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Abstract

Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma and 
chronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known to 
reduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. This 
makes the development of PDE4B subtype selective inhibitors a desirable research goal. To 
achieve this goal, ligand based pharmacophore modeling approach is employed. Separate 
pharmacophore hypotheses for PDE4B and PDE4D inhibitors were generated using HypoGen 
algorithm and 106 PDE4 inhibitors from literature having thiopyrano [3,2-d] Pyrimidines, 
2-arylpyrimidines, and triazines skeleton. Suitable training and test sets were created using 
the molecules as per the guidelines available for HypoGen program. Training set was used for 
hypothesis development while test set was used for validation purpose. Fisher validation was 
also used to test the significance of the developed hypothesis. The validated pharmacophore 
hypotheses for PDE4B and PDE4D inhibitors were used in sequential virtual screening of zinc 
database of drug like molecules to identify selective PDE4B inhibitors. The hits were screened 
for their estimated activity and fit value. The top hit was subjected to docking into the active 
sites of PDE4B and PDE4D to confirm its selectivity for PDE4B. The hits are proposed to be 
evaluated further using in-vitro assays.
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Introduction

Prevalence of inflammatory diseases of 
respiratory tract i.e. asthma and COPD has 
increased in recent years, with more than 200 
million people affected by it worldwide. Most 
of the mortality related to these inflammatory 
disorders occurs in low and low-middle income 
countries (1). 

Phosphodiesterase 4 (PDE4), a predominant 
family of phosphodiesterase (PDE) enzymes 
expressed in immune and inflammatory cells, 
includes three subtypes PDE4A, PDE4B 
and PDE4D. Inhibition of PDE4 has been 
shown to suppress a diverse spectrum of 
inflammatory responses in-vitro and in-vivo (2-
5). More importantly, many PDE4 inhibitors in 
development are efficacious in animal models of 
various inflammatory disorders, such as asthma, 
COPD, psoriasis, inflammatory bowel diseases, 
and rheumatoid arthritis (3, 6, 7), as well as in 



clinical trials for asthma and COPD (8-10).
The development of PDE4 inhibitors has been 

slowed down due to narrow therapeutic window 
of most of the compounds. A major reason for 
their poor clinical results is the consequence of 
dosing limitation caused by side effects such 
as nausea and emesis (11). Recent findings in 
PDE4D knockout mice suggest that an inhibitor 
with PDE4B selectivity should retain many 
beneficial anti-inflammatory effects without 
the unwanted side effects (12). The study also 
established that PDE4D inhibition is responsible 
for the dose limiting side effects. Some other 
studies have proven that selective PDE4B 
inhibitors have potent anti-inflammatory effects 
in-vitro and in-vivo. Investigation in ferrets 
also showed significantly less emesis with this 
compound compared with the non-selective 
PDE4 inhibitor cilomilast (13). Thus, PDE4B 
has been established as an extremely attractive 
target for design of anti-inflammatory drugs, 
particularly for asthma and COPD.

The highly conserved catalytic domain of 
PDE4 isozymes makes the design of inhibitors 
with PDE4 subtype selectivity a challenging 
task, nevertheless subtype selective PDE4 
inhibitors have recently been described (14, 15). 
Only a few amino acids are non-conserved in 
N-terminal regulatory domain UCR2 (i.e Phe 
in PDE4D vs Tyr in PDE4B) and C-terminal 
domain CR3 (i.e Leu in PDE4D vs Gln in 
PDE4B) (16, 17). These minor differences in 
the regulatory domains have been exploited to 
design selective PDE4B or PDE4D inhibitors so 
far (16-18).

The availability of PDE4B and PDE4D 
inhibition data for recently reported PDE4 
inhibitors allows the development of 

pharmacophore models of PDE4B and PDE4D 
inhibitors (19-21). Pharmacophore models also 
help in the identification of structural features 
which can differentiate between the two receptor 
subtypes. The information obtained can be used 
for design of more selective and potent PDE4B 
inhibitors with hitherto new structures. The 
pharmacophore models of PDE4B and PDE4D 
inhibitors can be used to screen databases of 
drug like compounds in a sequential manner 
to identify novel leads as selective PDE4B 
inhibitors. Pharmacophore model based virtual 
screening has proved to be a useful strategy for 
identification of novel leads in the past (22-32). 
In the present study pharmacophore models of 
both PDE4B and PDE4D inhibitors has been 
developed and validated. The pharmacophore 
models were then used for sequential virtual 
screening to identify novel selective PDE4B 
inhibitors. The hits were screened for their 
estimated activity and fit value. Their selectivity 
for PDE4B was confirmed by docking studies.

Experimental

Data set
Selective PDE4B inhibitors belonging to 

thiopyrano[3,2-d] Pyrimidines,2 arylpyrimidines 
and triazines class reported recently, along-with 
their PDE4B and PDE4D inhibitory activities, 
were used for the present study (Figure 1) 
(19-21). The molecular structures and IC50 of 
the above series were taken from the original 
papers. Numbers used in original papers were 
used to denote molecules belonging to triazine 
series while numbers used in original papers 
for molecules belonging to 2-arylpyrimidine 
and thiopyrano[3,2-d]Pyrimidine series were 

Figure 1. General structures of 2-arylpyrimidines (A), triazines (A) and thiopyrano[3,2-d]Pyrimidine (B and C).
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suffixed with a and b respectively.

3D QSAR pharmacophore modeling
Pharmacophore generation
Pharmacophore modeling is the most widely 

used method for identification of essential 
structural features required for biological activity. 
In the present study, HypoGen algorithm was 
applied to build the 3D QSAR pharmacophore 
models for both PDE4B and PDE4D inhibitors 
using DS V2.0 software (Accelrys Inc., San 
Diego, CA, USA) (33). 

For the study, 75 molecules, with activity 
values (IC50) between 3.0 nM and 18755 nM 
were selected as training set, which was used 
to engender the hypotheses. The training 
set selected complies with the requirements 
specified in the literature. To validate the 
hypothesis, the test set was prepared using the 
specified requirements. Test set contains 24 
molecules having wide range of activity values. 
Sketch function of DS was used to sketch the 
two-dimensional (2D) chemical structures of 
all molecules which were later converted into 
3D structures. Maximum of 250 conformations 
were generated for each molecule using the best 
conformation model generation method based 
on CHARMm force field and Poling algorithm 
(34). Those conformations with energy higher 
than 20 kcal/mol from the global minimum were 
rejected. Molecules with their conformational 
models were then submitted to DS for generating 
hypotheses.

Automated 3D QSAR pharmacophores were 
produced by comparing the PDE4B and PDE4D 
inhibitory activity values of molecules in the 
training set separately. This helps in identifying 
the features that are common with the active 
compounds, but excludes common features for 
the inactive compounds within conformational 
allowable regions of space. Selecting the 
chemical features is one of the most important 
steps in generating a pharmacophore. While 
generating hypotheses, HBA (hydrogen bond 
acceptor), HBD (hydrogen bond donor), and 
H (hydrophobic), features were selected based 
on the training set molecules. The number of 
features allowed in the model were kept in the 
range 0-5. The ‘Uncertainty’ values for all the 
75 molecules in the training set were set to 2.0, 

and the default values for other parameters were 
kept constant. Subsequently, pharmacophore 
models were computed and the 10 top scoring 
hypotheses for both PDE4B and PDE4D 
inhibition were selected for further study. The 
qualities of the hypotheses were reliant on the 
fixed cost, null cost, and total cost values (35).

Assessment of pharmacophore quality 
Quality of the developed pharmacophore was 

assessed using three different methods. Initially, 
cross validation was performed by the Fischer’s 
randomization test. Secondly, the prediction of 
the activity values of the test set was performed. 
The correlation between the experimental and 
predicted activities was used to assess predictive 
ability of the model. All queries were addressed 
using the ligand pharmacophore mapping 
protocol. 

Virtual Screening
The validated pharmacophore model (Hypo1B 

and Hypo1D) of PDE4B and PDE4D inhibitors 
was used as a query in a sequential manner to 
search the zinc database. Zinc is a comprehensive 
database of small molecules containing a total 
of 17,900,742 drug like molecules (36). In 
the first step ligand pharmacophore mapping 
module of DS was used along with Hypo1B 
as the pharmacophore model and zinc database 
as the database. In the next step, hits mapping 
to the pharmacophore model Hypo1B were 
retrieved and hit compounds showing Hypo1B 
estimated IC50 less than 20 nM were selected 
and subsequently subjected to screening using 
the validated pharmacophore model Hypo1D in 
the same manner as in the previous step. The hit 
compounds were chosen that showed Hypo1D 
estimated fit value less than 4. 

Docking studies were used to confirm 
the selectivity of the hits obtained using the 
pharmacophore based virtual screening. The most 
PDE4B selective hit determined by the fit values 
for Hypo1B and Hypo1D and the most selective 
ligand from the series used for pharmacophore 
development i.e. 34b, were docked into the 
active sites of PDE4B (PDB ID: 4NW7) and 
PDE4D (PDB ID: 1Y2B). First the protein 
structures were prepared using the automatic 
protein preparation module of DS V2.0 software 
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using the default parameters. The structures 
of the identified hit as well as the standard 
molecule (34b) were prepared using the prepare 
ligand module of DS V2.0 software. Docking of 
the prepared ligands into the active site of the 
prepared structures of PDE4B and PDE4B was 
carried out using CDOCKER program available 
in DS V2.0 software (Accelrys Inc., San Diego, 
CA, USA) with default parameters (37). The 
ratio of PDE4B/PDE4D docking scores was used 
as measure of PDE4B selectivity. The higher is 
the ratio the greater is the PDE4B selectivity. 

Results and Discussion

3D QSAR pharmacophore modeling
Pharmacophore generation
The top scoring model (Hypo1B) for 

PDE4B inhibition consist of three HBA which 
established the highest cost difference (143.378), 
best correlation coefficient (0.9571), maximum 
fit value (5.8678) and lowest root mean square 
(RMS) of 1.86 (Table 1). The results revealed 
the importance of HBA in PDE4B receptor 
antagonist activity. The fixed and the null cost 
values were 236.38 and 509.10, respectively 
(Table 1). Difference between these two costs 
(143.378) was greater than 70 bits which 
showed that the model has over 90% statistical 

significance. A good pharmacophore model 
should also have the configuration cost lower 
than 17, and it was found to be 12.53 for the 
generated pharmacophore hypotheses. Hypo1B 
showed correlation coefficient value of 0.9571, 
demonstrating its good prediction ability.

Top scoring model (Hypo1D) for PDE4D 
inhibition consists of two HBA and three H with 
highest cost difference (164.419), best correlation 
coefficient (0.9563), maximum fit value 
(8.1515), and lowest root mean square (RMS) 
of 1.66 (Table 2). As in the case of Hypo1B, 
HBA was found to be important for PDE4D 
receptor antagonist activity although there is 
additional H in this case. Difference between 
fixed and null costs (164.419) showed that the 
model has over 90% statistical significance. The 
configuration cost was also sufficiently low at 
12.49. Hypo1D showed correlation coefficient 
value of 0.9563 (Table 2). Based on statistical 
parameters Hypo1B and Hypo1D were selected 
as the best hypothesis for PDE4B and PDE4D 
inhibition respectively and were employed for 
further analyses. 

Figure 2 shows Hypo1B, and Hypo1D 
chemical features with their geometric 
parameters while Molecules with highest and 
lowest activity in the training set aligned to 
Hypo1B and Hypo1D are shown in Figure 3. 

Table 1. Information of statistical significance and predictive power presented in cost values measured in bits for the top 10 hypotheses 
as a result of automated 3D QSAR pharmacophore generation for PDE4B.

Hypo no. Total cost Cost differencea RMSb Correlation Featuresb Max fit

Hypo1B 365.722 143.378 1.86 0.9571 HBA, HBA, HBA 5.8678

Hypo2B 369.858 139.242 1.89 0.9362 HBA, HBA, H 5.7607

Hypo3B 376.722 132.378 1.93 0.9208 HBA, HBA, H 5.2594

Hypo4B 382.828 126.172 1.97 0.9068 HBA, HBA, H, H 6.6554

Hypo5B 383.112 125.988 1.98 0.9054 HBA, HBA, H 5.2458

Hypo6B 386.676 122.424 1.99 0.8972 HBA, HBA, H 5.0619

Hypo7B 387.872 121.228 2.01 0.8933 HBA, HBA, H 5.4563

Hypo8B 391.358 117.742 2.03 0.8862 HBA, HBA, H 4.8644

Hypo9B 391.861 117.239 2.03 0.8858 HBA, HBA, H 4.6476

Hypo10B 393.315 115.785 2.04 0.8815 HBA, HBA, H 4.7971
aCost difference between the null and the total cost. The values for null cost, fixed cost, and configuration cost are 509.10, 236.38, and 
12.53 respectively.
bAbbreviations: RMS: root mean square deviation, HBA: hydrogen bond acceptor, HBD: hydrogen bond donor, H: hydrophobic.
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The prediction accuracy of both the models was 
verified using the training set and the activity of 
each molecule in training set was estimated by 
regression analysis.

The experimental and predicted activities 
by Hypo1B and Hypo1D for 75 training 
set molecules are shown in Tables 3 and 4 
respectively. Data clearly shows the good 
agreement between predicted and experimental 
IC50 values.

dFit value indicates how well the features in 
the pharmacophore overlap the chemical features 
in the molecule. Fit value = weight x [max(0,1 
- SSE)] where SSE = (D/T)2, D = displacement 
of the feature from the center of the location 
constraints and T = the radius of the location 
constraint sphere for the feature (tolerance).

eDifference between the predicted and 

experimental values. ‘+’ indicates that the 
predicted IC50 is higher than the experimental 
IC50; ‘-’ indicates that the predicted IC50 is 
lower than the experimental IC50; a value of 0 
indicates that the predicted IC50 is equal to the 
experimental IC50.

Close examination of the pharmacophore 
models Hypo1B and Hypo1D reveals the 
structural features of an inhibitor which can 
differentiate well between the two receptors. 

Table 2. Information of statistical significance and predictive power presented in cost values measured in bits for the top 10 hypotheses 
as a result of automated 3D QSAR pharmacophore generation for PDE4D.

Hypo no. Total cost Cost differencec RMS Correlation Features Max fit

Hypo1D 334.571 164.419 1.66 0.9563 HBA, HBA, H, H, H 8.1515

Hypo2D 335.16 163.830 1.66 0.9336 HBA, HBA, H, H 8.0525

Hypo3D 339.583 159.407 1.70 0.9247 HBA, HBA, H 6.0897

Hypo4D 340.037 158.953 1.67 0.8712 HBA, HBA, H, H, 5.6251

Hypo5D 346.347 152.643 1.74 0.8341 HBA, HBA, H, H, H 6.9568

Hypo6D 346.670 152.320 1.70 0.8027 HBA, HBA, H, H, H 4.5456

Hypo7D 348.692 150.298 1.76 0.7991 HBA, HBA, H, H 6.2123

Hypo8D 350.222 148.768 1.77 0.7892 HBA, HBA, H, H 6.7776

Hypo9D 350.437 148.553 1.76 0.7554 HBA, HBA, H, H, H 6.3886

Hypo10D 350.729 148.261 1.74 0.7332 HBA, HBA, H, H, H 4.8890
cThe values for null cost, fixed cost and configuration cost are 498.99, 231.346 and 12.49 respectively.

Figure 2. Hypo1B and Hypo1D chemical features with their 
geometric parameters.
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Figure 3. A. Most active PDE4B inhibitor (54b) aligned with 
Hypo1B, B. Least active PDE4B inhibitor (10) aligned with 
Hypo1B, C. Most active PDE4D inhibitor (29) aligned with 
Hypo1D, D. Least active PDE4D inhibitor (10) aligned with 
Hypo1D.

Figure 3. A. Most active PDE4B inhibitor (54b) aligned with Hypo1B, B. Least active PDE4B 

inhibitor (10) aligned with Hypo1B, C. Most active PDE4D inhibitor (29) aligned with Hypo1D, 

D. Least active PDE4D inhibitor (10) aligned with Hypo1D.

Table 3. Actual and estimated activity of the training set molecules based on the pharmacophore 

model Hypo1B.

Fit valued LogIC50 LogIC50 (predicted) Errore

1 3.9094 8.8099 7.8080 1.0018

2 5.0896 4.0073 4.0906 -0.0832
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Table 3. Actual and estimated activity of the training set molecules based on the pharmacophore model Hypo1B.

Fit valued LogIC50 LogIC50 (predicted) Errore

1 3.9094 8.8099 7.8080 1.0018

2 5.0896 4.0073 4.0906 -0.0832

4 4.4407 7.5730 6.5847 0.9884

5 4.5557 5.9480 5.3199 0.6282

8 4.2395 5.4681 6.0481 -0.5800

9 4.0517 8.2348 8.4804 -0.2455

10 3.9096 9.8392 8.8077 1.0316

12 3.9090 7.2862 6.8089 0.4773

14 4.0043 7.7328 6.5895 1.1433

15 4.4623 6.7393 5.5349 1.2045

18 4.6695 5.5645 5.0579 0.5066

19 3.8297 7.2399 6.9917 0.2483

20 4.5970 5.3936 5.2249 0.1688

22 4.1433 3.8286 4.2695 -0.4409

23 4.2621 4.9053 5.9959 -1.0906

24 3.9079 4.9053 5.8114 -0.9062

27 5.0484 5.4848 5.8855 -0.4007

28 4.5921 2.4849 2.2360 0.2489

29 4.8138 5.1060 4.7256 0.3804

31 4.6269 4.2341 4.1559 0.0782

32 5.1069 5.9965 5.6508 0.3457

33 4.6877 6.9939 6.0161 0.9779

10a 4.3958 5.7038 5.6880 0.0158

12a 3.9014 3.5264 4.8266 -1.3002

13b 4.6589 4.0431 4.0824 -0.0393

14a 4.0112 6.5367 6.5736 -0.0369

14b 5.2346 4.7875 4.9567 -0.1692

15a 4.6777 4.7875 5.0390 -0.2515

16b 4.6630 3.4012 4.0729 -0.6717

17a 4.6442 7.9374 7.1161 0.8213

17b 5.4607 2.3979 2.5361 -0.1382

18a 3.8934 8.2161 7.8450 0.3711

18b 4.9305 4.7875 4.4568 0.3307

19a 4.0354 6.7569 6.5180 0.2390

1b 5.6617 3.2189 3.4733 -0.2544

20b 5.1383 3.5264 3.9785 -0.4522

21a 3.9115 5.3471 6.8032 -1.4561

21b 4.9923 4.9416 4.3147 0.6270
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Fit valued LogIC50 LogIC50 (predicted) Errore

22a 5.0677 5.3936 5.5410 -0.1474

22b 5.1410 4.9416 4.9722 -0.0305

23a 4.6139 5.0106 5.1859 -0.1753

24b 4.5382 6.0638 5.3603 0.7035

26a 3.9114 6.8459 6.8035 0.0424

26b 5.4570 3.7842 3.5446 0.2396

27a 3.9116 7.0901 6.8031 0.2870

27b 5.5718 3.6376 3.9802 -0.3426

28b 5.3524 2.3026 2.4854 -0.1829

29a 5.1079 5.7683 5.0485 0.7198

29b 5.4456 5.5215 5.2709 0.2506

2a 3.8825 6.0638 6.8700 -0.8062

2b 5.0910 3.3673 3.2873 0.0800

30a 5.1379 5.2470 4.6793 0.5678

31a 5.4163 3.5264 3.3383 0.1881

31b 5.5135 3.8286 3.5145 0.3142

32b 5.5108 2.5650 2.3208 0.2442

33a 5.0896 2.7081 2.4906 0.2175

33b 5.5519 2.9444 3.0262 -0.0817

34a 5.1824 1.9169 1.8768 0.0401

35a 5.2004 2.7081 2.4355 0.2725

35b 5.4536 3.4012 3.2525 0.1487

36b 5.5615 2.6391 3.0039 -0.3649

37b 5.5723 2.1163 2.3791 -0.2628

39b 5.6194 2.3026 2.8707 -0.5681

3a 3.9080 4.9416 4.8113 0.1303

3b 4.8032 3.0910 4.7500 -1.6590

44b 5.5305 1.5261 2.0753 -0.5493

45b 5.6535 2.7726 2.7922 -0.0196

47b 5.6493 4.1589 3.8018 0.3571

48b 5.4860 3.8918 3.5778 0.3140

49b 5.6225 2.2925 2.8636 -0.5711

4a 3.9099 7.1701 6.8070 0.3632

53b 5.5256 2.1041 2.0866 0.0176

54b 5.7574 1.0986 1.3529 -0.2542

55b 5.7462 1.7750 1.5787 0.1962

8a 4.0575 4.7875 5.4670 -0.6795

Table 3. Continue.
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Table 4. Actual and estimated activity of the training set molecules based on the pharmacophore model Hypo1D.

Fit value LogIC50 LogIC50 (predicted) Error

1 5.8033 7.7407 7.1109 0.6297

2 5.7524 7.5994 7.2281 0.3713

4 6.3846 8.1831 8.7724 -0.5893

5 5.8364 6.7627 7.0346 -0.2718

8 5.9387 7.0741 6.7991 0.2751

9 5.4415 8.6325 8.9440 -0.3115

10 5.5496 10.0105 9.6951 0.3154

12 5.8037 6.5889 7.1100 -0.5211

14 5.7043 6.7558 7.3388 -0.5830

15 6.1765 6.5876 6.2514 0.3361

18 5.9054 5.5255 5.8757 -0.3502

19 5.6042 5.3327 5.5694 -0.2367

20 5.9951 5.3891 5.6693 -0.2803

22 6.9164 2.9957 2.5479 0.4478

23 5.6015 5.5910 5.5755 0.0155

24 5.9404 5.5910 5.7952 -0.2042

27 6.7011 5.3613 5.0437 0.3176

28 7.6438 2.5650 2.8729 -0.3079

29 7.6555 1.9459 1.8460 0.0999

31 6.9078 4.1431 4.5677 -0.4246

32 6.6422 5.0752 5.1791 -0.1039

33 6.0901 4.5644 4.4505 0.1138

10a 5.7511 7.3132 7.2311 0.0822

12a 5.6731 4.4067 4.4106 -0.0039

13b 5.6202 6.5221 6.5325 -0.0104

14a 5.5703 7.7832 7.6474 0.1358

14b 5.7270 6.9078 7.2865 -0.3788

15a 5.6576 7.1701 7.4463 -0.2761

16b 5.7635 5.6699 5.2026 0.4673

17a 5.9350 9.3927 9.8075 -0.4149

17b 5.8604 5.6348 5.9794 -0.3446

18a 5.6062 9.6158 9.5646 0.0512

18b 5.9060 7.4955 7.8744 -0.3788

19a 4.8642 8.0064 8.2731 -0.2668

1b 5.9002 7.9374 7.8878 0.0496

20b 5.6507 6.9078 6.4623 0.4455

21a 6.0462 7.3132 7.5516 -0.2384

21b 5.6546 8.9092 8.4532 0.4560
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Table 4. Continue.

Fit value LogIC50 LogIC50 (predicted) Error

22a 5.8046 7.6009 7.1079 0.4930

22b 5.8002 7.3778 7.1180 0.2598

23a 5.8689 7.1701 6.9599 0.2102

24b 5.7926 6.0638 6.1355 -0.0717

26a 5.7676 9.3057 9.1931 0.1125

26b 5.8920 7.3132 6.9066 0.4066

27a 5.8319 9.2003 9.0450 0.1553

27b 5.9663 7.6497 7.7356 -0.0859

28b 5.8525 6.7569 6.9975 -0.2406

29a 5.8267 9.0825 9.0570 0.0255

29b 5.9607 8.2428 8.7484 -0.5056

2a 4.6529 8.1315 8.7597 -0.6281

2b 5.5577 7.1701 7.6763 -0.5062

30a 5.7913 8.5755 8.1385 0.4370

31a 5.7056 7.3132 7.3358 -0.0225

31b 5.9145 8.1315 8.8549 -0.7233

32b 5.9184 7.1701 7.8458 -0.6757

33a 5.7524 7.4384 7.2281 0.2103

33b 5.9296 6.2538 6.8200 -0.5662

34a 5.8837 7.9725 7.9258 0.0467

35a 5.7404 8.0392 7.2558 0.7834

35b 5.8956 5.6699 6.8983 -1.2284

36b 5.9438 6.0868 6.7874 -0.7006

37b 5.8532 5.9915 6.9959 -1.0044

39b 5.9199 6.9078 6.8424 0.0654

3a 5.6610 7.6497 7.4385 0.2112

3b 5.9294 5.5607 6.8206 -1.2599

44b 5.9348 6.4297 6.8080 -0.3782

45b 5.9371 7.1701 6.8027 0.3675

47b 5.9539 7.1701 6.7642 0.4059

48b 5.9414 6.3969 6.7930 -0.3960

49b 5.8956 6.3279 6.8984 -0.5704

4a 5.5735 8.9359 7.6399 1.2960

53b 5.9012 7.2442 6.8854 0.3588

54b 5.8107 7.1701 7.0938 0.0763

55b 5.9243 6.6970 6.8322 -0.1352

8a 5.7105 7.3132 7.3247 -0.0114
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The conformation which can allow –COOH at 
R3 and hydrophobic groups like halogen atoms 
in the aromatic ring (Ar) to orient properly for 
interaction with CR3 will show significant 
selectivity for PDE4B as compared to PDE4D. 
This is consistent with the findings described 
previously in the original papers in which these 
compounds have been reported (21). 

Validation of Hypo1B and Hypo1D
The generated hypotheses were validated 

using standard methods to check whether the 
best hypotheses are statistically significant and 
have considerable predictive ability.

Fischer’s randomization method
Fischer’s randomization was used to evaluate 

the statistical significance of the Hypotheses. 
Validation was done by generating random 
spreadsheets for training set molecules, 
which randomly reassigned activity values to 
every molecule and subsequently generated 
the hypotheses using the same features and 
parameters originated for Hypo1B and Hypo1D. 
All the randomly generated spreadsheets had 
higher total cost values and lower correlation 
coefficient values as can be seen clearly from 
Figure 4. This suggests that Hypo1B and 
Hypo1D were not generated by chance.

Test set
Test set was prepared using the same protocol 

as training set and used to determine whether 
the hypotheses were able to predict the active 
molecules other than those present in the training 
set.

The correlation coefficient (r) for the test set 
given by Hypo1B was 0.8579 (Table 5) while 
that by Hypo1D was 0.8299 (Table 6). Test set 
molecules were classified using the same criteria 
as used for training set molecules. Thus Hypo1B 
and Hypo1D were able to estimate the PDE4B 
and PDE4D inhibition activities respectively 
with reasonable accuracy.

Virtual Screening
Zinc, a comprehensive database of small drug 

like molecules was used for the sequential virtual 
screening using the pharmacophore models. 
Screening of zinc database using the validated 
pharmacophore model (Hypo1B) of PDE4B 
inhibitors retrieved a set of 6015 hits, mapping 
to the pharmacophore model Hypo1B. The hits 
comprised of some compounds structurally 
similar to that of the existing PDE4B inhibitors, 
and some novel scaffolds. 

The 397 hit compounds showing Hypo1B 
estimated IC50 less than 20 nM were selected 
and subsequently subjected to screening using 
the validated pharmacophore model Hypo1D. 
5 hit compounds that showed Hypo1 PDE4D 
estimated fit value less than 4 were identified 
(Figure 5). Among the hits ZINC09157416 
demonstrated the best PDE4B selectivity based 
on the hit values (Table 7). ZINC09157416 
aligned with Hypo1B and Hypo1D is shown in 
Figure 6. 

The results of docking studies of 
ZINC09157416 and 34b with PDE4B and 
PDE4D further confirmed the selectivity of 
ZINC09157416 for PDE4B over PDE4D 
(Table 8).

Figure 4. The difference in costs between HypoGen runs and the scrambled runs for PDE4B and PDE4D. The 95% confidence level 
was selected.

randomly generated spreadsheets had higher total cost values and lower correlation coefficient 

values as can be seen clearly from Figure 4. This suggests that Hypo1B and Hypo1D were not 

generated by chance.

Figure 4. The difference in costs between HypoGen runs and the scrambled runs for PDE4B and 

PDE4D. The 95% confidence level was selected.

Test set

Test set was prepared using the same protocol as training set and used to determine whether the 

hypotheses were able to predict the active molecules other than those present in the training set.

The correlation coefficient (r) for the test set given by Hypo1B was 0.8579 (Table 5) while that

by Hypo1D was 0.8299 (Table 6). Test set molecules were classified using the same criteria as 

used for training set molecules. Thus Hypo1B and Hypo1D were able to estimate the PDE4B and 

PDE4D inhibition activities respectively with reasonable accuracy. 

Table 5. Actual and estimated activity of the test set molecules based on the pharmacophore 

model Hypo1B.
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Table 5. Actual and estimated activity of the test set molecules 
based on the pharmacophore model Hypo1B.

Table 6. Actual and estimated activity of the test set molecules 
based on the pharmacophore model Hypo1D.

Log (Activ) Log (Estimate) Error

7 5.5255 5.3455 0.1800

11 7.2703 7.2345 0.0358

16 7.5294 7.4567 0.0727

21 9.0842 7.3563 1.7279

26 6.6606 5.3455 1.3151

30 4.8363 3.8355 1.0008

34 7.3614 7.3253 0.0361

11a 6.2916 5.7354 0.5562

16a 4.2195 4.3323 -0.1128

20a 5.3936 5.3452 0.0484

24a 4.3567 4.9752 -0.6185

28a 6.3969 5.3453 1.0516

32a 2.9444 2.9968 -0.0524

1a 5.2470 4.8659 0.3811

15b 4.7875 5.8364 -1.0489

19b 3.6376 4.7264 -1.0888

23b 4.9416 3.8563 1.0853

30b 4.0254 4.3324 -0.3070

34b 3.6376 3.7254 -0.0878

38b 2.9957 3.2232 -0.2275

46b 1.6487 2.8675 -1.2188

52b 2.0149 2.2484 -0.2335

56b 1.3350 2.4543 -1.1193

12b 6.7799 7.2194 -0.4395

Log (Activ) Log (Estimate) Error

7 7.3059 7.1533 0.1526

11 7.6530 7.9863 -0.3333

16 7.7267 7.2121 0.5146

21 6.7867 6.9891 -0.2024

26 6.5236 6.3334 0.1902

30 4.8828 4.6276 0.2552

34 6.3969 6.6676 -0.2707

11a 8.9872 8.2223 0.7649

16a 6.8977 6.5122 0.3855

20a 7.9374 7.2231 0.7143

24a 6.6333 6.9098 -0.2765

28a 8.4764 8.2957 0.1807

32a 7.3778 7.5762 -0.1984

1a 7.5496 7.8894 -0.3398

15b 6.0403 5.7204 0.3199

19b 6.6720 6.8732 -0.2012

23b 7.6962 7.9909 -0.2947

30b 7.0901 6.7925 0.2976

34b 6.6720 6.7623 -0.0903

38b 7.0031 7.4052 -0.4021

46b 6.3630 6.8437 -0.4807

52b 7.1701 7.4923 -0.3222

56b 6.3969 6.5427 -0.1458

12b 8.1315 8.4072 -0.2757

Figure 5. Structures of hits obtained using pharmacophore based virtual screening.

pharmacophore model (Hypo1B) of PDE4B inhibitors retrieved a set of 6015 hits, mapping to 

the pharmacophore model Hypo1B. The hits comprised of some compounds structurally similar 

to that of the existing PDE4B inhibitors, and some novel scaffolds. The 397 hit compounds 

showing Hypo1B estimated IC50 less than 20 nM were selected and subsequently subjected to 

screening using the validated pharmacophore model Hypo1D. 5 hit compounds that showed 

Hypo1 PDE4D estimated fit value less than 4 were identified (Figure 5). Among the hits 

ZINC09157416 demonstrated the best PDE4B selectivity based on the hit values (Table 7).

ZINC09157416 aligned with Hypo1B and Hypo1D is shown in Figure 6. The results of docking 

studies of ZINC09157416 and 34b with PDE4B and PDE4D further confirmed the selectivity of 

ZINC09157416 for PDE4B over PDE4D (Table 8).
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Table 7. Fit values of hits with Hypo1B and Hypo1D.

Fit value (Hypo1B) Fit value (Hypo1D)

ZINC09157416 4.38886 0.13199

ZINC19521660 4.33458 0.74828

ZINC72336558 4.33584 0.22303

ZINC78416371 4.50232 0.52406

ZINC19521658 4.36043 0.40399

Figure 6. Most selective PDE4B inhibitor (ZINC09157416) identified by virtual screening aligned with Hypo1B and Hypo1D.

Table 7. Fit values of hits with Hypo1B and Hypo1D.

Fit value (Hypo1B) Fit value (Hypo1D)

ZINC09157416 4.38886 0.13199

ZINC19521660 4.33458 0.74828

ZINC72336558 4.33584 0.22303

ZINC78416371 4.50232 0.52406

ZINC19521658 4.36043 0.40399

Figure 6. Most selective PDE4B inhibitor (ZINC09157416) identified by virtual screening 

aligned with Hypo1B and Hypo1D.

Table 8. -CDOCKER energy of hits and standard (33b) with PDE4B and PDE4D.

-CDOCKER energy (PDE4B) -CDOCKER energy (PDE4D)

34b -13.0258 -22.3445

ZINC09157416 -15.9889 -26.7976
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Table 8. -CDOCKER energy of hits and standard (33b) with PDE4B and PDE4D.

-CDOCKER energy (PDE4B) -CDOCKER energy (PDE4D)

34b -13.0258 -22.3445

ZINC09157416 -15.9889 -26.7976

Conclusions

Ligand-based pharmacophore models for a 
diverse class of PDE4B and PDE4D inhibitors 
were developed. The best pharmacophore 
models Hypo1B and Hypo1D were validated 
using different methods to evaluate their 
predictive power over the diverse test set 
compounds. Hydrogen bond acceptors were 
identified to be mainly responsible for PDE4B 
inhibition while both hydrogen bond acceptors 
as well as hydrophobic groups were found to be 
responsible for PDE4D inhibition. The highly 
predictive pharmacophore hypotheses were 
further used in sequential virtual screening for 
identification of selective PDE4B inhibitors. 

Zinc drug like database was used in virtual 
screening. The hits from the virtual screening 
were filtered based on the estimated activity 
and fit value. Five molecules with different 
backbones were identified as final hits. The 
most selective hit molecule ZINC09157416 
exhibited better selectivity for PDE4B than the 
standard compound 34b in the docking studies. 
The activity of the hit compound has not been 
reported in the literature as we explored by 
PubChem and SciFinder Scholar search tools. 
Thus, the sequential virtual screening strategy 
using 3D QSAR pharmacophores for PDE4B 
and PDE4D inhibitors proved to be an effective 
strategy to identify novel selective PDE4B 
inhibitors.
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