organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(Adamantan-1-yl)-4-benzyl-1H-1,2,4triazole-5(4H)-thione

Fatmah A. M. Al-Omary,^a Hazem A. Ghabbour,^a Ali A. El-Emam,^{a,b}* C. S. Chidan Kumar^c‡ and Hoong-Kun Fun^{a,c}*§

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, ^bKing Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: elemam5@hotmail.com, hfun.c@ksu.edu.sa

Received 3 June 2014; accepted 6 June 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.127; data-to-parameter ratio = 24.4.

The title compound, C₁₉H₂₃N₃S, is a functionalized triazoline-3-thione derivative. The benzyl ring is almost normal to the planar 1,2,4-triazole ring (r.m.s. deviation = 0.007 Å) with a dihedral angle of $86.90(7)^{\circ}$. In the crystal, molecules are linked by pairs of $N-H \cdots S$ hydrogen bonds, forming inversion dimers that enclose $R_2^2(8)$ loops. The crystal packing is further stabilized by weak $C-H\cdots\pi$ interactions that link adjacent dimeric units into supramolecular chains extending along the *a*-axis direction.

Related literature

For the biological activity of adamantane derivatives, see: Lorenzo et al. (2008); Al-Deeb et al. (2006); Wang et al. (2013); El-Emam et al. (2004); Kadi et al. (2010); Balzarini et al. (2009); Protopopova et al. (2005); Vernier et al. (1969). For related adamantyl-1,2,4-triazole structures, see: El-Emam et al. (2012), Al-Tamimi et al. (2013). For the synthesis of the title compound, see El-Emam & Ibrahim (1991). For hydrogenbond motifs, see: Bernstein et al. (1995).

‡ Thomson Reuters ResearcherID: C-3194-2011.

§ Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data	
C19H23N3S	
$M_r = 325.46$	
Triclinic, $P\overline{1}$	
a = 7.6407 (4) Å	
b = 10.5150 (5) Å	
c = 12.3434 (5) Å	
$\alpha = 67.1806 (13)^{\circ}$	
$\beta = 72.9688 (13)^{\circ}$	

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\min} = 0.891, T_{\max} = 0.937
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.127$ S = 1.085166 reflections 212 parameters

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

 $\gamma = 70.0695 \ (14)^{\circ}$ $V = 844.42 (7) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.60 \times 0.48 \times 0.34$ mm

43581 measured reflections

5166 independent reflections

4651 reflections with $I > 2\sigma(I)$

 $\mu = 0.20 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.029$

Z = 2

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1-N3/C8/C9 triazole ring.

$D-H\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H1N2 \cdots S1^{i}$ C19 - H19B \cdots Cg1^{ii}	0.85 (2) 0.97	2.44 (2) 2.85	3.2753 (11) 3.7885 (17)	169.1 (18) 141
			4	

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5408).

References

- Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.
- Al-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, 0685–0686.
- Balzarini, J., Orzeszko-Krzesinska, B., Maurin, J. K. & Orzeszko, A. (2009). *Eur. J. Med. Chem.* 44, 303–311.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.
- El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, 01347.

- El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.
- Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). *Eur. J. Med. Chem.* 45, 5006–5011.
- Lorenzo, P., Alvarez, R., Ortiz, M. A., Alvarez, S., Piedrafita, F. J. & de Lera, A. (2008). J. Med. Chem. 51, 5431–5440.
- Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). *J. Antimicrob. Chemother.* **56**, 968–974.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). *Toxicol. Appl. Pharmacol.* 15, 642–665.
- Wang, J., Ma, C., Wang, J., Jo, H., Canturk, B., Fiorin, G., Pinto, L. H., Lamb, R. A., Klein, M. L. & DeGrado, W. F. (2013). J. Med. Chem. 56, 2804–2812.

supporting information

Acta Cryst. (2014). E70, o766-o767 [doi:10.1107/S1600536814013257]

3-(Adamantan-1-yl)-4-benzyl-1H-1,2,4-triazole-5(4H)-thione

Fatmah A. M. Al-Omary, Hazem A. Ghabbour, Ali A. El-Emam, C. S. Chidan Kumar and Hoong-Kun Fun

1. Comment

Adamantane derivatives have long been known for their diverse biological activities (Lorenzo *et al.*, 2008; Al-Deeb *et al.*, 2006; Wang *et al.*, 2013). These also include antiviral activity against influenza (Vernier *et al.*, 1969) and HIV viruses (El-Emam *et al.*, 2004; Balzarini *et al.*, 2009). In addition, adamantane derivative were recently reported to exhibit marked antibacterial activity (Kadi *et al.*, 2010; Protopopova *et al.*, 2005). In an earlier publication, we reported the synthesis and potent anti-inflammatory of a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives including the title compound (El-Emam & Ibrahim, 1991).

In the title compound (Fig. 1), the 1,2,4-triazole (N1—N3/C8/C9) ring is nearly planar with a maximum deviation of -0.007 (1) Å at atom N2. The central 1,2,4-triazole ring forms dihedral angles of 86.90 (7)° and 69 (4)° with the adjacent phenyl (C1–C6) and adamantyl (C10–C19) substituents attached at the 4- and 5-positions, respectively. The attached phenyl ring is almost perpendicular to the plane of the triazole which is evident from the C9–N1–C7–C6 torsion angle of -95.63 (12)°. In the crystal packing (Fig. 2), centrosymmetric dimeric aggregates are formed by pairs of N2—H1N2…S1 hydrogen bonds resulting in an R_2^2 (8) ring motif (Bernstein *et al.*, 1995). These are connected into supramolecular chains extending along the *a* axis direction *via* weak intermolecular C–H… π (triazole) interactions (Table 1).

2. Experimental

A mixture of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), benzyl isothiocyanate (1.49 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for one hour and the solvent was distilled off *in vacuo*. Aqueous sodium hydroxide solution (10%, 15 ml) was added to the residue and the mixture was heated under reflux for 2 h. then filtered hot. On cooling, the mixture was acidified with hydrochloric acid and the precipitated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 2.93 g (90%) of the title compound ($C_{19}H_{23}N_3S$) as colorless crystals. M·P.: 241–243 °C.

¹H NMR (CDCl₃, 700.17 MHz): δ 1.64–1.69 (m, 6H, Adamantane-H), 1.90 (s, 6H, Adamantane-H), 2.20 (s, 3H, Adamantane-H), 5.53 (s, 2H, CH₂), 7.04–7.63 (s, 5H, Ar—H), 11.55 (br. s, 1H, NH). ¹³C NMR (CDCl₃, 176.08 MHz): δ 28.51, 35.66, 36.86, 39.08 (Adamantane-C), 63.56 (CH₂), 121.25, 123.0, 124.27, 130.54 (Ar—C), 154.06 (C=N), 164.41 (C=S).

3. Refinement

The nitrogen-bound H-atom was located in a difference Fourier map and was refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. A rotating group model was used for the methyl group.

Figure 1

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Figure 2

Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omitted for clarity.

3-(Adamantan-1-yl)-4-benzyl-1H-1,2,4-triazole-5(4H)-thione

Crystal data	
$C_{19}H_{23}N_3S$	Z = 2
$M_r = 325.46$	F(000) = 348
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.280 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.6407 (4) Å	Cell parameters from 9608 reflections
b = 10.5150 (5) Å	$\theta = 2.9 - 30.6^{\circ}$
c = 12.3434 (5) Å	$\mu=0.20~\mathrm{mm^{-1}}$
$\alpha = 67.1806 (13)^{\circ}$	T = 293 K
$\beta = 72.9688 (13)^{\circ}$	Block, colourless
$\gamma = 70.0695 \ (14)^{\circ}$	$0.60 \times 0.48 \times 0.34 \text{ mm}$
V = 844.42 (7) Å ³	

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.891, T_{\max} = 0.937$	43581 measured reflections 5166 independent reflections 4651 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 30.6^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -10 \rightarrow 10$ $k = -15 \rightarrow 15$ $l = -17 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.127$ S = 1.08 5166 reflections 212 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0747P)^2 + 0.1424P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.31$ e Å ⁻³ $\Delta\rho_{min} = -0.56$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	1.05370 (4)	0.44991 (3)	0.32578 (3)	0.03965 (10)	
N1	0.70863 (12)	0.63160 (9)	0.28216 (7)	0.02792 (16)	
N2	0.74865 (14)	0.58334 (11)	0.45903 (8)	0.0360 (2)	
N3	0.57266 (14)	0.67716 (11)	0.45231 (8)	0.0359 (2)	
C1	0.75626 (15)	0.49115 (13)	0.03402 (10)	0.0363 (2)	
H1A	0.8142	0.5555	-0.0302	0.044*	
C2	0.71844 (19)	0.38114 (15)	0.01658 (13)	0.0471 (3)	
H2A	0.7512	0.3719	-0.0593	0.057*	
C3	0.6325 (2)	0.28550 (15)	0.11137 (15)	0.0522 (3)	
H3A	0.6073	0.2118	0.0995	0.063*	
C4	0.5840 (2)	0.29922 (14)	0.22381 (14)	0.0497 (3)	
H4A	0.5253	0.2349	0.2876	0.060*	
C5	0.62220 (17)	0.40876 (12)	0.24249 (10)	0.0390 (2)	
H5A	0.5903	0.4169	0.3187	0.047*	
C6	0.70774 (13)	0.50549 (10)	0.14754 (8)	0.02895 (19)	

C7	0.75127 (15)	0.62875 (11)	0.15983 (8)	0.03048 (19)
H7A	0.8846	0.6242	0.1282	0.037*
H7B	0.6793	0.7175	0.1113	0.037*
C8	0.83679 (14)	0.55430 (10)	0.35740 (9)	0.03030 (19)
С9	0.54907 (13)	0.70511 (10)	0.34398 (8)	0.02803 (18)
C10	0.37568 (13)	0.81094 (10)	0.29687 (8)	0.02757 (18)
C11	0.22454 (18)	0.84649 (16)	0.40233 (11)	0.0460 (3)
H11A	0.1894	0.7604	0.4584	0.055*
H11B	0.2761	0.8830	0.4439	0.055*
C12	0.04846 (19)	0.95844 (17)	0.35680 (13)	0.0513 (3)
H12A	-0.0461	0.9806	0.4247	0.062*
C13	0.1044 (2)	1.09463 (16)	0.26935 (19)	0.0642 (4)
H13A	0.1566	1.1326	0.3094	0.077*
H13B	-0.0065	1.1663	0.2411	0.077*
C14	0.2523 (2)	1.05937 (13)	0.16312 (15)	0.0553 (4)
H14A	0.2873	1.1465	0.1064	0.066*
C15	0.1686 (2)	0.99973 (17)	0.10091 (13)	0.0546 (3)
H15A	0.0585	1.0705	0.0709	0.065*
H15B	0.2614	0.9773	0.0336	0.065*
C16	0.11210 (18)	0.86562 (14)	0.18917 (12)	0.0436 (3)
H16A	0.0581	0.8279	0.1488	0.052*
C17	0.28778 (16)	0.75284 (12)	0.23410 (11)	0.0380 (2)
H17A	0.3800	0.7290	0.1672	0.046*
H17B	0.2524	0.6667	0.2897	0.046*
C18	0.42886 (18)	0.94874 (12)	0.20848 (12)	0.0428 (3)
H18A	0.4818	0.9870	0.2479	0.051*
H18B	0.5239	0.9277	0.1415	0.051*
C19	-0.03504 (18)	0.90065 (16)	0.29388 (14)	0.0499 (3)
H19A	-0.1464	0.9712	0.2654	0.060*
H19B	-0.0728	0.8153	0.3493	0.060*
H1N2	0.798 (3)	0.5628 (19)	0.5188 (16)	0.056 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.03414 (15)	0.04240 (16)	0.04517 (17)	0.00090 (11)	-0.01292 (11)	-0.02211 (12)
N1	0.0301 (4)	0.0295 (4)	0.0249 (3)	-0.0049(3)	-0.0058 (3)	-0.0114 (3)
N2	0.0363 (4)	0.0423 (5)	0.0276 (4)	-0.0032 (4)	-0.0107 (3)	-0.0118 (3)
N3	0.0351 (4)	0.0435 (5)	0.0264 (4)	-0.0027 (4)	-0.0068 (3)	-0.0140 (3)
C1	0.0341 (5)	0.0463 (6)	0.0330 (5)	-0.0067 (4)	-0.0059 (4)	-0.0208 (4)
C2	0.0439 (6)	0.0582 (7)	0.0537 (7)	-0.0057 (5)	-0.0127 (5)	-0.0368 (6)
C3	0.0468 (7)	0.0482 (7)	0.0780 (9)	-0.0082(5)	-0.0187 (6)	-0.0355 (7)
C4	0.0485 (7)	0.0399 (6)	0.0619 (8)	-0.0167 (5)	-0.0066 (6)	-0.0158 (5)
C5	0.0414 (6)	0.0381 (5)	0.0367 (5)	-0.0109 (4)	-0.0020 (4)	-0.0144 (4)
C6	0.0261 (4)	0.0323 (4)	0.0295 (4)	-0.0029 (3)	-0.0052 (3)	-0.0149 (3)
C7	0.0348 (5)	0.0337 (5)	0.0238 (4)	-0.0092 (4)	-0.0022 (3)	-0.0122 (3)
C8	0.0327 (4)	0.0295 (4)	0.0302 (4)	-0.0067 (3)	-0.0087 (3)	-0.0103 (3)
C9	0.0301 (4)	0.0295 (4)	0.0242 (4)	-0.0063 (3)	-0.0044 (3)	-0.0101 (3)

C10	0.0292 (4)	0.0276 (4)	0.0256 (4)	-0.0053 (3)	-0.0050 (3)	-0.0101 (3)	
C11	0.0372 (5)	0.0618 (7)	0.0336 (5)	0.0026 (5)	-0.0053 (4)	-0.0240 (5)	
C12	0.0377 (6)	0.0647 (8)	0.0516 (7)	0.0076 (5)	-0.0096 (5)	-0.0357 (6)	
C13	0.0572 (8)	0.0428 (7)	0.1067 (13)	0.0107 (6)	-0.0372 (9)	-0.0429 (8)	
C14	0.0536 (7)	0.0294 (5)	0.0729 (9)	-0.0095 (5)	-0.0244 (7)	0.0022 (5)	
C15	0.0523 (7)	0.0577 (8)	0.0418 (6)	-0.0021 (6)	-0.0200 (6)	-0.0058 (6)	
C16	0.0399 (6)	0.0473 (6)	0.0527 (7)	-0.0034 (5)	-0.0192 (5)	-0.0243 (5)	
C17	0.0377 (5)	0.0351 (5)	0.0480 (6)	-0.0052 (4)	-0.0136 (4)	-0.0199 (4)	
C18	0.0402 (6)	0.0310 (5)	0.0536 (7)	-0.0126 (4)	-0.0123 (5)	-0.0043 (4)	
C19	0.0324 (5)	0.0551 (7)	0.0610 (8)	-0.0069 (5)	-0.0090 (5)	-0.0207 (6)	

Geometric parameters (Å, °)

S1—C8	1.6784 (10)	C10—C17	1.5415 (14)
N1—C8	1.3735 (12)	C11—C12	1.5368 (18)
N1-C9	1.3915 (12)	C11—H11A	0.9700
N1—C7	1.4586 (12)	C11—H11B	0.9700
N2—C8	1.3351 (13)	C12—C19	1.517 (2)
N2—N3	1.3732 (13)	C12—C13	1.532 (3)
N2—H1N2	0.846 (19)	C12—H12A	0.9800
N3—C9	1.3065 (12)	C13—C14	1.535 (3)
C1—C2	1.3876 (16)	C13—H13A	0.9700
C1—C6	1.3946 (13)	C13—H13B	0.9700
C1—H1A	0.9300	C14—C15	1.525 (2)
С2—С3	1.378 (2)	C14—C18	1.5344 (18)
C2—H2A	0.9300	C14—H14A	0.9800
C3—C4	1.379 (2)	C15—C16	1.520 (2)
С3—НЗА	0.9300	C15—H15A	0.9700
C4—C5	1.3929 (17)	C15—H15B	0.9700
C4—H4A	0.9300	C16—C19	1.5185 (19)
C5—C6	1.3840 (15)	C16—C17	1.5351 (16)
С5—Н5А	0.9300	C16—H16A	0.9800
С6—С7	1.5131 (13)	C17—H17A	0.9700
C7—H7A	0.9700	C17—H17B	0.9700
С7—Н7В	0.9700	C18—H18A	0.9700
C9—C10	1.5086 (13)	C18—H18B	0.9700
C10-C11	1.5396 (14)	C19—H19A	0.9700
C10—C18	1.5396 (14)	C19—H19B	0.9700
C8—N1—C9	108.06 (8)	C19—C12—C13	109.53 (12)
C8—N1—C7	121.22 (8)	C19—C12—C11	109.84 (11)
C9—N1—C7	130.71 (8)	C13—C12—C11	109.41 (12)
C8—N2—N3	113.41 (9)	C19—C12—H12A	109.3
C8—N2—H1N2	126.3 (12)	C13—C12—H12A	109.3
N3—N2—H1N2	119.1 (12)	C11—C12—H12A	109.3
C9—N3—N2	104.79 (8)	C12—C13—C14	109.13 (10)
C2-C1-C6	120.22 (11)	C12—C13—H13A	109.9
C2—C1—H1A	119.9	C14—C13—H13A	109.9

C6—C1—H1A	119.9	C12—C13—H13B	109.9
C3—C2—C1	120.15 (11)	C14—C13—H13B	109.9
C3—C2—H2A	119.9	H13A—C13—H13B	108.3
C1—C2—H2A	119.9	C15—C14—C18	109.88 (12)
C2—C3—C4	119.91 (11)	C15—C14—C13	109.38 (12)
С2—С3—Н3А	120.0	C18—C14—C13	109.37 (13)
С4—С3—Н3А	120.0	C15—C14—H14A	109.4
C3—C4—C5	120.43 (12)	C18—C14—H14A	109.4
C3—C4—H4A	119.8	C13—C14—H14A	109.4
C5—C4—H4A	119.8	C16—C15—C14	109.44 (11)
C6—C5—C4	119.92 (11)	C16—C15—H15A	109.8
С6—С5—Н5А	120.0	C14—C15—H15A	109.8
C4—C5—H5A	120.0	C16—C15—H15B	109.8
C5—C6—C1	119.36 (10)	C14—C15—H15B	109.8
C5—C6—C7	123.23 (9)	H15A—C15—H15B	108.2
C1—C6—C7	117.40 (9)	C19—C16—C15	109.94 (11)
N1-C7-C6	114.42 (8)	C19 - C16 - C17	109.96 (11)
N1—C7—H7A	108.7	C_{15} C_{16} C_{17}	109.53 (10)
C6—C7—H7A	108.7	C19—C16—H16A	109.1
N1—C7—H7B	108.7	C15—C16—H16A	109.1
C6—C7—H7B	108.7	C17—C16—H16A	109.1
H7A—C7—H7B	107.6	C16—C17—C10	109.85 (9)
N2-C8-N1	103.79 (9)	С16—С17—Н17А	109.7
N2-C8-S1	129.01 (8)	С10—С17—Н17А	109.7
N1—C8—S1	127.19 (8)	С16—С17—Н17В	109.7
N3—C9—N1	109.93 (9)	С10—С17—Н17В	109.7
N3—C9—C10	122.14 (9)	H17A—C17—H17B	108.2
N1—C9—C10	127.80 (8)	C14—C18—C10	109.81 (9)
C9—C10—C11	108.87 (8)	C14—C18—H18A	109.7
C9—C10—C18	109.22 (8)	C10—C18—H18A	109.7
C11—C10—C18	108.93 (10)	C14—C18—H18B	109.7
C9—C10—C17	112.77 (8)	C10-C18-H18B	109.7
C11—C10—C17	107.69 (9)	H18A—C18—H18B	108.2
C18—C10—C17	109.28 (9)	C12—C19—C16	109.24 (10)
C12—C11—C10	110.21 (10)	С12—С19—Н19А	109.8
C12—C11—H11A	109.6	C16—C19—H19A	109.8
C10—C11—H11A	109.6	C12—C19—H19B	109.8
C12—C11—H11B	109.6	C16—C19—H19B	109.8
C10—C11—H11B	109.6	H19A—C19—H19B	108.3
H11A—C11—H11B	108.1		
C8—N2—N3—C9	1.25 (13)	N3—C9—C10—C17	-132.65 (10)
C6—C1—C2—C3	0.06 (19)	N1-C9-C10-C17	51.96 (13)
C1—C2—C3—C4	0.0 (2)	C9—C10—C11—C12	177.91 (10)
C2—C3—C4—C5	-0.4 (2)	C18—C10—C11—C12	58.90 (14)
C3—C4—C5—C6	0.7 (2)	C17—C10—C11—C12	-59.52 (13)
C4—C5—C6—C1	-0.56 (17)	C10-C11-C12-C19	60.43 (15)
C4—C5—C6—C7	179.01 (11)	C10-C11-C12-C13	-59.83 (15)

C2-C1-C6-C5	0.21 (16)	C19—C12—C13—C14	-60.12 (15)
C2-C1-C6-C7	-179.39 (10)	C11—C12—C13—C14	60.33 (15)
C8—N1—C7—C6	85.08 (11)	C12—C13—C14—C15	59.48 (15)
C9—N1—C7—C6	-95.63 (12)	C12-C13-C14-C18	-60.91 (15)
C5-C6-C7-N1	4.38 (14)	C18—C14—C15—C16	60.57 (16)
C1—C6—C7—N1	-176.04 (9)	C13—C14—C15—C16	-59.51 (15)
N3—N2—C8—N1	-1.21 (12)	C14—C15—C16—C19	60.18 (14)
N3—N2—C8—S1	178.19 (8)	C14—C15—C16—C17	-60.75 (14)
C9—N1—C8—N2	0.70 (11)	C19—C16—C17—C10	-60.82 (13)
C7—N1—C8—N2	-179.87 (9)	C15—C16—C17—C10	60.09 (13)
C9—N1—C8—S1	-178.72 (7)	C9—C10—C17—C16	179.74 (9)
C7—N1—C8—S1	0.71 (14)	C11—C10—C17—C16	59.61 (12)
N2—N3—C9—N1	-0.74 (11)	C18—C10—C17—C16	-58.58 (12)
N2—N3—C9—C10	-176.86 (9)	C15-C14-C18-C10	-59.41 (15)
C8—N1—C9—N3	0.04 (11)	C13-C14-C18-C10	60.67 (14)
C7—N1—C9—N3	-179.32 (10)	C9-C10-C18-C14	-178.04 (10)
C8—N1—C9—C10	175.88 (9)	C11—C10—C18—C14	-59.25 (14)
C7—N1—C9—C10	-3.48 (16)	C17—C10—C18—C14	58.16 (13)
N3-C9-C10-C11	-13.20 (14)	C13-C12-C19-C16	60.51 (14)
N1-C9-C10-C11	171.41 (10)	C11—C12—C19—C16	-59.68 (15)
N3—C9—C10—C18	105.64 (11)	C15—C16—C19—C12	-60.60 (14)
N1-C9-C10-C18	-69.75 (12)	C17—C16—C19—C12	60.06 (14)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1–N3/C8/C9 triazole ring.

	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H1N2····S1 ⁱ	0.85 (2)	2.44 (2)	3.2753 (11)	169.1 (18)
C19—H19 B ···Cg1 ⁱⁱ	0.97	2.85	3.7885 (17)	141

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.