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Abstract: Cyclophosphamide (CTX) is a widely used anticancer drug with severe nephrotoxicity.
The pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) has been shown to
affect immunity and to protect the liver. Hence, the purpose of this study was to investigate the
ameliorating effect of SCSP on CTX-induced nephrotoxicity in mice. We injected male ICR mice
with CTX (80 mg/kg·day) and measured the nephrotoxicity indices, levels of antioxidant enzymes,
malondialdehyde (MDA), inflammatory factors, as well as the major proteins of the NF-κB and
apoptotic pathways. Cyclophosphamide induced kidney injury; the levels of kidney-injury indicators
and cytokines recovered remarkably in mice after receiving SCSP. The activities of superoxide
dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) increased, while there was a
significant decrease in MDA levels. The kidney tissue damage induced by CTX was also repaired
to a certain extent. In addition, SCSP significantly inhibited inflammatory factors and apoptosis
by regulating the NF-κB and apoptotic pathways. Our study shows that SCSP has the potential to
ameliorate CTX-induced nephrotoxicity and may be used as a therapeutic adjuvant to ameliorate
CTX-induced nephrotoxicity.

Keywords: Cyclina sinensis; pentadecapeptide; kidney nephrotoxicity; NF-κB pathway;
apoptotic pathway

1. Introduction

The kidney is the main excretory organ of the human body and one of the important target organs
for studying drug toxicity. It plays an important role in regulating the body’s water, salt, and ion
balance [1,2]. Cyclophosphamide (CTX) is widely used as an anticancer drug [3,4], although it can
cause side effects such as cardiotoxicity, nephrotoxicity, and hepatotoxicity. The process of CTX-induced
renal pathological damage includes apoptosis and necrosis of renal tubular epithelial cells [5], release
of inflammatory factors, and mediation of inflammatory response [6,7]. Certain natural products have
been shown to mitigate CTX-induced nephrotoxicity during CTX chemotherapy [8,9].

Recently, marine bioactive peptides have attracted the attention of researchers, and many
biologically active peptides with specific activities have been discovered from the ocean, all of which
exhibited a wide range of biological functions, including liver protection [10]; immune regulation; and
antihypertensive, antioxidant, and antibacterial activities [11]. However, reports regarding peptides
with kidney-protecting activity are scarce. Previously, we have isolated and purified a pentadecapeptide
(RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) [12]. SCSP increased the activity of lymphocytes
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and macrophages in the spleen of mice and played a key role in improving cellular immune response
and immunity [13]. We also observed that SCSP effectively alleviated CTX-induced liver toxicity
in mice and restored the levels of both NF-κB and apoptotic pathway proteins [14]. A preliminary
investigation indicated that SCSP showed ameliorating effects against CTX-induced nephrotoxicity.
However, until now, the mechanism underlying the ameliorating effect of SCSP on CTX-induced
nephrotoxicity in mice is not clear.

Abnormal activation of NF-κB can regulate transcription related to cell proliferation and
apoptosis [15,16]. It is well documented that the NF-κB and apoptosis pathways are associated
with CTX-induced nephrotoxicity [17]. Kang et al. confirmed that the apoptosis and autophagy
signaling pathways in the kidney play an important role in CTX-injured mice [6]. Consequently, in
kidney injury, the NF-κB and apoptosis pathways may play an important role and may trigger a severe
inflammatory response. Hence, in the present study, we used the NF-κB and apoptotic pathways
to elucidate the ameliorating effect of SCSP on CTX-induced renal toxicity in mice. In addition, the
nephrotoxicity indices and levels of malondialdehyde (MDA), antioxidant enzymes, and inflammatory
factors were also determined. Our results indicate that SCSP is a promising therapeutic adjuvant that
can ameliorate CTX-induced nephrotoxicity.

2. Results

2.1. Effects of SCSP on the Body Weight and Kidney Index of CTX-Induced Mice

In biomedical research, changes in body weight and organ index are important for animal
experiments [6]. After the mice were sacrificed, the kidney tissue was excised, and the kidney index
was calculated after the tissue was weighed. The findings suggested that the weight of mice in the
model group decreased after CTX injection, whereas it increased after SCSP injection. At the same time,
the kidney index of the CTX group was significantly higher than that of the control group (p < 0.01).
However, the kidney index after SCSP treatment was significantly lower than that of the CTX group
(p < 0.01 and p < 0.05), indicating that SCSP could alleviate kidney damage (Table 1).

Table 1. Effect of Cyclina sinensis (SCSP) on cyclophosphamide (CTX)-induced mouse kidney index.

Group Initial Weight (g) Final Weight (g) Body Weight Gain (g) Kidney Weight (g) Kidney Index (mg/g)

Control 20.47 ± 1.52 23.84 ± 1.74 2.49 ± 0.49 0.30 ± 0.04 1.44 ± 0.05 ##

Model 21.04 ± 1.16 22.68 ± 2.57 2.59 ± 1.59 0.34 ± 0.03 1.65 ± 0.02 **
50 SCSP 21.17 ± 1.04 ## 23.19 ± 1.04 ** 3.10 ± 0.66 ** 0.33 ± 0.04 1.59 ± 0.02 *
100 SCSP 21.78 ± 1.35 ## 23.38 ± 1.34 **# 2.70 ± 0.26 # 0.32 ± 0.04 1.53 ± 0.03 ##

200 SCSP 21.10 ± 1.49 ## 23.34 ± 1.87 **# 2.97 ± 0.70 # 0.31 ± 0.04 1.51 ± 0.04 ##

Data were shown as mean ± SD (n = 10). Statistical significance was analyzed by ANOVA (Analysis Of Variance).
* p < 0.05 and ** p < 0.01 (vs. control group); # p < 0.05 and ## p < 0.01 (vs. model group).

2.2. Effect of SCSP on Nephrotoxicity Marker

Urea (BUN) and creatinine (CRE) are two indicators that are often used to assess kidney injury;
hence, determination of BUN and CRE levels can reflect the degree of kidney injury [5,18]. The serum
levels of BUN and CRE were determined to assess the ameliorating effect of SCSP against CTX-induced
nephrotoxicity (Figure 1). Compared to the control group, the BUN and CRE levels of the model
group increased (p < 0.05), whereas high-dose SCSP-treated groups (200 mg/kg SCSP) were decreased
significantly (p < 0.05). Our findings suggested that different doses of SCSP were responsible for kidney
recovery to varying extents.
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significantly lower (p < 0.01). In addition, after SCSP treatment, GSH-Px, SOD, and CAT contents 

showed an upward trend (p < 0.05). These results showed that SCSP significantly reduced CTX-

induced kidney injury to a certain extent and exerted a repair effect on the kidney. 
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Figure 1. The serum levels of urea (BUN) (A) and creatinine (CRE) (B): statistical significance was
analyzed by ANOVA (Analysis Of Variance). * p < 0.05 and ** p < 0.01 (vs. control group); # p < 0.05
and ## p < 0.01 (vs. model group).

2.3. Biochemical Analysis of Liver and Kidney Injury

Studies have shown that CTX can change the contents of MDA (lipid peroxidation markers),
catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in tissues [19].
To investigate the effect of SCSP on CTX-induced kidney injury, the levels of antioxidant enzymes
and MDA were determined. MDA (Figure 2A) levels were significantly higher in the kidneys of
CTX-treated mice, while GSH-Px (Figure 2B), SOD (Figure 2C), and CAT (Figure 2D) activities were
significantly lower (p < 0.01). In addition, after SCSP treatment, GSH-Px, SOD, and CAT contents
showed an upward trend (p < 0.05). These results showed that SCSP significantly reduced CTX-induced
kidney injury to a certain extent and exerted a repair effect on the kidney.
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Figure 2. Effect of SCSP (Cyclina sinensis) on the levels of renal malondialdehyde (MDA) (A), glutathione
peroxidase (GSH-Px) (B), superoxide dismutase (SOD) (C), and catalase (CAT) (D) in cyclophosphamide
(CTX)-treated mice: statistical significance was analyzed by ANOVA. * p < 0.05 and ** p < 0.01 (vs.
control group); # p < 0.05 and ## p < 0.01 (vs. model group).



Mar. Drugs 2020, 18, 462 4 of 11

2.4. Effect of SCSP on Cytokines

Acute nephrotoxicity is closely related to inflammatory response and induces the expression of
various cytokines and chemokines [20], and elevated cytokine levels (such as tumor necrosis factor
(TNF)-α, interleukin (IL)-1β, and IL-6) are associated with kidney damage [7,17]. Hence, reducing
the level of inflammatory factors and repairing the kidney are important for preventing and treating
CTX-induced kidney damage.

The experimental results are shown in Figure 3. The contents of IL-1β, IL-6, and TNF-α in the
kidneys of mice receiving CTX treatment were significantly higher than those in the control group
(p < 0.05). In contrast, IL-1β, IL-6, and TNF-α levels in the kidney homogenates of mice treated with
SCSP (200 mg/kg) decreased markedly compared to the CTX group (p < 0.01), which was superior
to those in the other treatment groups. Therefore, high doses of SCSP may inhibit secretion of these
cytokines and may alleviate CTX-induced renal damage.
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Figure 3. The levels of cytokines in mice kidney tissues: (A) interleukin (IL)-1β, (B) interleukin (IL)-6,
and (C) tumor necrosis factor (TNF)-α: statistical significance was analyzed by ANOVA. * p < 0.05 and
** p < 0.01 (vs. control group); # p < 0.05 and ## p < 0.01 (vs. model group).

2.5. Histopathological Analysis

Histopathological changes are indicators used to assess renal structural damage [21], and the effect
of CTX on kidney histology has been confirmed in previous studies [22]. As shown in the H&E staining
results of kidney tissue in Figure 4A–E, compared with control group, renal tubular epithelial cells in
the CTX group were necrotic and were shed; the glomeruli were obviously atrophic, desquamated or
vacuolated, and peritubular and glomerular congested. Compared to that in the CTX group, SCSP
(50 mg/kg) administration reduced CTX-induced renal tissue damage (Figure 4C). Mice treated with
100 mg/kg of SCSP showed reduction in renal tubule degeneration, the renal corpuscles tended to be
normal, and the damage was reduced (Figure 4D). In comparison, reduction in kidney damage was
obvious in mice treated with 200 mg/kg of SCSP (Figure 4E).
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Figure 4. Histopathological analysis for damage in kidney tissues in mice (×400, scale bars of A–J are
20µm). Arrows: renal tubular were necrotic and shed, and glomeruli were atrophic; triangle: peritubular
and glomerular congestion. CTX represents cyclophosphamide; SCSP represents Cyclina sinensis.

In addition, as shown in the results of the PAS staining of kidney tissue in Figure 4F–J, the
glomerular area of the kidney of the CTX group was significantly increased compared with that
of the control mice and the mesangial matrix was significantly enlarged. However, as the dose of
SCSP increased, the glomerular surface area of the mice in the drug-administered group decreased
significantly, and the expansion of the mesangial matrix of the mice in the high-dose treated group also
decreased (Figure 4J). Therefore, the results of histopathological indicated that high doses of SCSP
provide a certain degree of recovery for the kidney.

2.6. Effect of SCSP on CTX-Induced NF-κB Pathway in Mouse Kidney

The NF-κB system is primarily involved in the body’s defense responses, tissue damage,
oxidative stress, cell differentiation, and induction of apoptosis [23]. NF-κB mainly refers to the
p50/p65 heterodimer, located in the NF-κB/Rel family. Among them, p65 is mainly responsible for
the transcriptional activation of genes whereas p50 is responsible for binding to DNA [15]. We have
previously demonstrated that the repair role of SCSP on CTX-induced liver in mice occurred via
the NF-κB pathway [14]. In the present study, the protein levels of the NF-κB pathway in the
CTX-induced kidney increased significantly (Figure 5, p < 0.01) whereas CTX-induced mice treated
with medium-dose and high-dose SCSP showed significant reduction in the expression of these proteins
(p < 0.01). However, the IκBα level did not change significantly in the low-dose group. This indicated
that SCSP alleviated the CTX-induced kidney injury by inhibiting the NF-κB pathway.
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Figure 5. Effect of SCSP (Cyclina sinensis) on cyclophosphamide (CTX)-induced kidney inflammation
in mice: (A) western blot of NF-κB-mediated signaling in the kidney; (B) expression of NF-κB p50;
(C) expression of NF-κB p65; (D) expression of IKKβ; (E) expression of IKKα; and (F) expression of
IκBα. Statistical significance was analyzed by ANOVA. * p < 0.05 and ** p < 0.01 (vs. control group);
# p < 0.05 and ## p < 0.01 (vs. model group).
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2.7. Effect of SCSP on CTX-Induced Kidney Apoptosis

Studies have shown that the level of apoptotic protein in mice will change after CTX treatment [6].
To assess the antiapoptotic role of SCSP, the expression of several proteins in the apoptosis pathway
were evaluated (Figure 6). Compared to that in the control group, the protein level of Bcl-2 was
apparently reduced in the CTX group (Figure 6C, p < 0.01). After SCSP treatment, Bcl-2 expression in
the kidney was significantly reversed. In contrast, compared to the control group, CTX-induced mice
showed significant upregulation of Bax, TNF-α, caspase 3, and caspase 9 protein levels. After SCSP
treatment, the protein levels of Bax, TNF-α, caspase 3, and caspase 9 decreased significantly (p < 0.01).
Our results were consistent with those of previous reports on kidney cell apoptosis and indicated that
SCSP can effectively alleviate CTX-induced kidney cell apoptosis.
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Figure 6. Effect of SCSP (Cyclina sinensis) on cyclophosphamide (CTX)-induced kidney apoptosis
in mice: (A) western blot of signal transduction mediated by the apoptosis pathway in the kidney;
(B) quantification of Bax expression; (C) quantification of Bcl-2 expression; (D) quantification of caspase
3 expression; (E) quantification of caspase 9 expression; and (F) quantification of TNF-α expression.
Statistical significance was analyzed by ANOVA. * p < 0.05 and ** p < 0.01 (vs. control group); # p < 0.05
and ## p < 0.01 (vs. model group).

3. Discussion

Cyclophosphamide, a widely used antitumor drug affecting cell morphology and organ function,
has been shown to cause nephrotoxicity and kidney tissue damage [24,25]. In this study, we aimed to
assess the contribution of SCSP toward regulation of CTX-induced kidney injury. As expected, our
results indicated that SCSP can restore the kidney by regulating the NF-κB and apoptotic pathways
and significantly restored the levels of BUN, CRE, and cytokines as well as the MDA content and
GSH-Px, SOD, and CAT activities, thereby alleviating CTX-induced nephrotoxicity.

Nephrotoxicity and kidney damage are characterized by marked increase in the serum levels
of BUN and CRE. To our knowledge, changes in the serum level of BUN can reflect the functional
status and excretory function of the kidney. Creatinine is a small molecule that can be filtered through
the glomeruli and an increase in serum CRE level indicates reduction in the filtration rate, which
could also evaluate renal function [7,17]. In our study, the BUN and CRE levels increased obviously in
CTX-treated mice, indicating that CTX is nephrotoxic [5,26]. The increased levels of BUN and CRE
after CTX administration may be due to the change in membrane permeability and penetration of the
systemic circulation after kidney damage [5]. After SCSP treatment, the BUN and CRE levels gradually
returned to normal, indicating that SCSP treatment effectively alleviated CTX-induced nephrotoxicity.
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According to the H&E and PAS staining results, CTX caused kidney tissue damage, including
necrosis and shedding of kidney tubular epithelial cells, glomerular atrophy, and inflammatory cell
invasion in the renal cortex and medulla. After SCSP (200 mg/kg) treatment, renal tubule degeneration
decreased and the renal corpuscles tended to be normal, indicating that SCSP was effective in reducing
CTX-induced nephrotoxicity.

MDA, the final product of various lipid peroxides produced via lipid peroxidation, is a sensitive
indicator of the level of free radical metabolism in the body [27]. In addition, acrolein (a toxic
CTX metabolite) can increase the amount of reactive oxygen species (ROS) and can promote lipid
peroxidation by combining with glutathione (GSH) [28]. Superoxide dismutase, CAT, and GSH-Px
are the most common antioxidants that primarily inhibit or prevent formation of free radicals and
ROS in vivo. They are also essential indicators that play important roles in MDA elimination [29].
In our study, SCSP effectively reduced the MDA content and improved antioxidant enzyme activities
in the kidney.

Studies have suggested that NF-κB is strongly associated with kidney disease [17,30]. NF-κB is
a transcription factor for many inflammatory factors and plays an important role in inflammatory
response [31]. NF-κB can control the expression and production of pro-inflammatory cytokines
and other inflammatory mediators. Furthermore, NF-κB induces the expression of inflammatory
cytokines (TNF-α, IL-1β, and IL-6), amplifies the inflammatory cascade, and is highly activated in
some inflammatory disease sites [32,33]. Our results indicated that SCSP regulated the NF-κB signaling
pathway in CTX-induced nephrotoxicity. At the same time, SCSP may significantly inhibit secretion of
these cytokines, which was consistent with the results of Liu et al. [17].

CTX-induced kidney damage usually involves two forms of apoptosis and cell necrosis [6,34].
Apoptosis is mainly regulated by the Bcl-2 and caspase protein families [35]. TNF-α is also involved in
the regulation of a wide spectrum of biological processes including cell proliferation, differentiation,
apoptosis, lipid metabolism, and coagulation [36]. Our results showed that SCSP treatment significantly
upregulated the expression level of apoptotic protein Bcl-2 (p < 0.01) and downregulated Bax, TNF-α,
and caspases 3 and 9, thereby reversing the CTX-induced kidney damage. This indicated that SCSP
may inhibit the nephrotoxicity caused by CTX via the apoptosis pathway. Overall, our study showed
that SCSP can improve CTX-induced nephrotoxicity by inhibiting the NF-κB and apoptotic pathways.

4. Materials and Methods

4.1. Chemicals and Reagents

SCSP was synthesized by Wuxi MimoTopes Biotechnology (Wuxi, China) [13]. Cyclophosphamide
was supplied by Hengrui Medicine (Lianyungang, China). BUN, CRE, GSH-Px, MDA, SOD,
CAT determining kits and the H&E staining kit were purchased from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). The ELISA kits and PAS stain kit were purchased
from Solarbio Science & Technology Co., Ltd. (Beijing, China). The primary antibodies against
β-actin, NF-κB p50, NF-κB p65, IKKα, IKKβ, and IκBα were supplied by Beyotime Biotechnology
(Shanghai, China). The monoclonal antibodies against Bcl-2, Bax, caspase 3, and caspase 9 were
provided by Cell Signaling Technology Inc. (Beverly, MA, USA). The primary antibodies against TNF-α
were supplied by Proteintech Group, Inc. (Wuhan, China). All other reagents were analytically pure.

4.2. Animals and Treatment

Male ICR mice (20 ± 2 g, 6 weeks old) were purchased from Zhejiang Academy of Medical Sciences
(Hangzhou, China). Experimental procedures were approved by the Animal Ethics Committee of
the Committee for Research Ethics and Integrity of Zhejiang Ocean University (Zhoushan, Zhejiang,
China, No. SCXK ZHE 2019-0031). All mice were housed in a breeding environment with a standard
12 h daylight/darkness cycle at standard humidity (60 ± 5%) and room temperature (23 ± 2 ◦C).
We fed a commercial pellet diet with free access to sterilized water under a pathogen-free environment.
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After being adapted to feeding for one week, 50 mice were randomly divided into 5 groups: control,
model (CTX, 80 mg/kg), 50 SCSP (SCSP, 50 mg/kg), 100 SCSP (SCSP, 100 mg/kg), and 200 SCSP (SCSP,
200 mg/kg) (Figure 7). Except for the control group, all groups were injected with CTX (80 mg/kg
b.wt, dissolved in saline, 0.2 mL) for 3 consecutive days. From the fourth day, SCSP was injected
intraperitoneally into each drug group (50, 100, and 200 mg/kg b.wt, 0.2 mL) for 7 consecutive days and
an equal volume of saline was injected into the model group. Mice in the control group were injected
with an equal volume of normal saline once a day for 10 days. Upon completion of the treatment
period, the mice were killed by neck dislocation, and intact kidneys were removed and weighed, some
of which were used for subsequent biochemical and pathology experiments. The kidney index was
calculated as follows: kidney index (mg/g) = kidney weight/body weight.
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4.3. Sample Collection and Preparation

The kidneys were dissected and weighed, and the kidney weight ratio was represented as a
percentage of kidney weight to body weight. Partial kidney samples were fixed in 10% neutral
formalin buffer for 24 h for histopathological analysis. Other kidney samples were partly ground into
homogeneous slurry (w/v, 1:9), and the supernatant was used for biochemical analysis; a part of the
supernatant was stored at −80 ◦C for western blotting. The protein content was determined per the
instructions of the BCA kit (Solarbio, Beijing, China).

4.4. Measurement of Kidney-Related Parameters

At the end of the study, the serum was separated from the retroorbital whole blood. The serum
renal function markers, including BUN and CRE, were measured according to Nanjing Jiancheng’s
(Nanjing, China) instructions. The renal tissue was immediately dissected and weighed. The tissue
homogenate (10% renal tissue within normal saline, g/g) was prepared from frozen renal tissues.
After centrifuging, the supernatant of the tissue homogenate was collected to measure the MDA level
and the GSH-Px, SOD, CAT activities according to the manufacturer’s instructions. The cytokine levels
in kidney homogenates were determined per the instructions of Solarbio (Beijing, China).

4.5. Histopathological Analysis

The immobilized kidney tissues were embedded with paraffin, and 5-µm-thick sections were
excised from the paraffin blocks. H&E staining and PAS staining were performed according to a
standard protocol and were observed under a light microscope (Olympus CX31, Tokyo, Japan).
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4.6. Western Blot Analysis

Kidney tissues were ground with liquid nitrogen and treated with a protease inhibitor to extract the
total protein in RIPA buffer. The BCA analysis kit was used to determine protein concentrations. Thirty
micrograms of protein were separated using 12% SDS-PAGE, and protein blotting was performed as
described previously [14]. Finally, the target bands were detected using an enhanced chemiluminescence
kit (ECL) and analyzed using the Alphaview SA software for Fluor Chem FC3 (ProteinSimple, San Jose,
CA, USA). β-actin antibody was used as the control.

4.7. Statistical Analysis

The SPSS software (version 22.0) was used to analyze the data, and all experimental data were
presented as mean ± standard deviation. Statistical significance was analyzed using one-way analysis
of variance (ANOVA), followed by the least significant difference (LSD) test as the post hoc test.
Statistically, difference at p < 0.05 was considered significant while difference at p < 0.01 was considered
particularly significant.

5. Conclusions

Our results demonstrated that SCSP exerted a potential ameliorating effect against CTX-induced
nephrotoxicity, which was reflected in inhibition of the activities of antioxidant enzymes and markers in
the kidney and in reduction of inflammation. Furthermore, SCSP also repaired the kidney by restoring
the protein levels of the members of the NF-κB and apoptotic signaling pathways. Taken together, our
results indicated that SCSP has the potential to ameliorate CTX-induced nephrotoxicity and may be
used as a therapeutic adjuvant to ameliorate CTX-induced nephrotoxicity.
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