0.85 p = 0.99
n = 13 213 = 8192 p = 0.85 p = 0.98
n = 14 214 = 16,384 p = 0.83 p = 0.97
n = 15 215 = 32,768 p = 0.83 p = 0.95
n = 16 216 = 65,536 p = 0.82 p = 0.93
n = 17 217 = 131,072 p = 0.81 p = 0.92
n = 18 218 = 262,144 p = 0.81 p = 0.92
n = 19 219 = 524,288 p = 0.78 p = 0.92
n = 20 220 = 1,048,576 p = 0.77 p = 0.91
n = 21 221 = 2,197,152 p = 0.76 p = 0.91
n = 22 222 = 4,194,394 p = 0.76 p = 0.90

6. Improvements in the Results Obtained

In previous sections, we have shown that the proposed PRNGs imrove the results obtained by
Condo [16] and by Kang [15]. The proposed PRNG has been designed as a direct particularization of
Condo’s system, using only rotations instead of a generic permutation, trying to obtain the easiest solution
(with the minimum modification) to the problems detected in [16]. Nevertheless, the accuracy of the
distribution in the proposed PRNG can be further improved, that is, the p-values can be increased. Since the
results are more stable in the version of three rotations we have decided to build on this version. Though
the number of valid rotations is more or less the same, a substantial improvement in terms of their accuracy
has been obtained. For this, an LFSR based on a primitive polynomial has been considered.

We consider a LSFR controlled by a primitive polynomial of degree m, 〈m, p(x)〉. Let s(t) =

[am−1+t, am−2+t, · · · , at+1, at] be a state of the LFSR. Then we define the projections Π1 and Π2 as follows

Π1(st) = [0, am−2+t, · · · , at+1, 0] (17)

and
Π2(st) = [0, 0, am−3+t, · · · , at+2, 0, 0] (18)

Then, the random number is now generated as follows:

τ
(
st) =

= D
(

Rot0
1
(
st))+ D

(
Roti

2
(
st))+ D

(
Rotj

3
(
st))+ D

(
Rotk

4
(
st))+

+D
(

π1

(
Rotk

4
(
st)))+ D

(
π2

(
Rotk

4
(
st))) (19)

where the function D is defined in the Equation (5).
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Figure 6 shows the implementation of this improvement. As one can see, the projections do not
increase the implementation cost as they do not need gates or registers.

We have analyzed for all n that verifies 6 ≤ n ≤ 22. The number of valid rotations and variables is
similar to those of the previous model, however the acceptance minimum level has been set to 95% which
corresponds to a maximum estimation error below the treshold of 5%. The Table 5 shows that values that
have been achieved.

In this particular case where the projections have been applied, we have tested that, although the
acceptance level has been set to 95% we obtain more or less the same number of valid rotations. In other
words, we have not only found a method that exceeds the models proposed to date, but also that the
system has been refined to adapt the set of values to a Normal distribution. Although the system has
given good experimental results, we have been able to verify that when we have increased the value of the
degree of the polynomial in order to obtain a greater number of observations, then there was a decrease in
the number of valid rotations.

Once these results have been obtained, we have tried to find a method that allows us to obtain a
similar number of valid rotations similar to that obtained in the previous section and in the same way,
if possible, increase the efficiency of the system. For this, we have used the simulated annealing method.
The Simulated annealing method [26] is a method for solving unconstrained and bound-constrained
optimization problems. The method models the physical process of heating a material and then slowly
lowering the temperature to decrease defects, thus minimizing the system energy.

m bits

+

Roti
1

Rotj
2

am+t−1 am+t−2 · · · at+2 at+1 at

Rotk
3

+

am

q1 q2 qm−2 qm−1 qm· · ·

Π2

Π1

Figure 6. Improvements Gaussian generator based on LFSR rotations.
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Table 5. Number of Valid Rotations for an acceptance minimum of level 95% where the proyections Π1

and Π2 have been applied.

LFSR
{

Roti
1, Rotj

2, Rotk
3 , Π1

(
Rotk

3

)
, Π2

(
Rotk

3

)}
n Total Valid (%)

6 60 100
7 105 100
8 168 100
9 252 94.04

10 360 94.44
11 495 94.34
12 660 94.09
13 858 93.70
14 1092 82.12
15 1365 79.96
16 1680 76.96
17 2040 72.84
18 2448 65.81
19 2907 68.04
20 3420 67.69
21 3990 68.25
22 4620 67.58

At each iteration of the simulated annealing algorithm, a new point is randomly generated.
The distance of the new point from the current point, or the extent of the search, is based on a probability
distribution with a scale proportional to the temperature. The algorithm accepts all new points that lower
the objective, but also, with a certain probability, points that raise the objective. By accepting points that
raise the objective, the algorithm avoids being trapped in local minima, and is able to explore globally for
more possible solutions. An annealing schedule is selected to systematically decrease the temperature as
the algorithm proceeds. As the temperature decreases, the algorithm reduces the extent of its search to
converge to a minimum.

To illustrate how this method has been implemented, we will illustrate the procedure through an
example. If we take the case where the degree of the polynomial n = 12, we start with vectors of dimension
12 in which we are applying the method of rotations described in the previous section. Once this method
has been applied, it has been determined which of the possible rotations has the highest coefficient and
therefore a distribution of values closer to the normal distribution. In this case the values to be taken are
those of Rot2

1, Rot4
2, Rot8

3, Π1(Rot8
3), Π2(Rot8

3). If we use this combination of rotations, a p test value close
to 97.5% is obtained. From this point on, this distribution of values will be taken as a fixed reference.

Once this distribution of values has been fixed, a function has been defined in which the values
obtained by the projections, defined in Equations (17) and (18), are multiplied by two coeffcients α and β.
Then the values have been obtained by working out the decimal sum defined by:

D
(

s(t)
)
+ D

(
Rot2

1(s
(t))
)
+ D

(
Rot4

2(s
(t))
)
+ D

(
Rot8

3(s
(t))
)
+

+α · D
(

Π1(Rot8
3(s

(t)))
)
+ β · D

(
Π2(Rot8(s(t)))

) (20)

where the function D is defined in the Equation (5).
In order to apply the method, a function has been defined that depends on the sequence and the

parameters of α and β and whose output 1− will be the normal p-test value. This function is to which we
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will apply the simulated annealing method in order to minimize the value of this function. In the case
where n = 12 it has been obtained that α→ 1.48289, β→ 3.16175. There has been a significant increase in
the number of valid rotations and in the same way it has been achieved that they are much closer to the
Normal distribution.

For other values of n as is the case in which it takes the values of n = {10, 11} are obtained following
the same method the values for α and β are: α→ 0.882965 and β→ 4.53362 for n = 10 and α→ 1.30476
and β→ 3.64635 for the case where n = 11, the remaining cases will be considered for future study.

In Figure 7 we can observe the evolution of the percentage of valid rotations for each degree of the
primitive polynomial and for each model (2 rotations, 3 rotations and 3 rotations with 2 projections).
As seen on the trend line with squares, representing the tendency for the 2 rotations model, the percentage
of valid rotations decreases as we increase the degree of the primitive polynomial. The situation
improves in the case of the trend line with circles where the 3 rotations model is analyzed. For primitive
polynomials with small degree the situation is acceptable, however as the degree of the polynomial
increases, the percentage of valid rotations decreases. This decrease is not as noticeable, however, adequate
values are not obtained. Finally, in the trend line of the crosses representing the case of the 3 rotations and
the 2 projections, it is observed that the percentages of valid rotations are acceptable and constant, even for
large values of the degree of the primitive polynomial.

Figure 7. Evolutions of the percetages of valid rotations for the different models according to the degree of
the primitive polynomial.

7. Conclusions

This paper proposed a new pseudorandom number generator with Gaussian distribution using
a method that reduces the cost of implementation, as it applies to [16]. The core difference is in the
characterization of valid configurations. While in [16] the proposal is the use of permutations and to make
a preliminary exhaustive search of them, depending on the seed and polynomial feedback, this paper
proposes the use of a subset of these permutations, cycling rotations, concluding that more than 90% of the
combinations of such rotations are suitable for its practical use. Furthermore, the generator is independent
of the seed and the polynomial feedback once the length LFSR is fixed. Furthermore, additional projections
have been applied to the initial design yielding numbers with better results in the normality tests without
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increasing the implementation cost. Finally, the simulated annealing algorithm has been applied to
optimize the results obtained in the tests.
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