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Abstract

Summary: SMeagol is a software tool to simulate highly realistic microscopy data based on spatial
systems biology models, in order to facilitate development, validation and optimization of
advanced analysis methods for live cell single molecule microscopy data.

Availability and implementation: SMeagol runs on Matlab R2014 and later, and uses compiled
binaries in C for reaction-diffusion simulations. Documentation, source code and binaries for Mac
0S, Windows and Ubuntu Linux can be downloaded from http://smeagol.sourceforge.net.

Contact: johan.elf@icm.uu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

Recent advances in single particle tracking (SPT) microscopy (Manley
et al., 2008) make it possible to obtain tens of thousands macromol-
ecular trajectories from within a living cell in just a few minutes. Since
molecules typically change their movement properties upon inter-
actions, these trajectories contain information about both locations
and rates of intracellular reactions. This information is unfortunately
obscured by physical limitations of the optical microscope and noise
in detection systems, making statistical methods development for SPT
analysis a very active research field. Unbiased testing and comparison
of such methods are however difficult given the absence of in vivo
data of intracellular dynamics where the true states of interaction are
known, a.k.a. the ‘ground truth’. A common resort is to instead use
simulated, synthetic, data. However, tests using such data give unreal-
istically optimistic results if the simplifying assumptions underlying
the analysis method are exactly satisfied. The need for realistic simula-
tions is long recognized in microscopy and systems biology (Andrews,
2012; Chenouard et al., 2014; Cox et al., 2012; Fange et al., 2012;
Fullerton et al., 2012; Kerr et al., 2008; Sage et al., 2015; Sinké et al.,
2014; Slepchenko et al., 2002; Takahashi er al., 2010), but systematic
combinations of the two are only currently emerging (Angiolini ez al.,
2015; Watabe et al., 2015).

We present the SMeagol package, that has been developed to
generate highly realistic single molecule microscopy time-lapse
image series aimed primarily at single particle tracking applications.

©The Author 2016. Published by Oxford University Press.

The purpose of SMeagol is to enable realistic comparisons between
the output of advanced analysis methods and known ground truth.
SMeagol includes an extended MesoRD (Fange et al., 2012) version
for simulation of 3D diffusion in cellular compartments, diffusion
limited reaction kinetics, surface adsorption, reactions in mem-
branes and other complex aspects of reaction diffusion kinetics that
do occur in cells, but are not considered in SPT analysis algorithms.
In addition to the molecules’ trajectories, SMeagol integrates the 3D
point spread function of the microscope, the kinetics of photo-
activation, blinking and bleaching of the simulated fluorophores,
background noise and camera specific parameters (Fig. 1, movie S1
and S2). Great flexibility is allowed by the possibility to supply these
characteristic parameters either as tabulated experimental data for a
particular optical setup, or as theoretical models. The combination
of using reaction diffusion kinetics in cellular geometries and phys-
ics-based simulations of the emission and detection processes makes
the images more realistic than the synthetic data used for example
by Chenouard et al. (2014).

SMeagol can be used to optimize imaging conditions for specific
systems in silico and to benchmark methods for SPT analysis in ana-
logy with the methods that has been developed to benchmark local-
ization methods for non-moving single particles (Sage et al., 2015).
In the supplementary material, we explore the robustness against lo-
calization errors and motional blur of the vbSPT software, which
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Fig. 1. Simulated microscopy with SMeagol. (a) Workflow from stochastic reaction-diffusion simulations to images. (b) The microscopy simulation starts from trajecto-
ries generated by stochastic reaction—diffusion simulations, fills in stochastic motion and photon emission events between the trajectory points, and finally combines
PSF and camera noise models to simulate realistic images. (c) Simulated microscopy of fluorescently labeled MinE proteins in the Min oscillatory system. Left:
Stochastic reaction—diffusion simulation. Mid columns: Simulated SPT microscopy using an actual experimental background noise movie with continuous illumination
and 4 ms/frame. Right: A simulation of continuous illumination and 1s/frame renders a conventional (non-single molecule) fluorescence microscopy time-lapse movie.
See also Supplementary movies S1, S2 and the Supplementary material for further details (Color version of this figure is available at Bioinformatics online.)

extracts multi-state diffusive models from SPT data (Persson et al.,
2013), and find that these effects can induce overfitting under cer-
tain conditions. In addition, we provide a number of examples high-
lighting possibilities, limitation and computational requirements of
the SMeagol simulation engine.

When combined with increasingly refined simulations of intra-
cellular processes, photo-physics and optics; live-cell microscopy is
moving closer to methods in fundamental physics, where combined
simulation of physical processes and detection systems have guided
experimental design and data analysis for a long time.
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