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ABSTRACT
Classical tumor therapy consists of surgery, radio(RT)- and/or chemotherapy. Additive immunotherapy has
gained in impact and antitumor in situ immunization strategies are promising to strengthen innate and
adaptive immune responses. Immunological effects of RT and especially in combination with immune
stimulation are mostly described for melanoma. Since hyperthermia (HT) in multimodal settings is capable
of rendering tumor cells immunogenic, we analyzed the in vivo immunogenic potential of RT plus HT-
treated B16 melanoma cells with an immunization and therapeutic assay. We focused on the role of
natural killer (NK) cells in the triggered antitumor reactions. In vitro experiments showed that RT plus HT-
treated B16 melanoma cells died via apoptosis and necrosis and released especially the danger signal
HMGB1. The in vivo analyses revealed that melanoma cells are rendered immunogenic by RT plus HT.
Especially, the repetitive immunization with treated melanoma cells led to an increase in NK cell number
in draining lymph nodes, particularly of the immune regulatory CD27CCD11b¡ NK cell subpopulation.
While permanent NK cell depletion after immunization led to a significant acceleration of tumor
outgrowth, a single NK cell depletion two days before immunization resulted in significant tumor growth
retardation. The therapeutic model, a local in situ immunization closely resembling the clinical situation
when solid tumors are exposed locally to RT plus HT, confirmed these effects. We conclude that a dual and
time-dependent impact of NK cells on the efficacy of antitumor immune reactions induced by
immunogenic tumor cells generated with RT plus HT exists.

Abbreviations: AnxV, AnnexinV; APCs, antigen presenting cells; ATP, adenosine triphosphate; CD, cluster of differen-
tiation; CT, chemotherapy; DAMPs, damage associated molecular patterns; DCs, dendritic cells; depl., depletion;
DNA, deoxyribonucleic acid; GM-CSF, granulocyte macrophage colony-stimulating factor; HMGB1, high mobility
group box 1; HSP, heat shock proteins; HT, hyperthermia; ICD, immunogenic cell death; IFN, Interferon; IL, Interleu-
kin; NK cells, natural killer cells; ns, not significant; RCT, radiochemotherapy; rep., repetitive; RT, radiotherapy
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Introduction

A promising approach to treat cancer is the use of immunization
strategies in combination with radiochemotherapy (RCT) to fur-
ther improve the antitumor immunity. For modifying the
immune response to tumor cells, the immune suppressive micro-
environment has to be shifted to an active one.1 One central
event is the induction of an immunogenic cell death (ICD) in
vivo.2 Dependent on morphological, biochemical and immuno-
logical features apoptosis, necrosis, oncosis,3 pyroptosis,4 autoph-
agy,5 necroptosis,6 and NETosis7 can be distinguished. Current
studies identified particularly a mixture of apoptotic and necrotic
cells with a high potential of immune activation.8 On the one
hand, apoptotic cells stimulate and maturate dendritic cells
(DCs) and initialize anticancer T cell response by exposing

calreticulin (CRT) and heat shock proteins (HSP) on their sur-
face.9,10 On the other hand, primary and secondary necrotic cells
that have lost their membrane integrity release inflammatory
cytosolic immune activating damage-associated molecular pat-
terns (DAMPs) such as high-mobility group box 1 protein
(HMGB1), adenosine triphosphate (ATP) or HSP70. These
DAMPs are particularly increased in secondary necrotic cells
and lead to DC maturation, NK cell activation and priming of
Th1 effector cells.11,12 Basal levels of HSP70 and its inducible
form are generally higher in tumor cells than in normal cells.
Additionally, HSP70 is exclusively expressed on the surface of
human tumor cells.13 RT further fosters this surface expression.
Surface HSP70 on the one hand is a marker for more aggressive
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tumors, but on the other hand a specific target structure for the
cytolytic attack mediated by activated NK cells.14,15

RT belongs to the classical cancer therapies and is an inte-
gral part in over 50% of all protocols to treat solid tumors.16

The main function of RT is the local control of the tumor. The
well-known mechanism of damaging DNA by RT with ionizing
radiation (X-ray) triggers a network of events finally leading to
cell cycle arrest and cell death.17 Several recent studies verified
not only local cytotoxicity, but also immune mediated, sys-
temic, and so-called abscopal effects of RT.18 Preclinical models
demonstrated that irradiation results in tumor shrinkage out-
side the irradiation field suggesting an activation of systemic
immune response by locally applied RT.19 In line with that,
clinical studies also give hints of abscopal and immune medi-
ated responses initiated by RT.20,21 Summarized, RT applied in
distinct fractionation schemes has been proven to be capable of
rendering tumor cells more immunogenic.22-24 While RT or
RCT alone in most cases do not result in abscopal antitumor
responses, combination with further immune stimulation
seems to be most beneficial to induce innate and adaptive anti-
tumor immune responses.11,25

Mild HT is an additive tumor therapy. The tumor tissue
is locally heated to temperatures of 40–44�C for a time
period of maximum one hour. HT enhances the effect of
many chemotherapeutic agents and sensitizes the tumor
cells for RT.26 By HT, the blood circulation can be modified
and oxygen is delivered into the tumor. Furthermore, HT
increases the metabolism leading to reduced ATP levels and
increased anaerobic metabolites, fosters protein aggregation
and thereby aggravates DNA repair.27 In addition, local HT
might act as in situ tumor vaccine by the induction of a
systemic antitumor response.28,29 This is in part due to acti-
vation of DCs and NK cells by thermal stress over 40�C.30

An exposure to HT improves DC functions during immune
activation inter alia by upregulation of CD80, CD83, and
CD86 on DCs.31 HT further enhances the NK cell cytotox-
icity by induction of the NKG2D receptor.30 RT especially
fosters surface exposure of HSP7014 and in combination
with HT its release.32 Another important advantage of HT
is its low systemic toxicity.33 Hints exist that immune stim-
ulation by HT is capable of augmenting the efficacy of CT
and RT treatments in melanoma34 that is known for its sus-
ceptibility to immune therapeutic approaches.35,36 Preclini-
cal models revealed that CD8C T cell responses are initiated
when combining RT with further immune modulation for
the treatment of melanoma.34,37 An increased NK cell infil-
tration into the tumor was also reported. However, the role
of NK cells in this scenario is still scarcely understood.

NK cells, firstly described by Kiessling et al.,38 are an
important component of innate immunity. Regulated by an
impressive diversity of activating and inhibiting receptors
NK cells acquire self-tolerance and get licensed to recognize
foreign or altered cells.39,40 By release of cytoplasmic per-
forin and granzyme, NK cells contribute to a rapid immune
response against foreign, infected, malignant, and stressed
cells.41

Human NK cells can be divided into at least two phenotypi-
cal and functional distinct subsets based on their surface
expression of CD56 and CD16, the immune regulatory

CD56brightCD16dim and the cytotoxic CD56dimCD16bright NK
cells. Mouse NK cells do not express CD56, but can be subdi-
vided by the expression of CD27 and CD11b into
CD27highCD11blow NK cells with immune regulatory and
CD27lowCD11bhigh with cytotoxic properties.42,43 CD11bC NK
cells are fully mature and show the highest cytotoxic poten-
tial.44,45 Influenced by spleen-monocytes, NK cells mature from
CD27highCD11blow to CD27highCD11bhigh and differentiate ter-
minally to stable CD27lowCD11bhigh NK cells.43,45,46 Moreover,
NK cell induced production of IFNg, TNF-a, lymphotoxin,
granzyme, perforin, IL-10, IL-13, and GM-CSF seems to be cru-
cial for activation and migration of components of the adaptive
immune system.47,48

Whereas the importance of NK cells in advanced tumor
stages has been circumstantially investigated, their role dur-
ing immunization remains still unclear. On the one hand, it
has been reported that successful DC-vaccination increased
NK cell activation by upregulation of NKp46 and
NKG2D.49 On the other hand, in a B16OVA C57BL/6 vac-
cination model, activated NK cells have been shown to lyse
CD8C T cells in a perforin- and NKG2D-dependent manner
that might impair the adaptive immune response.50 These
examples of controversial studies prompted us to re-exam-
ine the role of NK cells during the immune activation
period, and here especially that induced by RT in combina-
tion with HT.

Results

RT alone and in combination with HT induces apoptosis
and necrosis in B16 melanoma cells

While the sole treatment with HT (41.5�C for 1 h) did not
result in significant cell death induction of B16 melanoma
cells, irradiation with 15 Gy or the combination of 15 Gy
plus HT resulted in a mixture of about 20% apoptotic and
30% necrotic B16 cells, as early as 48 h after the in vitro
treatment (Fig. 1). Furthermore, the danger signals HMGB1
and HSP70 were increasingly released in the B16 tumor cell
supernatant after irradiation with 15 Gy combined with HT
treatment. (Fig. S3)

Immunization with RT or RT plus HT-treated B16
melanoma cells results in tumor growth retardation

Next, we tested the in vivo immunogenicity of the therapy-
modified B16 melanoma cells. For that purpose, C57BL/6 mice
were immunized with subcutaneously injected RT or RT plus
HT pre-treated B16 cells. Seven days afterwards, mice were
challenged with viable B16 cells subcutaneously injected in the
contralateral flank (Fig. 2A). This assay is strongly suggested
for the evaluation of ICD in vivo.51 By measuring local tumor
growth at the tumor injection side, we checked the basal immu-
nogenic potential of RT or RT plus HT-treated melanoma cells
(Fig. 2B–C). Since the repetitive treatment of RT plus HT is
successfully used for treating solid and heatable tumors,33,52,53

we also tested repetitive immunizations, which were signifi-
cantly more effective than a single one (Fig. 2D). We therefore
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Figure 1. Cell death kinetics and forms of B16 melanoma cells after irradiation and/or hyperthermia. The cell death forms of B16 mouse melanoma cells were analyzed
with two color flow cytometry after staining with AnnexinV-FITC and DAPI 24, 48 or 72 h after the respective treatment with ionizing radiation with 15 Gy and/or hyper-
thermia (HT, 41.5�C for 1 h). Viable cells are defined as AnxV¡/DAPI¡, apoptotic cells as AnxVC/DAPI¡and necrotic ones as AnxVC/DAPIC. Representative data of four
independent experiments, each performed in triplicates, are presented as mean § SD.

Figure 2. In vivo immunogenicity of treated B16 melanoma cells. B16 mouse melanoma cells were either irradiated with 15 Gy or additionally exposed to hyperthermia
(HT, 41.5�C for 1 h) and injected 30 h later s.c. into the flank of syngenic C57BL/6 mice. After 7 d, viable B16 cells were injected in the contralateral flank (A). Tumor growth
was followed after immunization with B16 cells pre-treated with RT (B), RT in combination with HT (C) and RT plus HT repetitively (rep.) twice the week (D) until day 25 at
the side of injected viable B16 cells. Representative data of two independent experiments, each with five mice per group, are presented as mean § SD ���p < 0.001
determined by two-way ANOVA, Bonferroni post-test; control: PBS immunized mice.

ONCOIMMUNOLOGY e1101206-3



focused on this immunization protocol in the following
experiments.

Repetitive immunization with RT plus HT-treated B16
melanoma cells especially augments NK cells in draining
lymph nodes

We then analyzed the draining inguinal lymph nodes of immu-
nized mice for the presence and amount of cells from the innate
and adaptive immune system. Quantifying lymphocytes of
immunized versus PBS-injected mock mice (control) indicated
a significant general growth in cell numbers after immunization
which however was varying (Fig. 3A). Flow cytometry analysis
further revealed a significant increase of CD3¡NK1.1C NK
cells, CD3¡CD19C B cells, CD3CCD8¡CD4C, and
CD3CCD8CCD4¡ T cells (Fig. 3B). Of note is that the NK cell
population showed the highest relative increase in cell num-
bers. Specific characterization of NK cell subpopulations
revealed that the immune regulatory CD27CCD11b¡ popula-
tion increased most extensively (Fig. 3C).

NK cells impact on the immunization-induced retardation
of B16 tumor growth in a time-dependent manner

We then asked whether and how NK cell depletion either
before or after immunization might impact on tumor growth.
Therefore, we eliminated NK cells systemically by NK1.1-
depleting antibodies that were administered at different time
points (Fig. 4A). Our experiments revealed that a lasting,
weekly NK-depletion during the entire experiment led to a sig-
nificant acceleration of tumor outgrowth, in both immunized
and control animals (Fig. 4B). Whereas the weekly NK deple-
tion after immunization led to an accelerated tumor progress
compared to immunocompetent mice, a single NK depletion
2 days before immunization contrariwise resulted in significant
tumor growth retardation (Fig. 4C) as also indicated by pro-
longed time to tumor growth >150 mm2 (Fig. 4D).

NK cell depletion before immunization with RT plus HT-
treated tumor cells increases the amount of CD8Cand
CD4C T cells in lymph nodes

To further explore the influence of NK cells during the immune
activation period, we examined again the draining lymph nodes
and performed immune monitoring analysis in order to com-
pare lymphocyte populations of PBS-mock (control) and
immunized mice. Interestingly, we observed that a single NK
depletion before the immunization with RT plus HT-treated
tumor cells induced especially a significant increase of CD8C T
lymphocytes in the lymph nodes (Fig. 5).

Local treatment of established tumors with RT plus HT also
revealed a time-dependent role of NK cell presence in
tumor growth retardation

Finally, we established a therapeutic model, namely a local in
situ immunization model closely resembling the clinical situa-
tion when solid tumors are exposed to local RT plus HT treat-
ment (Fig. 6A). For this, viable B16 melanoma cells were
subcutaneously injected in the right flank of the mice. Ten days
later, the resulting solid tumor was locally exposed to 15 Gy of
irradiation and HT with 41.5�C. Already one single local RT
plus HT application sufficed to significantly retard tumor
growth (Fig. 6B). Again, a long-lasting depletion of NK cells
2 days after local treatment led to an accelerated tumor growth
compared to immunocompetent mice. In contrast, one single
NK depletion before RT plus HT significantly decelerated
tumor growth (Fig. 6B–C) in coherence to the before reported
results obtained with the immunization assay (Fig. 4).

Discussion

Malignant melanoma is a very aggressive, fast growing, and
early metastasizing tumor with high mortality. Beside surgery,
CT and RT, a promising additional treatment option is immu-
notherapy including the use of cytokines, checkpoint-inhibi-
tors, cellular immunotherapeutics as well as vaccines.54-57

Further, hints exist that HT is capable of augmenting the effi-
cacy of RT and CT treatments in melanoma.33

Figure 3. Immune cells in tumor draining lymph nodes of mice immunized repeti-
tively with 15 Gy plus HT-treated B16 cells. Total cell count in tumor draining
lymph nodes (sentinel) of C57BL/6 mice after repetitive (rep.) immunization with
15 Gy plus hyperthermia (HT, 41.5�C for 1 h) treated B16 cells is displayed in (A).
The amount of infiltrated B cells (CD3¡CD19C), NK cells (CD3¡NK1.1C), T cell
(CD3C)-subpopulations (NK1.1C, CD8CCD4¡, CD8¡CD4C, CD8CCD4C) is shown in
(B) and that of NK cell-subpopulations (CD27CCD11b¡, CD27CCD11bC,
CD27¡CD11bC) in (C). The analyses were performed by flow cytometry and are
presented as mean § SD ��p < 0.01; ���p < 0.001 calculated by unpaired stu-
dent’s t-test.
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In particular, the induction of an immunogenic tumor cell
death has been shown to foster T-cell-mediated antitumor
immune responses.9-11 Pre-treatment of B16 melanoma cells
with either 15 Gy of RT or a combination with HT, resulted
in both apoptotic and necrotic tumor cells (Fig. 1) and an
increased release of especially HMGB1 in the tumor cell
supernatant (Fig. S3). Apoptotic cells secrete lipid attraction
signals for immune cells.58 and necrotic cells release DAMPs
such as HMGB1.59 The latter is a highly conserved chroma-
tin-associated nuclear protein with pleiotropic character.
Extracellular HMGB1 acts as danger signal and binds with
high affinity to the receptor for advanced glycation end prod-
ucts (RAGE) and toll-like receptors (TLR)-2, -4, and -9. It
thereby activates DCs and mediates processing and cross-pre-
sentation of antigen derived from dying and dead tumor cells.
Immunogenic CT and irradiation induce the release of
HMGB1 and consecutive immune activation.60 Besides its
role in maturating DCs and polarizing Th1 cells,61 it also
enhances INFg release of macrophage-stimulated NK cells.62

We found that the danger signals HMGB1 and HSP7063 are
increasingly released in the B16 tumor cell supernatant after
irradiation with 15 Gy combined with HT treatment (Fig. S3).
This might contribute to enhanced immune responses against
the B16 melanoma cells. Thereby, HSP70 might especially fos-
ter the activation of NK cells.64

Besides the role of HMGB1 for DC and NK cell activation, it
also contributes to leukocyte attraction.65 The latter has just
recently been shown to be also fostered by tumor cell autoph-
agy.66 Since we injected the B16 tumor cells 30 h after treat-
ment, in vivo all, apoptosis, necrosis, and autophagy might
contribute to ICD of the melanoma cells. Furthermore, injected
NK cells into growing tumors could provide a source of dying
cells for cross-presentation and deliver stimuli for DC matura-
tion.67 This suggests that cells of the innate and adaptive
immune system act in concerted action to fight the tumor.

To analyse this in vivo immunogenicity of the melanoma
cells, we followed the consensus guidelines for the detection
of ICD.51 The B16 cancer cells were exposed in vitro to RT

Figure 4. Impact of NK cells on tumor growth retardation induced by immunization with treated B16 cells. By repetitive immunization of C56/BL6 mice with 15 Gy plus
hyperthermia (HT, 41.5�C for 1 h) treated B16 cells and subsequent injection of viable tumor cells in the contralateral flank, NK cells were either depleted before the first
immunization (single NK-depl. before immunization), additionally three times after immunization (weekly NK-depl. after immunization), or before and additionally three
times after immunization (weekly depletion) (A). Concomitantly the tumor growth was monitored over days at the side of injected viable B16 cells (B–C).
���p < 0.001 determined by two-way ANOVA, Bonferroni post-test. Additionally, the days to tumor growth >150 mm2 was recorded (D). �p < 0.05; ��p < 0.01; ���p <

0.001 determined by one-way ANOVA, Bonferroni test. Representative data of two independent experiments, each with five mice per group, are presented as mean §
SD; control: PBS immunized mice.
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(15 Gy) or RT plus HT, both treatments as putative
inducers of ICD. These cells were then s.c. injected into one
flank (immunization site) of immunocompetent syngeneic
mice. 7 days later, the mice were challenged with living can-
cer cells of the same type, which were inoculated s.c. into
the contralateral flank (challenge site). We observed that
the tumor growth at the challenge site was significantly
reduced when the mice were especially repetitively immu-
nized before with RT plus HT-treated B16 cells (Fig. 2).
This indicates that the immunogenicity of B16 melanoma
cells can be induced by these combined treatments and is
further substantiated by the fact that a significant increase
of CD4C and CD8C T cells in the sentinel lymph node in
immunized compared to not immunized mice was detected
(Fig. 3B). Furthermore, especially immune regulatory
CD27CCD11b¡ NK cells augmented in lymph nodes of
before immunized mice (Fig. 3C).

As NK cells impressively increased in immunized compared
to PBS-mock injected mice (Fig. 3B), we further quantified the
increase of the different NK cell subpopulations
CD27CCD11b¡, CD27CCD11bC, and CD27¡CD11bC known
for their distinct functional characteristics.45,68,69 Interestingly,
a major increase in CD27CCD11b¡ NK cells known for their
immune regulatory ability was observed (Fig. 3C). These results
are in line with previous reports in the B16 melanoma model
indicating that besides mature NK cells with cytotoxic function,
a high number of CD27-expressing IFNg producing NK cells
efficiently protects from metastatic spread and supports antitu-
mor functions.70,71 Furthermore, our data underlines the highly
immunogenic potential of local tumor treatment with RT and
further immune stimulation.18,19,30 In immunized animals, a
higher variation of the total cell count in tumor draining lymph
nodes was observed (Fig. 3A). However, no correlation between
the number of total cells and intensity of tumor growth retarda-
tion was observed.

By experiments in immune-deficient NK-cell-depleted mice,
we showed that the high immunogenic capacity of repetitive
injected irradiated and heated tumor cells is not only mediated
through the adaptive, but also the innate arm of immunity
(Figs. 4–6). To especially examine whether NK cells are only
important as antitumor effector cells or also during the
immune activation period, we depleted NK cells for the entire
period or before a sole immunization with the treated mela-
noma cells (Fig. 4A). Permanent depletion of NK cells during
the entire experiment accelerated the tumor growth in both
PBS-mock treated and immunized mice, thereby confirming
their important role for antitumor protection.72 We here got
first hints that a memory response is inducible by immuniza-
tion with RT plus HT-treated B16 cells, since more tumor cells
were specifically stained by antibodies present in serum of
immunized mice. This is dependent on NK cells, since the per-
centage of stained tumor cells was decreased when NK cells
were depleted in the immunized mice (Fig. S4). It is important
to note, that a lasting NK cell-depletion weekly after immuniza-
tion ended up in accelerated tumor growth, whereas one singu-
lar NK-depletion before the immunization significantly
retarded tumor growth (Fig. 4C–D). These results suggest that
NK cells might prevent a competent immune activation during
the immunization phase. The detailed mechanistic basis for
this should be subject of intensive future research.

We speculate that besides the important cross-talk between
NK cells and DCs,73 NK cells lyse not only malignant tumor
cells but also T cells in the tumor milieu induced by their
degranulation after activation. One already described mecha-
nism is that NK cells shape the CD8C T cell fate by killing
recently activated CD8C T cells in NKG2D- and perforin-
dependent manner.50 In line with that we observed a significant
increase of CD8C T cells in the absence of NK cells (Fig. 5).
This suggests an elimination of cytotoxic local T cells by acti-
vated NK cells in the draining lymph node.

Figure 5. Impact of NK cells on immune cells in tumor draining lymph nodes of mice immunized with 15 Gy plus HT-treated B16 cells. Total cell count of immune cells (B
cells (CD3¡CD19C), NK cells (CD3¡NK1.1C) and T cell(CD3C)-subpopulations (NK1.1C, CD8CCD4¡, CD8¡CD4C, CD8CCD4C)) in tumor-draining lymph nodes (sentinel) was
determined in dependence of NK-depletion once before immunization. The analyses were performed by flow cytometry and are presented as mean § SD
��p < 0.01; ���p < 0.001 calculated by unpaired student’s t-test.
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Secondly, as also suggested by the ICD recommendations,51

we performed the therapeutic assay, namely a local irradiation of
an established B16 tumor with 15 Gy and additional local HT
treatment (Fig. 6A), as described just recently by our group.34

We found that tumor growth can be significantly delayed.
In both scenarios, namely in the immunization and the

therapeutic assay,51 our main aim was to examine for the first
time which role NK cells do play in the immunization phase
and later on in the tumor response phase. To achieve com-
plete tumor rejection, future studies are needed with fraction-
ated irradiation of the tumor with e.g. 10 £ 2 Gy and
repeated local HT treatment. For this, large animal cohorts
will be necessary to define the best fractionation scheme and
chronological sequence of the applications. According the

findings of the immunization model with pre-treated B16 cells
(Fig. 4C–D), again a weekly NK cell depletion after local treat-
ment accelerated the tumor growth, while a single NK cell
depletion before treatment retarded the tumor growth signifi-
cantly (Fig. 6B–C).

To summarize, combined treatment of melanoma cells with
X-ray and HT results in immunogenic tumor cells and conse-
cutive involvement of T cells and NK cells in antitumor
responses. Hereby, we identified a dual role of NK cells. On the
one hand, NK cells are important for tumor cell killing after
initiation of antitumor immunity, but on the other hand NK
cells might be disadvantageous during the immune activation
period. This knowledge is important for the design of future
radio-immunotherapies, since not only the right combination
but also the chronological sequence combining RT with further
immune therapies matters.74-76 Despite their direct antitumor
effects, NK cells might have a negative influence on the genera-
tion of the favored T-cell-mediated immunity induced during
the immunization period.

Materials and methods

Animals

C57BL/6 mice were obtained from Elevage Janvier (C57BL/
6NRj) and used at 7–9 weeks of age. All mice were kept and
bred under sterile atmosphere at the animal facility of the Uni-
versit€atsklinikum Erlangen. The animal procedures have been
approved by the “Regierung of Mittelfranken” and were con-
ducted in accordance with the guidelines of Federation of Euro-
pean Laboratory Animal Science Associations (FELASA). Mice
were euthanized when reaching a tumor volume of 1700 mm3.
This volume was calculated three times the week by a well-
established formula: VTumor D 1=2 ¢ (L ¢ B2).77

Culture and treatment of B16 cells

The mouse melanoma cell line B16-F10 (ATCC, # CRL-6475)
derived from C57BL/6 mice was cultured in RPMI 1640
medium with stable glutamine (Sigma-Aldrich, # R8758), sup-
plemented with 10% heat-inactivated fetal bovine serum (FBS,
Biochrom, # S0615), 100 U/mL penicillin and 100 mg/mL strep-
tomycin (Gibco, # 15140–122). The cells were tested negatively
for mycoplasma contamination and maintained in 5% CO2

atmosphere at 37�C and 95% relative humidity. The cells were
used when they reached 90% confluence. 4 £ 106 B16 cells
were cultured in culture bottles (surface of growth 75 cm2;
Greiner BioOne, # 658175) with 15 mL of the described culture
medium.

The tumor cells were irradiated with an X-ray generator
(120 kV, 22.7 mA, 2 min; GE Inspection Technologies) with a
single dose of 15 Gy. For HT, the melanoma cells were exposed
to heat in a homemade device placed in a cell incubator as
described previously.32 The variations of the temperature dur-
ing the treatment were less than 0.2�C. The cells remained at
stable 41.5�C for 1 h. For combined applications, the tumor
cells were stored at 37�C for 4 h between RT and HT treatment.

Figure 6. Impact of local treatment of established tumors with 15 Gy plus hyper-
thermia and NK cells on tumor growth retardation. Viable B16 tumor cells were
injected into the flank of C57BL/6 mice. 10 d later, after tumor establishment, the
tumors were locally irradiated with 15 Gy and 4 h later additionally locally treated
with hyperthermia (HT, 41.5�C for 30 min). NK cells were either depleted weekly
after the local treatments or 2 d before (A). Concomitantly, the tumor growth at
was monitored over days (B–C). ���p < 0.001 determined by two-way ANOVA,
Bonferroni post-test. Additionally, the days to tumor growth >150 mm2 was
recorded (D). �p < 0.05; ��p < 0.01; ���p < 0.001 determined by one-way ANOVA,
Bonferroni test. Representative data of two independent experiments, each with
five mice per group, are presented as mean § SD.
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Analysis of tumor cell death

To detect viable, apoptotic, and necrotic melanoma cells, we
used the AnnexinV-DAPI-Assay. The treated melanoma cells
were stained at different time points with AnnexinV-FITC
(Immunotools, # 31490013) and DAPI (Applichem, # A1001).
After 30 min of incubation at 4�C in the dark, the samples were
analyzed by flow cytometry. Double negative cells were defined
as viable, AnxVC/DAPI¡as apoptotic, and AnxVC/DAPICas
necrotic ones. The gating strategy as well as the dot blots are
depicted in Fig. S1.

Analyses of HMGB1 and HSP70

The expression of intracellular HMGB1 and HSP70 was semi-
quantitatively determined in cell lysates by Western blot tech-
nique using standard protocols. To detect the concentration of
the DAMP HMGB1 in the supernatant of treated B16 cells, we
also used the Western Blot technique. 30 h after the respective
treatments, the supernatants were concentrated by centrifuga-
tion (Millipore-strainers (NMWI D 3000) 40 min, 4�C,
4000 rpm). 25 mg of protein was loaded on SDS-pages and sep-
aration was performed by electrophoresis. After blotting, the
protein on nitrocellulose membranes, the proteins of interest
were stained with the following antibodies: mouse mAb anti-
HMGB1 (abcam, # ab12029) and mouse mAb anti-HSP70 (BD
Transduction, # 610608). Anti-mouse HRP conjugated Ab
(upstate, Merck Millipore, # 12–349) was used as second step
reagent and chemiluminescence was detected with Amersham
ECL hyperfilms (GE Healthcare, # 28906836). For detection
and quantification of total HSP70 in supernatants of tumor
cells, the ELISA DuoSet IC Kit (R&D Systems, # DYC1663)
was used according to the manufacturer’s instructions.

Determination of the in vivo immunogenicity of treated
melanoma cells

0.5 £ 106 pre-treated B16 melanoma cells were subcutaneously
injected at day -7 in the left hind flank (near thigh) of the mice.
Thirty hours before injection, these cells were either irradiated
with 15Gy (RT), exposed to 60 min of HT or a combination of
RT plus HT. Seven days later (d0) the mice were challenged by
injecting subcutaneously 0.2 £ 106 viable melanoma cells in
the contralateral right hind flank (near thigh, Fig. 2A). Hereaf-
ter, the tumor growth was measured at the side of tumor injec-
tion at least three times/week. This volume was calculated by
the well-established formula.77 VTumor D 1=2 ¢ (L ¢ B2). We com-
pared single and repeated immunization. The repetitive immu-
nization protocol consisted of immunization with 0.5 £ 106

pre-treated B16 melanoma cells twice/week. In several experi-
ments, NK cells were depleted a single time at day -9 (single
NK-depl. before immunization) or continuously starting at day
-9 (weekly NK-depl.) or starting at day -2 (weekly NK-depl.
after immunization) (Fig. 4A).

Local in situ immunization model

The therapeutic in situ immunization model (Fig. 6A) closely
resembles the clinical local treatment of solid tumors by RT

and HT. For this, 0.2 £ 106 untreated B16 melanoma cells were
subcutaneously injected in the right hind flank (near thigh) of
the mice. 10 d afterwards, the melanomas were solid visible in
the skin and represented good targets for local treatments. To
irradiate the tumor bearing mice, a Plexiglas� box was manu-
factured which allows the locally irradiation of three mice at
once. Before placing them into the box, the mice were anesthe-
tized with Isoflurane. Then, the tumors were locally irradiated
with a dose of 15 Gy using a linear accelerator (6MV, PRI-
MART, Siemens). The planning of the irradiation was con-
ducted using a computer tomography image of the irradiation
box and tumor bearing mice with Philips pinnacle software to
obtain an optimal target volume. To further protect normal tis-
sue, the gantry of the 6MV linear accelerator was drifted to
340�. HT was performed 4 h after irradiation. For this, the mice
were anesthetized and the tumors were heated locally under
temperature control to 41.5�C for 30 min using the BSD50 HT
system (Dr Sennewald Medizintechnik), as described earlier.34

Analysis of immune cells in draining lymph nodes

To analyze immune cell populations in the draining lymph
nodes, the cells were isolated by slitting the organs and pressing
them through 100 mm mesh cups (Corning, # 52360) to gener-
ate single-cell suspensions. 2 £ 106 cells were stained with dif-
ferent combination of the following antibodies: CD11c-FITC (#
553801), CD4-PE (# 553730), CD27-PE (# 558754), NK1.1-PE-
Cy7 (# 552878), 7AAD (# 559925) CD19-V450, (# 560375,
CD11b-V450 (# 560455) all from BD Biosciences; CD3e-APC
(# 17–0031) from eBioscience ; AnnexinV-FITC from Immu-
notools (# 31490013) and CD8a-FITC from Miltenyi (# 130–
102–806). A minimum of 5 £ 105 events were detected per
measurement. Flow cytometry was performed on a FACS
Canto II (BD Biosciences, Heidelberg, Germany) and analyzed
using FlowJo Software v7.6.5 (Treestar). The gating strategy is
representatively depicted in Fig. S2.

Detection of tumor cell-specific antibodies in serum of mice

The tumor cell-specific antibodies (against B16-F10 cells) in the
sera of mice were analyzed by the indirect immune fluorescence
method as described previously.78 At the end of the observation
period the blood of the mice was drawn into BD microtainer
SSTTM tubes (BD, # 365951) and serum was prepared by centri-
fugation of the tubes according to the manufacturer’s instruc-
tions. Serum was freshly used or stored at ¡80�C. For
detection of the indirect immunofluorescence, viable target cells
were incubated with the serum of the respective mouse for
60 min at 4�C in the dark. Afterwards, the cells were washed
with PBS (SigmaAldrich, # D8537) including 10% inactivated
FBS to block unspecific binding and to remove unbound anti-
bodies, respectively. The tumor cell specific antibodies were
detected by flow cytometry using a fluorescein-tagged F(ab’)2
fragment of goat anti-mouse IgG (Invitrogen, Molecular
Probes, # F11021).
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NK cell depletion in vivo

NK cell depletion was performed by using NK1.1-depleting
antibodies (PK136). Antibodies were obtained from ascites of
nu/nu mice following intraperitoneal application of PK136
hybridroma cells that was kindly provided by Prof. Zitvogel
(Institute Gustave Roussy, Villejuif, France). The purification
of the monoclonal NK1.1-depleting antibody was performed by
affinity chromatography using HiTrap column, prepacked with
Protein G Sepharose High Performance (GE Healthcare Life
Sciences). Former experiments showed that NK cells proliferate
in peripheral blood again approximately 7 d after depletion. To
achieve an almost complete depletion of NK cells temporarily
for a period of 7 d, we injected unique 200 mg of the depleting
antibody intraperitoneal. For continuous elimination of NK
cells, we repeated the depletion weekly.

Statistical analysis

Statistical analysis was performed as indicated in the figure
legends by use of Graphpad Prism Software v5.0. 2way
ANOVA Bonferroni post-test was performed to analyze the
correlation between tumor growths in different treatment
groups. One-way ANOVA Bonferroni was used to compare the
time point when tumor growth exceeded a surface of 150 mm2.
Unpaired Student’s t-test was performed to compare immune
cell populations in the different treatment groups.
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