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Abstract: Mitochondrial aldehyde dehydrogenase (ALDH2) metabolizes endogenous and exogenous
aldehydes and protects cells against oxidative injury. Inactivating genetic polymorphisms in humans
are common and associate with alcohol flush reactions. However, whether mast cell Aldh2 activity
impacts normal mast cell responses is unknown. Using bone marrow-derived mast cells from
Aldh2 knockout mice, we found evidence for a role of mast cell Aldh2 in Kit-mediated responses.
Aldh2-deficient mast cells showed enhanced Kit tyrosine kinase phosphorylation and activity after
stimulation with its ligand (stem cell factor) and augmentation of downstream signaling pathways,
including Stat4, MAPKs, and Akt. The activity of the phosphatase Shp-1, which attenuates Kit activity,
was reduced in Aldh2−/− mast cells, along with an increase in reactive oxygen species, known to
regulate Shp-1. Reduced Shp-1 activity concomitant with sustained Kit signaling resulted in greater
proliferation following Kit engagement, and increased mediator and cytokine release when Aldh2−/−

mast cells were co-stimulated via Kit and FcεRI. However, FcεRI-mediated signaling and responses
were unaffected. Therefore, our findings reveal a functional role for mast cell intrinsic Aldh2 in the
control of Kit activation and Kit-mediated responses, which may lead to a better understanding of
mast cell reactivity in conditions related to ALDH2 polymorphisms.

Keywords: Aldh2 deficiency; mast cells; Kit; Shp-1; mast cell activation; proliferation

1. Introduction

Aldehyde dehydrogenase 2 (Aldh2) is a mitochondrial enzyme that protects cells from biogenic
aldehydes accumulated through metabolism, and the most efficient isoenzyme within the family
of ALDH enzymes to remove toxic acetaldehyde derived from the metabolism of alcohol [1].
Some aldehyde intermediates are highly reactive and modify proteins, cause protein aggregation,
and produce reactive oxygen species (ROS), and Aldh2 thus plays a protective role in cells during
oxidative stress [1–3]. A genetic polymorphism (rs671) in ALDH2 (ALDH2*2) is the most common
single point mutation in humans, present in approximately 40% of Eastern Asian populations [1,4].
This polymorphism causes a severe reduction in ALDH2 activity, even in heterozygous individuals,
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through a dominant negative effect and is associated with conditions such as alcohol flush syndrome [5],
manifested by facial flushing, headaches, nausea, dizziness, and cardiac palpitations after the
consumption of alcoholic beverages [1]. Flushing has been linked to the activation of mast cells [6,7]
and in alcohol flushing mast cell involvement is suggested by reports showing that the metabolite of
alcohol acetaldehyde causes mast cell degranulation and increases histamine release [8–10], and by the
improvement of alcohol flushing by antihistamine treatment [11].

Mast cells are characterized by the expression of FcεRI, the high-affinity IgE receptor [12], and
their activation via this receptor by multivalent antigen (Ag) results in the release of granule-associated
mediators and de novo synthetized cytokines [12,13]. FcεRI stimulation in tissues occurs in the context
of signals derived from Kit, the receptor for the stem cell factor (SCF) which is produced in tissues
and enhances mast cell responses to IgE/Ag and other mast cell stimulants. In addition, Kit is critical
for mast cell proliferation and survival [14,15]. Therefore, understanding the factors that impact Kit
signaling in mast cells is important for understanding mast cell responsiveness.

The activation of mast cells causes transient increases in ROS that regulate mast cell signaling
and responses [16–19]. Given the reported role of mitochondrial Aldh2 in the regulation of oxidative
stress [1,3], and the associations between Aldh2, mast cells, and alcohol-induced pathologies, we
sought to investigate whether Aldh2 activity plays a role in regulating mast cell behavior following
FcεRI and Kit activation.

In this report, we present evidence that bone marrow-derived mast cells (BMMCs) from mice with
a genetic deletion in Aldh2 have increased proliferation and IL-6 production after stimulation with SCF,
and when co-stimulated with SCF and IgE/Ag, show enhanced mediator release. Kit phosphorylation
and the activation of downstream signaling molecules that are critical for mast cell responses [15,20]
were also enhanced in Aldh2-deficient BMMCs after SCF stimulation. These effects were associated with
an increase in ROS levels and a reduction of activity of the Src homology domain 2-containing protein
tyrosine phosphatase 1 (Shp-1), which is a negative regulator of signaling by Kit. Our findings are
consistent with the conclusion that Aldh2 plays a role in the negative regulation of Kit signaling and may
provide insight into the regulation of mast cell responsiveness in relation to alcohol-associated flushing.

2. Results

2.1. Aldh2 Deficiency Enhances Mast Cell Proliferation

After 4 weeks in culture, >97% of both Aldh2+/+ and Aldh2−/− bone marrow cells (n = 5 independent
cultures/genotype) were positive for Kit and FcεRI, characteristically expressed in mast cells. The levels
of expression of Kit and FcεRI, as determined by FACS analyses, were similar in mast cells from either
genotype (Figure 1A). However, the number of total cells in the cultures derived from Aldh2−/− mice
was ~2-fold higher than those derived from Aldh2+/+ mouse marrows after 4 to 5 weeks in culture
(Figure 1B). Further, when 5-week-old mature BMMCs were plated at the same density, Aldh2−/−

cells continued to increase in number at a higher rate than Aldh2+/+ BMMCs (Figure 1C). To further
document that the proliferation of Aldh2−/− mast cells was enhanced, we determined [3H]-thymidine
incorporation in Aldh2+/+ and Aldh2−/− BMMCs in response to SCF, a known growth factor for mast
cells. [3H]-Thymidine incorporation in the presence of either 10 or 100 ng/mL SCF was significantly
increased in Aldh2−/− compared with Aldh2+/+ BMMCs (Figure 1D). Taken together, these results
demonstrate that Aldh2 negatively regulates mast cell proliferation.
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Figure 1. Aldehyde dehydrogenase 2 (Aldh2) deficiency promotes the proliferation of bone 
marrow-derived mast cells (BMMCs). (A) Mean fluorescence intensity (MFI) of cell surface FcεRI 
(left) and Kit (right) in BMMCs from Aldh2+/+ and Aldh2−/− mice cultures grown for 5 weeks and 
analyzed concurrently. (B) Numbers of viable BMMCs from Aldh2+/+ and Aldh2−/− mice at the 
indicated times in culture. Cells were stained with trypan blue and counted using a hemocytometer. 
(C) Increase in numbers of Aldh2+/+ and Aldh2−/− mature mast cells (5 weeks old), plated at the same 
density, for 9 days in full media. (D) Proliferation of 5-week-old Aldh2+/+ and Aldh2−/− mast cells 
measured by [3H]-thymidine incorporation. Cells were plated at the same density in media with or 
without the indicated concentrations of stem cell factor (SCF) for 24 h. Data are the mean ± SEM of 
five independent cultures. ** p < 0.01; n.s., not significant. 

2.2. Responses to SCF Alone or in Combination with IgE/Ag are Enhanced in Aldh2-Deficient BMMC, While 
Responses to FcεRI Stimulation are Unaffected  

We then determined whether Aldh2 may impact the FcεRI-dependent release of bioactive 
mediators from mast cells. The FcεRI-mediated degranulation (Figure 2 A) and release of TNF-α and 
IL-6 (Figure 2B–C) were similar in BMMCs differentiated from Aldh2+/+ and Aldh2−/− mice. Similarly, 
degranulation induced pharmacologically by thapsigargin, a drug that causes cytosolic Ca2+ 
increases by inhibiting Ca2+ uptake into intracellular stores (Figure 2D), was unaffected by Aldh2 
deficiency. 

We next examined the potential effect of Aldh2 deficiency on FcεRI-mediated responses in the 
presence of SCF, since a combination of FcԑRI and Kit-mediated signals is required for optimal 
responses of mast cells to IgE/Ag. Both degranulation (Figure 2E) and cytokine release (Figure 2F, G) 
induced by the co-stimulation of Kit and FcεRI were significantly enhanced in Aldh2−/− compared 
with Aldh2+/+ BMMCs (compare also with Figure 2A–C). Furthermore, SCF in the absence of 
IgE-receptor stimulation also markedly enhanced the production of IL-6, a cytokine known to 
promote mast cell proliferation and responses [21], in Aldh2−/− compared to Aldh2+/+ BMMCs (Figure 
2H). These results suggest that Aldh2, by regulating SCF/Kit-mediated signaling events, may impact 
the optimal physiological responses of mast cells to IgE/Ag, even though it does not directly alter the 
responses to FcεRI. 

Figure 1. Aldehyde dehydrogenase 2 (Aldh2) deficiency promotes the proliferation of bone
marrow-derived mast cells (BMMCs). (A) Mean fluorescence intensity (MFI) of cell surface FcεRI (left)
and Kit (right) in BMMCs from Aldh2+/+ and Aldh2−/− mice cultures grown for 5 weeks and analyzed
concurrently. (B) Numbers of viable BMMCs from Aldh2+/+ and Aldh2−/− mice at the indicated times
in culture. Cells were stained with trypan blue and counted using a hemocytometer. (C) Increase
in numbers of Aldh2+/+ and Aldh2−/− mature mast cells (5 weeks old), plated at the same density, for
9 days in full media. (D) Proliferation of 5-week-old Aldh2+/+ and Aldh2−/− mast cells measured by
[3H]-thymidine incorporation. Cells were plated at the same density in media with or without the
indicated concentrations of stem cell factor (SCF) for 24 h. Data are the mean ± SEM of five independent
cultures. ** p < 0.01; n.s., not significant.

2.2. Responses to SCF Alone or in Combination with IgE/Ag Are Enhanced in Aldh2-Deficient BMMC, While
Responses to FcεRI Stimulation Are Unaffected

We then determined whether Aldh2 may impact the FcεRI-dependent release of bioactive
mediators from mast cells. The FcεRI-mediated degranulation (Figure 2A) and release of TNF-α and
IL-6 (Figure 2B,C) were similar in BMMCs differentiated from Aldh2+/+ and Aldh2−/− mice. Similarly,
degranulation induced pharmacologically by thapsigargin, a drug that causes cytosolic Ca2+ increases
by inhibiting Ca2+ uptake into intracellular stores (Figure 2D), was unaffected by Aldh2 deficiency.

We next examined the potential effect of Aldh2 deficiency on FcεRI-mediated responses in the
presence of SCF, since a combination of FcεRI and Kit-mediated signals is required for optimal responses
of mast cells to IgE/Ag. Both degranulation (Figure 2E) and cytokine release (Figure 2F,G) induced by
the co-stimulation of Kit and FcεRI were significantly enhanced in Aldh2−/− compared with Aldh2+/+

BMMCs (compare also with Figure 2A–C). Furthermore, SCF in the absence of IgE-receptor stimulation
also markedly enhanced the production of IL-6, a cytokine known to promote mast cell proliferation
and responses [21], in Aldh2−/− compared to Aldh2+/+ BMMCs (Figure 2H). These results suggest
that Aldh2, by regulating SCF/Kit-mediated signaling events, may impact the optimal physiological
responses of mast cells to IgE/Ag, even though it does not directly alter the responses to FcεRI.
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Figure 2. Aldh2 deficiency enhances mast cell responses to FcεRI and Kit co-stimulation, but not to 
FcεRI alone. (A–C) β-Hexosaminidase release (degranulation) (A), and release of the cytokines TNFα 
(B) and IL-6 (C), into the media in response to FcεRI stimulation. Aldh2+/+ and Aldh2−/− BMMCs were 
sensitized with anti-Dinitrophenyl (DNP) IgE (100 ng/mL) overnight, washed, and then challenged 
with the indicated concentrations of Ag (DNP-HSA) in (A) or with 25 ng/mL of antigen (Ag) in (B 
and C). (D) Degranulation induced by the indicated concentrations of thapsigargin in Aldh2+/+ and 
Aldh2−/− BMMCs. (E–G) Degranulation (E), and the release of TNFα (F) and IL-6 (G), induced by the 
co-stimulation of FcεRI and Kit in Aldh2+/+ and Aldh2−/− BMMCs. Sensitized BMMCs were challenged 
with the indicated concentrations of Ag (E) or with 25 ng/mL of Ag in (F and G) in the presence of 
100 ng/mL SCF. (H) IL-6 released by Aldh2+/+ and Aldh2−/− BMMCs stimulated only with SCF at the 
indicated concentrations. Degranulation in A, D, and E is expressed as the percentage of 
β-hexosaminidase released into the media compared to the total cellular content. Data are the mean ± 
SEM of five independent cultures. ** p < 0.01; n.s., not significant. 

2.3. Kit-Induced Phosphorylation Events are Upregulated in Aldh2-Deficient BMMCs 

Consistent with the lack of effect of Aldh2 on FcεRI-mediated degranulation and cytokine 
production, early signal events mediated by this receptor [12,15], such as Syk phosphorylation 
(Figure S1A) and activation (Figure S1B), as well as its downstream signals (i.e., linker for the 
activation of T cells (LAT) in Figure S1A; and PLCγ1, Akt, Jnk, and Erk in Figure S1C), were not 
altered in Aldh2−/− compared to Aldh2+/+ BMMCs. 

In contrast, the phosphorylation of key signaling pathways downstream of the Kit receptor, 
such as Stat4, Akt (Figure 3A), Erk, and Jnk (Figure 3B), was increased in Aldh2−/− BMMCs. As these 
signals mediate mast cell proliferation, degranulation, and cytokine release [20,22,23], and IL-6 
promotes mast cell proliferation and function [21], the results provide an explanation for the 
observed enhanced proliferation in response to SCF and increased release of mediators in 
combination with IgE/antigen. 

Figure 2. Aldh2 deficiency enhances mast cell responses to FcεRI and Kit co-stimulation, but not to
FcεRI alone. (A–C) β-Hexosaminidase release (degranulation) (A), and release of the cytokines TNFα
(B) and IL-6 (C), into the media in response to FcεRI stimulation. Aldh2+/+ and Aldh2−/− BMMCs were
sensitized with anti-Dinitrophenyl (DNP) IgE (100 ng/mL) overnight, washed, and then challenged
with the indicated concentrations of Ag (DNP-HSA) in (A) or with 25 ng/mL of antigen (Ag) in
(B,C). (D) Degranulation induced by the indicated concentrations of thapsigargin in Aldh2+/+ and
Aldh2−/− BMMCs. (E–G) Degranulation (E), and the release of TNFα (F) and IL-6 (G), induced by the
co-stimulation of FcεRI and Kit in Aldh2+/+ and Aldh2−/− BMMCs. Sensitized BMMCs were challenged
with the indicated concentrations of Ag (E) or with 25 ng/mL of Ag in (F,G) in the presence of 100 ng/mL
SCF. (H) IL-6 released by Aldh2+/+ and Aldh2−/− BMMCs stimulated only with SCF at the indicated
concentrations. Degranulation in (A,D,E) is expressed as the percentage of β-hexosaminidase released
into the media compared to the total cellular content. Data are the mean ± SEM of five independent
cultures. ** p < 0.01; n.s., not significant.

2.3. Kit-Induced Phosphorylation Events Are Upregulated in Aldh2-Deficient BMMCs

Consistent with the lack of effect of Aldh2 on FcεRI-mediated degranulation and cytokine
production, early signal events mediated by this receptor [12,15], such as Syk phosphorylation (Figure
S1A) and activation (Figure S1B), as well as its downstream signals (i.e., linker for the activation of T
cells (LAT) in Figure S1A; and PLCγ1, Akt, Jnk, and Erk in Figure S1C), were not altered in Aldh2−/−

compared to Aldh2+/+ BMMCs.
In contrast, the phosphorylation of key signaling pathways downstream of the Kit receptor, such

as Stat4, Akt (Figure 3A), Erk, and Jnk (Figure 3B), was increased in Aldh2−/− BMMCs. As these signals
mediate mast cell proliferation, degranulation, and cytokine release [20,22,23], and IL-6 promotes mast
cell proliferation and function [21], the results provide an explanation for the observed enhanced
proliferation in response to SCF and increased release of mediators in combination with IgE/antigen.
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Figure 3. Aldh2-deficient BMMCs have enhanced Kit-mediated signaling. Changes in Stat4 and Akt 
phosphorylation (A) or p-Erk and p-Jnk (B) after stimulation with 100 ng/mL SCF for various times 
in Aldh2+/+ and Aldh2−/− BMMCs, as indicated. The histogram below shows the average fold changes in 
band intensities after normalization, using β-actin as a loading control. Data are the mean ± SEM of 
three independent cultures. * p < 0.05; ** p < 0.01. 

2.4. Deficiency in Aldh2 Results in Increased Kit Activation Concomitant with Reduced Shp-1 Activity and 
Increased ROS Levels 

Since signaling downstream of Kit was enhanced in Aldh2-deficient mast cells, we surmised 
that Aldh2 may affect an early step in the activation of the receptor. SCF-induced phosphorylation of 
Kit in tyrosine 823, which occurs by the transphosphorylation of dimerized Kit by binding to SCF, 
was more pronounced and longer lasting in Aldh2−/− compared with Aldh2+/+ BMMCs (Figure 4A). 
This occurred concomitantly with increases in Kit kinase activity assayed in Kit immunoprecipitates 
of SCF-activated BMMCs (Figure 4B). 

The tyrosine phosphatase Shp-1 is an important regulator of Kit dephosphorylation and the 
termination of signaling. Therefore, we investigated the possibility that Aldh2 regulates Kit 
signaling via Shp-1. We immunoprecipitated Shp-1 in Aldh2+/+ and Aldh2−/− BMMCs activated with 
SCF, and measured phosphatase activity in the immunoprecipitated immunocomplexes. Shp-1 
activity in SCF-activated Aldh2−/− cells was significantly reduced compared to that in Aldh2+/+ mast 
cells (Figure 4C). Since Aldh2 has been reported to regulate ROS in certain systems [1–3] and Shp-1 is 
sensitive to ROS [16], we also measured the increases in ROS induced by SCF in Aldh2+/+ and Aldh2−/− 
BMMCs. We found that Aldh2 deficiency resulted in an increased production of ROS by SCF (Figure 
4D), and that prevention of ROS actions by pretreatment with the general antioxidant TEMPO 
reversed the diminished activation of Shp-1 induced by SCF (Figure 4E). The data are thus consistent 
with the conclusion that Aldh2, through the regulation of ROS levels, impacts the activity of Shp-1. 

Figure 3. Aldh2-deficient BMMCs have enhanced Kit-mediated signaling. Changes in Stat4 and Akt
phosphorylation (A) or p-Erk and p-Jnk (B) after stimulation with 100 ng/mL SCF for various times in
Aldh2+/+ and Aldh2−/− BMMCs, as indicated. The histogram below shows the average fold changes in
band intensities after normalization, using β-actin as a loading control. Data are the mean ± SEM of
three independent cultures. * p < 0.05; ** p < 0.01.

2.4. Deficiency in Aldh2 Results in Increased Kit Activation Concomitant with Reduced Shp-1 Activity and
Increased ROS Levels

Since signaling downstream of Kit was enhanced in Aldh2-deficient mast cells, we surmised that
Aldh2 may affect an early step in the activation of the receptor. SCF-induced phosphorylation of Kit in
tyrosine 823, which occurs by the transphosphorylation of dimerized Kit by binding to SCF, was more
pronounced and longer lasting in Aldh2−/− compared with Aldh2+/+ BMMCs (Figure 4A). This occurred
concomitantly with increases in Kit kinase activity assayed in Kit immunoprecipitates of SCF-activated
BMMCs (Figure 4B).

The tyrosine phosphatase Shp-1 is an important regulator of Kit dephosphorylation and the
termination of signaling. Therefore, we investigated the possibility that Aldh2 regulates Kit signaling
via Shp-1. We immunoprecipitated Shp-1 in Aldh2+/+ and Aldh2−/− BMMCs activated with SCF,
and measured phosphatase activity in the immunoprecipitated immunocomplexes. Shp-1 activity
in SCF-activated Aldh2−/− cells was significantly reduced compared to that in Aldh2+/+ mast cells
(Figure 4C). Since Aldh2 has been reported to regulate ROS in certain systems [1–3] and Shp-1 is
sensitive to ROS [16], we also measured the increases in ROS induced by SCF in Aldh2+/+ and Aldh2−/−

BMMCs. We found that Aldh2 deficiency resulted in an increased production of ROS by SCF (Figure 4D),
and that prevention of ROS actions by pretreatment with the general antioxidant TEMPO reversed
the diminished activation of Shp-1 induced by SCF (Figure 4E). The data are thus consistent with the
conclusion that Aldh2, through the regulation of ROS levels, impacts the activity of Shp-1.
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Figure 4. Aldh2 deficiency in BMMCs enhances the phosphorylation and activity of Kit and 
concomitantly increases ROS and reduces Shp-1 activity. Changes in Kit phosphorylation in cell 
lysates (A) and activity in Kit immunoprecipitates (B) after stimulation with 100 ng/mL SCF for 
various times in Aldh2+/+ and Aldh2−/− BMMCs, as indicated. (C) Shp-1 activity in immunoprecipitates 
from Aldh2+/+ and Aldh2−/− BMMCs stimulated with 100 ng/mL SCF for the indicated times. (D) 
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Figure 4. Aldh2 deficiency in BMMCs enhances the phosphorylation and activity of Kit and
concomitantly increases ROS and reduces Shp-1 activity. Changes in Kit phosphorylation in cell
lysates (A) and activity in Kit immunoprecipitates (B) after stimulation with 100 ng/mL SCF for various
times in Aldh2+/+ and Aldh2−/− BMMCs, as indicated. (C) Shp-1 activity in immunoprecipitates from
Aldh2+/+ and Aldh2−/− BMMCs stimulated with 100 ng/mL SCF for the indicated times. (D) Intracellular
ROS levels in Aldh2+/+ and Aldh2−/− BMMCs treated with 100 ng/mL SCF for the indicated times. Data in
(A–D) are the mean ± SEM of three independent cultures. (E) Treatment with increasing concentrations
of the antioxidant TEMPO reverses the reduced Shp-1 activation in SCF (100 ng/mL)-stimulated Aldh2−/−

BMMCs. Data are the mean ± SEM of three independent experiments. * p < 0.05; ** p < 0.01; n.s;
not significant.

3. Discussion

Mast cells are thought to play a role in alcohol flushing in individuals with a deficiency in the
ALDH2 gene, a critical enzyme in the metabolism of acetaldehyde and lipid aldehydes [1,5,10]. Mast
cells can also cause flushing, as reported in mast cell activation disorders, where an abnormal activation
of mast cells may occur [7]. As Aldh2 protects cells against oxidative stress which occurs transiently
during the activation of mast cells, we explored a potential role for this enzyme in the regulation of
mast cell activation and in the context of Kit activation. Herein, we implicate Aldh2 for the first time
in the regulation of Kit signaling via Shp-1, and thus in enhanced mast cell activation when SCF is
a co-stimulus.

Aldh2 deficiency in BMMCs did not alter FcεRI-induced signaling, such as Syk activation,
Syk-dependent phosphorylation of LAT, and downstream events (Figure S1) required for the allergic
activation of mast cells [23,24], and also did not alter the FcεRI-mediated release of bioactive mediators
(Figure 2A–C). In contrast, lack of Aldh2 activity resulted in significantly enhanced mast cell
degranulation and cytokine production after the co-stimulation of FcεRI with Kit. Since allergic
stimulation of mast cells in tissues occurs presumably in the context of SCF-induced signals, our results
suggest a predisposition in Aldh2-deficient mast cells to increased responsiveness. The enhanced
responses in the presence of SCF stimulation were accompanied by greater and longer lasting Kit
phosphorylation and tyrosine kinase activity, which resulted in the elevated phosphorylation of
signaling proteins such as Erk and Jnk. The activation of these cascades may explain the augmented



Int. J. Mol. Sci. 2019, 20, 6216 7 of 12

secretion of cytokines in response to SCF, as cytokine production in mast cells is typically regulated by
activated MAPKs [15,25].

The increased Kit tyrosine kinase activity and enhanced activation of Akt, Erk, Jnk, and Stat4
signaling pathways in Aldh2-deficient BMMCs were associated with markedly reduced Shp-1 activity
in these cells after SCF stimulation. The tyrosine phosphatase Shp-1 is known to bind Kit and negatively
regulate Kit activity and Kit-mediated responses [26] and a reduction in Shp-1 due to degradation
was proposed as a mechanism contributing to the oncogenic potential of mutated c-Kit [27]. Shp-1
deficiency, similar to our findings in Aldh2-deficient BMMCs, was also found to enhance mast cell
mediator release, particularly after c-Kit and FcεRI-co-stimulation [28]. The reduced Shp-1 activity in
Aldh2-deficient mast cells after SCF stimulation was concomitant with increases in intracellular ROS
levels, which have been shown to cause the inhibition of Shp-1 [16], and was reversed by treatment with
the general antioxidant TEMPO, suggesting a contribution of Aldh2 to the regulation of SCF-induced
oxidative species with an impact on Shp-1 activity and thus Kit signaling. This contrasted with the
lack of a role for Aldh2 and Shp-1 in FcεRI-mediated responses, since known targets for Shp-1 (LAT)
and downstream effectors (PLCγ and MAPKs) [16,29] were not affected in Aldh2−/− mast cells after
FcεRI-ligation (Figure S1). The reasons for this apparent specificity for SCF-induced Shp-1 activation
require further investigation but may include differences in the species of ROS produced by Kit
activation compared to FcεRI ligation, or differences in the sensitivity of Shp-1 pools associated with
distinct signalosomes under different stimuli.

In addition to the findings described herein of the involvement of Aldh2 in Kit-mediated signaling
and responses, other reports have indicated that this enzyme can be activated in mouse mast cells and
the human mast cell line HMC-1 by the stimulation of Gα0/αi-linked G-protein-coupled receptors
(GPCRs), such as adenosine receptors A2b/A3, histamine receptor 4, or sphingosine-1-phosphate type
1 receptor [30–32]. Enhanced Aldh2 activity by these receptors reduces the release of mast cell renin
induced by ischemic conditions, also suggesting contributions of Aldh2 to mast cell responses in the
context of heightened toxic aldehydes [8].

In summary, the data presented herein involves Aldh2 as a previously unrecognized regulator of
mast cell proliferation and SCF/Kit-mediated mast cells responses via Shp-1 regulation. This may be
relevant for mast cell activation and alcohol flushing responses observed in populations with ALDH2*2
polymorphisms [6,7] and aid in the selection of management approaches.

4. Materials and Methods

4.1. Reagents

Antibodies and reagents were purchased from the following sources: antibodies against ALDH2
(sc-48838) and Kit (sc-13508) were from Santa Cruz Biotechnology (Dallas, TX, USA) and used at
a dilution of 1:1000 for Western blotting. Anti-phospho-Syk (Tyr525/526) (#2711), -phospho-LAT
(Tyr191) (#3584), -phospho-PLCγ1 (Y783) (#2821), -phospho-Stat4 (Tyr693) (#5267), -phospho-Akt
(Thr308) (#9275), -phospho-SAPK/Jnk (Thr183/Tyr185) (#9251), and -phospho-p44/42 MAPK (Erk1/2)
(Thr202/Tyr204) (#9101) antibodies were from Cell Signaling Technology (Beverly, MA, USA) and
diluted to 1:2000 for Western blotting. Anti-β-actin (#A5316), used as a loading control at 1:5000
dilution, was purchased from Sigma-Aldrich (St Louis, MO, USA). Antibodies against Syk (sc-929),
Shp-1 (sc-287), and Kit (sc-48838) for immunoprecipitations were from Santa Cruz Biotechnology. Cell
culture reagents were from GIBCO/Invitrogen (Carlsbad, CA, USA). Dinitrophenyl (DNP)-specific
monoclonal IgE and DNP-human serum albumin (BSA) were from Sigma (St. Louis, MO, USA).

4.2. Mice and BMMC Cultures

Aldh2−/− and Aldh2+/+ C57BL/6 mice were generated and then kindly provided by Dr. Toshihiro
Kawamoto, as previously described [33]. All mice were maintained and used in accordance with
NIH guidelines and animal study proposal number LMBB-BS-1, which was approved by the NIAAA
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Animal Care and Use Committee (Approved March 1, 2017). BMMCs were isolated from the mouse
bone marrows of 6 to 8-week-old mice and cultured for 4–8 weeks in RPMI 1640 containing 2 mM
L-glutamine, 0.1 mM nonessential amino acids, 100 U/mL penicillin, 100 µg/mL streptomycin, 1 mM
sodium pyruvate, 1 mM HEPES, and 10% FBS and 10 ng/mL IL-3 [34]. The purity of mast cells in
the cultures was monitored by assessing the percentage of cells expressing Kit and FcεRI by flow
cytometry. Functional studies were conducted on cultures containing >95% double-positive mast cells.
Flow cytometry analysis of Kit and FcεRI expression was performed as previously described [35] in an
LSR II flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and evaluated using FlowJo software
(Tree Star Inc., Ashland, OR, USA).

4.3. Cell Proliferation Assays

BMMC proliferation assays were performed as previously described [36]. Briefly, cells were
resuspended in DMEM + 10% FBS media without cytokines for 6 h and plated in triplicate in 96-well
plates (3 × 104 cells/well) in the presence of the indicated concentrations of mouse recombinant SCF for
24 h. [3H]-Thymidine (1 µCi) was added to each well for 6 h. Cells were collected using a Cell Harvester
(Skatron, Sterling, VA, USA), and acid-insoluble [3H]thymidine in cells after precipitation with 5%
trichloroacetic acid was determined using a Beta Plate Liquid Scintillation Counter (PerkinElmer Life
Sciences, Boston, MA, USA).

4.4. Measurement of Degranulation and TNF-α and IL-6 Levels

For experiments where mast cells were stimulated, BMMCs (107 cells/well) were incubated
overnight in cytokine-free media containing mouse monoclonal anti-dinitrophenyl (DNP)-IgE
(Sigma-Aldrich) (100 ng/mL). On the following day, cells were rinsed with HEPES-BSA buffer
(10 mM HEPES [pH 7.4], 137 mM NaCl, 2.7 mM KCl, 0.4 mM Na2HPO4·7H2O, 5.6 mM glucose,
1.8 mM CaCl2·2H2O, 1.3 mM MgSO4·7H2O, and 0.04% BSA) and then stimulated with 25 ng/mL
DNP-HSA (Ag), in the presence or absence of 100 ng/mL SCF. For degranulation, cells were stimulated
with antigen in HEPES-BSA buffer for 30 min, and IgE-primed BMMCs for cytokine production were
stimulated with Ag for 8 h in complete media without FBS. Degranulation was determined based on a
measurement of the release of the granule marker β-hexosaminidase, as previously described [37],
and calculated as percentages of total β-hexosaminidase content found in the supernatants after
challenge. IL-6 and TNFα levels in the supernatants were determined by ELISA kits from R&D Systems
(Minneapolis, MN, USA).

4.5. Immunoprecipitation and Western Blotting Analysis

IgE-primed BMMCs were stimulated with Ag in HEPES-BSA buffer for 0, 3, 7, and 15 min; washed
twice with PBS; and lysed for 10 min on ice with lysis buffer containing 10 mM Tris-HCl (pH 8.0),
150 mM NaCl, 1 mM EDTA, 1 mM Na3VO4, 0.5 mM PMSF, 5 mg/mL aprotinin, 5 mg/mL leupeptin,
complete protease inhibitor cocktail (Roche, Indianapolis, IN, USA), and 1% NP-40. Samples were then
clarified at 13,000 g for 5 min at 4 ◦C. Protein content in the lysates was determined using a Bradford
assay (Bio-Rad, Hercules, CA, USA) and equal amounts of protein (1 mg in mL lysis buffer) were used
for immunoprecipitation of the indicated tyrosine kinases. Cell lysates were incubated at 4 ◦C with the
indicated specific antibodies with gentle rocking for 4 h and the immunocomplexes were captured
with protein A/G–agarose overnight at 4 ◦C. The agarose beads were washed five times with washing
buffer (lysis buffer diluted 1:10 in PBS (pH 7.4)), resuspended in 2X Laemmli buffer, and then boiled
for 10 min.

For Western blotting analysis, equal amounts of proteins (20 µg) were separated by SDS-PAGE
using 4–12% gels and then transferred onto nitrocellulose membranes. The membranes were blocked
with 5% BSA in Tris-buffered saline for 1 h, and then incubated with specific primary antibodies
overnight at 4 ◦C. Immunoreactive bands were detected using infrared dye-conjugated secondary
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antibodies (LI-COR Biosciences; Lincoln, NE, USA) (1:20,000), and were imaged and quantified using
an Odyssey imager (LI-COR Biosciences).

4.6. In Vitro Kinase Assay

Kit and Syk were immunoprecipitated from 1 mg whole-cell lysates of BMMCs stimulated or
not stimulated with Ag (25 ng/mL) or SCF (100 ng/mL) in HEPES-BSA buffer for 0, 3, 7, and 15 min.
Immunoprecipitates were assayed for kinase activity by using the ELISA-based Universal Tyrosine
Kinase Assay Kit (Gen Way, San Diego, CA, USA), according to the manufacturer’s instructions.
One unit of tyrosine kinase represents the incorporation of 1 pmol of phosphate into the substrate (a
p34cdc2 peptide fragment of about 6–20 amino acids) per minute.

4.7. Measurement of Shp-1 Phosphatase Activity

Shp-1 was immunoprecipitated from BMMCs stimulated with 100 ng/mL SCF in HEPES-BSA
buffer for 0, 3, 7, and 15 min. Shp-1 activity in the immunoprecipitates was measured with a DuoSet IC
Phosphatase Assay (R&D Systems) by determining the amount of free phosphate after incubation with
a synthetic phosphopeptide substrate for 30 min, according to the manufacturer’s protocol. In some
experiments, cells were pretreated for 10 min with increasing concentrations (10 to 100 µmol/L) of the
antioxidant TEMPO before stimulation with 100 ng/mL SCF for 15 min.

4.8. Measurement of Intracellular ROS

Intracellular ROS levels were measured with the OxiSelect™ Intracellular ROS Assay kit
(Cell Biolabs, Inc., San Diego, CA, USA). BMMC (2 × 105 cells/1.5 mL) were incubated with 2′,
7′-dichlorofluorescin diacetate (DCFH-DA) (20 µM) for the last 20 min of stimulation with SCF at 37 ◦C
and then washed with cold-PBS. Cells were lysed in 100 µL of 0.5% Triton-X 100 and the oxidation of
DCFH into a fluorescent derivative (DCF) was measured in a fluorescence plate reader (Perkin Elmer,
Shelton, CT, USA) at 492 nm excitation/535 nm emission and interpolated in a standard curve using
H2O2 as the oxidative agent.

4.9. Statistical Analysis

Data were expressed as the mean ± SEM of values from at least three independent experiments
performed in 3 to 5 separate BMMC cultures. A Student’s t-test was used to determine statistically
significant differences between groups using Prism 8 software (Graph Pad Software, San Diego, CA,
USA). Statistical significance was indicated as follows: * p < 0.05 and ** p < 0.01.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/24/
6216/s1.
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Abbreviations

Ag Antigen
ALDH2 Aldehyde dehydrogenase
Akt Protein kinase B
BMMC Bone marrow-derived mast cell
Kit Receptor for SCF
Erk Extracellular signal-regulated kinase
FcεRI High affinity receptor for IgE
Jnk Jun N-terminal kinase
LAT Linker for activation of T-cells
MAPK Mitogen-activated protein kinase
PLCγ Phospholipase C gamma
ROS Reactive Oxygen Species
SCF Stem cell factor or Kit ligand
Shp-1 Src homology region 2 domain-containing phosphatase-1
Stat4 Signal transducer and activator of transcription 4
Syk Spleen tyrosine kinase

References

1. Chen, C.H.; Ferreira, J.C.; Gross, E.R.; Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: New
therapeutic opportunities. Physiol. Rev. 2014, 94, 1–34. [CrossRef] [PubMed]

2. Hu, X.Y.; Fang, Q.; Wang, J.S.; Xie, J.Q.; Chai, B.S.; Li, F.Q.; Cui, X.; Yang, Y. Over-expression of aldehyde
dehydrogenase-2 protects against H2O2-induced oxidative damage and apoptosis in peripheral blood
mononuclear cells. Acta Pharmacol. Sin. 2011, 32, 245–252. [CrossRef] [PubMed]

3. Choi, H.; Tostes, R.C.; Webb, R.C. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular
contraction in angiotensin-II hypertensive mice. J. Am. Soc. Hypertens. 2011, 5, 154–160. [CrossRef] [PubMed]

4. Goedde, H.W.; Agarwal, D.P.; Fritze, G.; Meier-Tackmann, D.; Singh, S.; Beckmann, G.; Bhatia, K.; Chen, L.Z.;
Fang, B.; Lisker, R.; et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum. Genet.
1992, 88, 344–346. [CrossRef]

5. Harada, S.; Agarwal, D.P.; Goedde, H.W. Aldehyde dehydrogenase deficiency as cause of facial flushing
reaction to alcohol in Japanese. Lancet 1981, 2, 982. [CrossRef]

6. Rastogi, V.; Singh, D.; Mazza, J.J.; Parajuli, D.; Yale, S.H. Flushing Disorders Associated with Gastrointestinal
Symptoms: Part 1, Neuroendocrine Tumors, Mast Cell Disorders and Hyperbasophila. Clin. Med. Res. 2018,
16, 16–28. [CrossRef]

7. Metcalfe, D.D. Mast cells and mastocytosis. Blood 2008, 112, 946–956. [CrossRef]
8. Koivisto, T.; Kaihovaara, P.; Salaspuro, M. Acetaldehyde induces histamine release from purified rat peritoneal

mast cells. Life Sci. 1999, 64, 183–190. [CrossRef]
9. Shimoda, T.; Kohno, S.; Takao, A.; Fujiwara, C.; Matsuse, H.; Sakai, H.; Watanabe, T.; Hara, K.; Asai, S.

Investigation of the mechanism of alcohol-induced bronchial asthma. J. Allergy Clin. Immunol. 1996, 97,
74–84. [CrossRef]

10. Kawano, T.; Matsuse, H.; Kondo, Y.; Machida, I.; Saeki, S.; Tomari, S.; Mitsuta, K.; Obase, Y.; Fukushima, C.;
Shimoda, T.; et al. Acetaldehyde induces histamine release from human airway mast cells to cause
bronchoconstriction. Int. Arch. Allergy Immunol. 2004, 134, 233–239. [CrossRef]

11. Miller, N.S.; Goodwin, D.W.; Jones, F.C.; Gabrielli, W.F.; Pardo, M.P.; Anand, M.M.; Hall, T.B. Antihistamine
blockade of alcohol-induced flushing in orientals. J. Stud. Alcohol 1988, 49, 16–20. [CrossRef] [PubMed]

12. Rivera, J.; Olivera, A. A current understanding of Fc epsilon RI-dependent mast cell activation. Curr. Allergy
Asthma Rep. 2008, 8, 14–20. [CrossRef] [PubMed]

13. Kalesnikoff, J.; Galli, S.J. New developments in mast cell biology. Nat. Immunol. 2008, 9, 1215–1223. [CrossRef]
[PubMed]

14. Okayama, Y.; Kawakami, T. Development, migration, and survival of mast cells. Immunol. Res. 2006, 34,
97–115. [CrossRef]

http://dx.doi.org/10.1152/physrev.00017.2013
http://www.ncbi.nlm.nih.gov/pubmed/24382882
http://dx.doi.org/10.1038/aps.2010.203
http://www.ncbi.nlm.nih.gov/pubmed/21293477
http://dx.doi.org/10.1016/j.jash.2011.02.005
http://www.ncbi.nlm.nih.gov/pubmed/21459068
http://dx.doi.org/10.1007/BF00197271
http://dx.doi.org/10.1016/S0140-6736(81)91172-7
http://dx.doi.org/10.3121/cmr.2017.1379a
http://dx.doi.org/10.1182/blood-2007-11-078097
http://dx.doi.org/10.1016/S0024-3205(98)00550-5
http://dx.doi.org/10.1016/S0091-6749(96)70285-3
http://dx.doi.org/10.1159/000078771
http://dx.doi.org/10.15288/jsa.1988.49.16
http://www.ncbi.nlm.nih.gov/pubmed/3347071
http://dx.doi.org/10.1007/s11882-008-0004-z
http://www.ncbi.nlm.nih.gov/pubmed/18377769
http://dx.doi.org/10.1038/ni.f.216
http://www.ncbi.nlm.nih.gov/pubmed/18936782
http://dx.doi.org/10.1385/IR:34:2:97


Int. J. Mol. Sci. 2019, 20, 6216 11 of 12

15. Gilfillan, A.M.; Rivera, J. The tyrosine kinase network regulating mast cell activation. Immunol. Rev. 2009,
228, 149–169. [CrossRef]

16. Kim, D.K.; Kim, H.S.; Kim, A.R.; Kim, J.H.; Kim, B.; Noh, G.; Kim, H.S.; Beaven, M.A.; Kim, Y.M.; Choi, W.S.
DJ-1 regulates mast cell activation and IgE-mediated allergic responses. J. Allergy Clin. Immunol. 2013, 131,
1653–1662. [CrossRef]

17. Kim, D.K.; Beaven, M.A.; Kulinski, J.M.; Desai, A.; Bandara, G.; Bai, Y.; Prussin, C.; Schwartz, L.B.;
Komarow, H.; Metcalfe, D.D.; et al. Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1
in Mastocytosis. PLoS ONE 2016, 11, e0162831. [CrossRef]

18. Kuehn, H.S.; Swindle, E.J.; Kim, M.S.; Beaven, M.A.; Metcalfe, D.D.; Gilfillan, A.M. The phosphoinositide
3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive
oxygen species in antigen-stimulated mast cells. J. Immunol. 2008, 181, 7706–7712. [CrossRef]

19. Tagen, M.; Elorza, A.; Kempuraj, D.; Boucher, W.; Kepley, C.L.; Shirihai, O.S.; Theoharides, T.C. Mitochondrial
uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J. Immunol. 2009, 183,
6313–6319. [CrossRef]

20. Cruse, G.; Metcalfe, D.D.; Olivera, A. Functional deregulation of KIT: Link to mast cell proliferative diseases
and other neoplasms. Immunol. Allergy Clin. North. Am. 2014, 34, 219–237. [CrossRef]

21. Desai, A.; Jung, M.Y.; Olivera, A.; Gilfillan, A.M.; Prussin, C.; Kirshenbaum, A.S.; Beaven, M.A.; Metcalfe, D.D.
IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of
cytokine signaling 3. J. Allergy Clin. Immunol. 2016, 137, 1863–1871. [CrossRef] [PubMed]

22. Hundley, T.R.; Gilfillan, A.M.; Tkaczyk, C.; Andrade, M.V.; Metcalfe, D.D.; Beaven, M.A. Kit and FcepsilonRI
mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood
2004, 104, 2410–2417. [CrossRef] [PubMed]

23. Gilfillan, A.M.; Beaven, M.A. Regulation of mast cell responses in health and disease. Crit. Rev. Immunol.
2011, 31, 475–529. [CrossRef] [PubMed]

24. Saitoh, S.; Arudchandran, R.; Manetz, T.S.; Zhang, W.; Sommers, C.L.; Love, P.E.; Rivera, J.; Samelson, L.E.
LAT is essential for Fc(epsilon)RI-mediated mast cell activation. Immunity 2000, 12, 525–535. [CrossRef]

25. Ishizuka, T.; Chayama, K.; Takeda, K.; Hamelmann, E.; Terada, N.; Keller, G.M.; Johnson, G.L.; Gelfand, E.W.
Mitogen-activated protein kinase activation through Fc epsilon receptor I and stem cell factor receptor is
differentially regulated by phosphatidylinositol 3-kinase and calcineurin in mouse bone marrow-derived
mast cells. J. Immunol. 1999, 162, 2087–2094.

26. Kozlowski, M.; Larose, L.; Lee, F.; Le, D.M.; Rottapel, R.; Siminovitch, K.A. SHP-1 binds and negatively
modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol. Cell.
Biol. 1998, 18, 2089–2099. [CrossRef] [PubMed]

27. Piao, X.; Paulson, R.; van der Geer, P.; Pawson, T.; Bernstein, A. Oncogenic mutation in the Kit receptor
tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase
SHP-1. Proc. Natl. Acad. Sci. USA 1996, 93, 14665–14669. [CrossRef]

28. Zhang, L.; Oh, S.Y.; Wu, X.; Oh, M.H.; Wu, F.; Schroeder, J.T.; Takemoto, C.M.; Zheng, T.; Zhu, Z. SHP-1
deficient mast cells are hyperresponsive to stimulation and critical in initiating allergic inflammation in the
lung. J. Immunol. 2010, 184, 1180–1190. [CrossRef]

29. Nakata, K.; Yoshimaru, T.; Suzuki, Y.; Inoue, T.; Ra, C.; Yakura, H.; Mizuno, K. Positive and negative
regulation of high affinity IgE receptor signaling by Src homology region 2 domain-containing phosphatase
1. J. Immunol. 2008, 181, 5414–5424. [CrossRef]

30. Marino, A.; Sakamoto, T.; Robador, P.A.; Tomita, K.; Levi, R. S1P receptor 1-Mediated Anti-Renin-Angiotensin
System Cardioprotection: Pivotal Role of Mast Cell Aldehyde Dehydrogenase Type 2. J. Pharmacol. Exp.
Ther. 2017, 362, 230–242. [CrossRef]

31. Koda, K.; Salazar-Rodriguez, M.; Corti, F.; Chan, N.Y.; Estephan, R.; Silver, R.B.; Mochly-Rosen, D.; Levi, R.
Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from
cardiac mast cells. Circulation 2010, 122, 771–781. [CrossRef] [PubMed]

32. Aldi, S.; Takano, K.; Tomita, K.; Koda, K.; Chan, N.Y.; Marino, A.; Salazar-Rodriguez, M.; Thurmond, R.L.;
Levi, R. Histamine H4-receptors inhibit mast cell renin release in ischemia/reperfusion via protein kinase C
epsilon-dependent aldehyde dehydrogenase type-2 activation. J. Pharmacol. Exp. Ther. 2014, 349, 508–517.
[CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1600-065X.2008.00742.x
http://dx.doi.org/10.1016/j.jaci.2012.10.012
http://dx.doi.org/10.1371/journal.pone.0162831
http://dx.doi.org/10.4049/jimmunol.181.11.7706
http://dx.doi.org/10.4049/jimmunol.0803422
http://dx.doi.org/10.1016/j.iac.2014.01.002
http://dx.doi.org/10.1016/j.jaci.2015.09.059
http://www.ncbi.nlm.nih.gov/pubmed/26774658
http://dx.doi.org/10.1182/blood-2004-02-0631
http://www.ncbi.nlm.nih.gov/pubmed/15217825
http://dx.doi.org/10.1615/CritRevImmunol.v31.i6.30
http://www.ncbi.nlm.nih.gov/pubmed/22321108
http://dx.doi.org/10.1016/S1074-7613(00)80204-6
http://dx.doi.org/10.1128/MCB.18.4.2089
http://www.ncbi.nlm.nih.gov/pubmed/9528781
http://dx.doi.org/10.1073/pnas.93.25.14665
http://dx.doi.org/10.4049/jimmunol.0901972
http://dx.doi.org/10.4049/jimmunol.181.8.5414
http://dx.doi.org/10.1124/jpet.117.241976
http://dx.doi.org/10.1161/CIRCULATIONAHA.110.952481
http://www.ncbi.nlm.nih.gov/pubmed/20697027
http://dx.doi.org/10.1124/jpet.114.214122
http://www.ncbi.nlm.nih.gov/pubmed/24696042


Int. J. Mol. Sci. 2019, 20, 6216 12 of 12

33. Isse, T.; Matsuno, K.; Oyama, T.; Kitagawa, K.; Kawamoto, T. Aldehyde dehydrogenase 2 gene targeting
mouse lacking enzyme activity shows high acetaldehyde level in blood, brain, and liver after ethanol gavages.
Alcohol Clin. Exp. Res. 2005, 29, 1959–1964. [CrossRef] [PubMed]

34. Jensen, B.M.; Swindle, E.J.; Iwaki, S.; Gilfillan, A.M. Generation, isolation, and maintenance of rodent mast
cells and mast cell lines. Curr. Protoc. Immunol. 2006, 74, 3–23. [CrossRef] [PubMed]

35. Kulinski, J.M.; Proia, R.L.; Larson, E.M.; Metcalfe, D.D.; Olivera, A. S1P(4) Regulates Passive Systemic
Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells. Int. J. Mol. Sci.
2018, 19, 1279. [CrossRef] [PubMed]

36. Kissel, H.; Timokhina, I.; Hardy, M.P.; Rothschild, G.; Tajima, Y.; Soares, V.; Angeles, M.; Whitlow, S.R.;
Manova, K.; Besmer, P. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling
in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 2000, 19, 1312–1326.
[CrossRef]

37. Kuehn, H.S.; Radinger, M.; Gilfillan, A.M. Measuring mast cell mediator release. Curr. Protoc. Immunol. 2010,
91, 7–38. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1097/01.alc.0000187161.07820.21
http://www.ncbi.nlm.nih.gov/pubmed/16340452
http://dx.doi.org/10.1002/0471142735.im0323s74
http://www.ncbi.nlm.nih.gov/pubmed/18432974
http://dx.doi.org/10.3390/ijms19051279
http://www.ncbi.nlm.nih.gov/pubmed/29693558
http://dx.doi.org/10.1093/emboj/19.6.1312
http://dx.doi.org/10.1002/0471142735.im0738s91
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Aldh2 Deficiency Enhances Mast Cell Proliferation 
	Responses to SCF Alone or in Combination with IgE/Ag Are Enhanced in Aldh2-Deficient BMMC, While Responses to FcRI Stimulation Are Unaffected 
	Kit-Induced Phosphorylation Events Are Upregulated in Aldh2-Deficient BMMCs 
	Deficiency in Aldh2 Results in Increased Kit Activation Concomitant with Reduced Shp-1 Activity and Increased ROS Levels 

	Discussion 
	Materials and Methods 
	Reagents 
	Mice and BMMC Cultures 
	Cell Proliferation Assays 
	Measurement of Degranulation and TNF- and IL-6 Levels 
	Immunoprecipitation and Western Blotting Analysis 
	In Vitro Kinase Assay 
	Measurement of Shp-1 Phosphatase Activity 
	Measurement of Intracellular ROS 
	Statistical Analysis 

	References

